Growth and Inflation in a Monetary « Selling-Cost » Model

Stefano BOSI & Michel GUILLARD

00 – 05
Growth and Inflation
in a Monetary “Selling-Cost” Model

Stefano Bosi and Michel Guillard
EPEE, University of Evry,
4, Bd François Mitterrand
91025 Evry cedex, FRANCE

March 2000

Abstract

This paper presents a simple monetary “selling-cost” model in the spirit of Dornbusch and Frenkel [1973] who assume that there are real costs in terms of resources to “delivering” output to consumers and that producers may reduce these transaction costs by accepting money in exchange for products. Within an exogenous growth framework, this assumption easily justifies the existence of a negative relationship between i) inflation and growth in the short run and ii) inflation and output in the long run. Within an endogenous growth framework, this kind of transaction costs allows for multiple steady states when monetary authorities control the rate of money creation. Under a mild assumption concerning the specification of the transaction costs, two stationary growth rates arise and the higher one is indeterminate. When indeterminacy occurs the monetary growth rate displays a positive impact on the balanced growth rate. Moreover the higher growth rate is recognized to be superior in terms of welfare. Eventually we investigate the role of monetary and fiscal policy to coordinate agents and drive the economy towards virtuous growth rates.
1 Introduction

How to best introduce money into intertemporal growth models is still an open question. A lot of attention has been devoted to the analysis of the direct costs and benefits of money detention for the consumers. This includes Money in Utility Function (MIUF) models, Cash In Advance (CIA) for consumption models and Shopping Time (or other Shopping costs) models.

In exogenous growth framework, the effect of these formalizations of money detention on the long run output-per-capita ratio crucially depends from the presence of leisure in the utility function. If labor is exogenously supplied, the famous (long run) superneutrality result due to Sidrauski [1967] generally applies in representative agent models. However, in heterogenous agent models, a Tobin effect could apply if, for instance, new generations or dynasties appear at each period (see Orphanides and Solow [1990]). Conversely, when the supply of labor is endogenous, there exists a negative relationship between money growth and output-per-capita, i.e. a reverse-Tobin effect. This result has been shown by Brock [1975] in a MIUF model and by Cooley and Hansen [1989] in a stochastic version of a CIA- for-consumption- model. In these cases, inflation acts as a tax on market activities and induces households to switch from market to non-market activity (leisure).

The same kind of results hold in endogenous growth models but the output-per-capita ratio has to be replaced by the capital growth rate in order to evaluate the effect of the money growth rate. However, as noted by Chari, Jones, and Manuelli [1995], those models are unable to replicate the strong negative (non-linear) relationship between inflation and growth that empirical cross-country studies generally find. Facts about data can be found in Fischer [1993], Barro [1995], Bruno and Easterly [1995], Judson and Orphanides [1996], Sarel [1996] and Ghosh and Phillips [1998]. These studies conclude to a negative relationship between inflation and growth which holds robustly at all but the lowest inflation rate.

1In Tobin [1965] money competes with capital for a place in the portfolio of households. One prediction from Tobin’s model is that the inflationary money growth and capital stock are positively correlated.

3The evidence varies from one study to another. However the empirical works agree about the sign of long run inflation impact on growth. 10 percentage point increase in the average inflation rate is associated with a decrease in the average growth rate of between about 0.2 and 0.7 percentage points (Fischer [1993], Chari, Jones and Manuelli [1995]).
Chari, Jones, and Manuelli [1995] show that the models’ inability to reproduce these facts may be due to their standard narrow assumption that all money is held by public (the consumers) for making transactions.

A way investigated by Stockman [1981] consists in examining the implications of a CIA constraint applied to investment. Stockman’s insight is prompted by the fact that firms frequently put up some cash in financing their investment project. Money is then a complement to capital, accounting for a negative relationship between the steady state level of output-per-capita and the inflation rate in a neoclassical environment.

Unfortunately, Chari, Jones, and Manuelli [1995] conclude to the same inability of this assumption to explain a strong negative relationship between inflation and growth in an endogenous growth framework. The authors then suggest to incorporate banks in the models in order to match the empirical outcomes. Their analysis is based upon the effect of a reserve requirement constraint on the credit cost.

Exploring an other side of banking activity, Aiyagari, Braun, and Eckstein [1998] incorporate into a monetary growth model a credit sector providing services that held firms to economize on money. The paper is motivated by empirical observations on the comovements of currency velocity, inflation and the relative size of the credit sector.

In an earlier work, Dornbusch and Frenkel [1973] stressed the importance of money detention by firms in a neoclassical growth model. In this paper, the authors assume that there are real costs in terms of resources to ‘delivering’ output to consumers and that producers may reduce these transaction costs by accepting money in exchange for products. The effect of inflation on output-per-capita depends on the relative complementariness (versus substitutability) between money and capital. In the case of complementariness, inflation and output-per-capita are negatively correlated.

In this paper, we use a slightly modified version of the Dornbusch-Frenkel selling-cost technology and extend the analysis to a simple endogenous growth framework. Money can be viewed as a substitute to costly financial services. The paper proceeds as follows. In section 2 we present the setup, define the representative agent’s program, the policy rule (until section 5) and the mar-

5 Empirically, the importance of the money detention by firms has been recently documented by Mulligan [1997].
ket clearing conditions. In section 3, the neoclassical framework is analyzed. Our results are very close to those of Dornbusch and Frenkel [1973] but without ambiguity about the sign of the relationship between inflation (and the monetary growth rate) and growth. The Fisher relation does hold despite the presence of a reverse-Tobin effect. Section 4 is devoted to endogenous growth. The Fisher relation does not hold. This kind of transaction costs allows for multiple steady states when monetary authorities control the rate of money creation. Under a mild assumption concerning the specification of the transaction costs, two stationary growth rates arise and the higher one is indeterminate. When indeterminacy occurs the monetary growth rate displays a positive impact on the balanced growth rate. Moreover the higher growth rate is recognized to be superior in terms of welfare. In Section 5, we investigate the role of monetary and fiscal policy to coordinate agents and drive the economy towards virtuous growth rates. A policy mix constituted by an interest rate peg and a non-Ricardian fiscal policy prevents from real and nominal indeterminacy. The last section proposes a conclusion.

2 The model

Following the literature on the “shopping costs”, we suppose that real resources are necessary for the task of facilitating transactions. Real money holdings provide “shopping services” in the sense that the more money is held the more real resources are freed from the transaction task. In the spirit of Dornbusch and Frenkel [1973] we suppose more precisely that there are real resources costs to delivering output to consumers (“selling-costs”) and that producers can reduce those by accepting to receive money in exchange for their products. Although our set-up explicitly recognizes the existence of only one good, it is intended to serve a simplified representation of an economy in which the household-producer does not consume his own production and sells his specialized output to a large number of other households-producers.

2.1 The representative agent

Let \(s \left(\frac{f(k_i)}{m_t} \right) \) denotes the unitary transaction cost of selling one unit of product where \(f(k_i) \) is the total production and \(m_t \) the real balance level.
We suppose that the function $s(\cdot)$ verifies:

Assumption 1:
- $s'(v_t) > 0$ if $v_t > \overline{v}$
- $2s'(v_t) + v_t s''(v_t) > 0$ if $v_t > \overline{v}$
- $s'(\overline{v}) = 0$ if $v_t \leq \overline{v}$

where $v_t = f(kt)/m_t$ denotes the output-real balance ratio. One can easily verify that these conditions are always satisfied with the function:

$$s(v) = \begin{cases}
\beta \left[\frac{v^\delta}{\overline{v}} + (v - \overline{v})^\delta \right]^{1/\delta} & \text{if } v > \overline{v} \\
\overline{v} & \text{if } v \leq \overline{v}
\end{cases}$$

with $\beta > 0$ and $\delta > 1$.

The unitary selling-cost is then an increasing function of the total production relative to real balances $f(kt)/m_t$. This specification is symmetric to the more traditional formalization of transaction costs where the shopping costs are increasing in consumption relative to real balances. The point of satiation in real balances $m_t = f(kt)/\overline{v}$ is defined as satisfying: $s'(\overline{v}) = 0$. It is not worthwhile to increase m_t beyond this point since by doing it, it is not possible to save additional resources. The condition $2s'(v) + vs''(v) > 0$ is equivalent to the condition $\partial^2 s/\partial v^2 > 0$, so that an increase in the real quantity of money decreases the transaction costs at a decreasing rate. This is a sufficient condition jointly with the other traditional conditions, to assure the convexity of the representative agent’s program.

The representative consumer maximizes an intertemporal utility functional

$$\int_0^\infty e^{-\rho t} u(c_t) \, dt$$

where c_t denotes consumption at time t and ρ represents the time preference rate, subject to the portfolio decision constraint,

$$a_t = k_t + m_t + b_t,$$

6 At equilibrium, v_t will be the velocity of circulation of money. If we note M_t the money stock and p_t the price level, the quantitative identity $v_t M_t = p_t f(kt)$ can be arranged to give $v_t = f(kt)/m_t$.

8 An other and interesting case is captured by the following limit form: $s(v) = +\infty$ if $v > \overline{v}$, and $s(v) = 0$ if $v \leq \overline{v}$, which is to the selling cost technology what the Cash-in-Advance constraint is to the shopping cost technology.
the real asset accumulation equation,

$$\dot{a}_t = [1 - s(f(k_t)/m_t)] f(k_t) - \eta k_t + r_t b_t - \pi_t m_t - \tau_t - c_t$$ \hspace{1cm} (4)

and the limit condition,

$$\lim_{t \to \infty} a_t \cdot e^{-\int_0^t r_s ds} \geq 0$$ \hspace{1cm} (5)

As usual k_t is the stock of capital and η the depreciation rate. b_t is the real amount of bonds held by the household and r_t is the real interest rate. The inflation rate is denoted by π_t, while $-\pi_t m_t$ represents the inflationary tax. Finally, real lump-sum taxes are denoted by τ_t.

Utility is assumed to be isoelastic, with elasticity of intertemporal substitution equal to σ:

$$u(c_t) = \begin{cases} \frac{a_t^{1-1/\sigma} - 1}{1-1/\sigma}, & \text{if } \sigma \neq 1 \\ \ln c_t, & \text{if } \sigma = 1 \end{cases}$$

Setting the Hamiltonian and arranging the first order conditions, one obtains:

$$\frac{\dot{c}_t}{c_t} = \sigma \{r_t - \rho\}$$ \hspace{1cm} (6)

$$s'(v_t) v_t^2 = r_t + \pi_t$$ \hspace{1cm} (7)

$$[1 - s(v_t) - s'(v_t) v_t] f'(k_t) - \eta = r_t$$ \hspace{1cm} (8)

and

$$\lim_{t \to \infty} u'(c_t) a_t \cdot e^{-\rho t} = 0$$ \hspace{1cm} (9)

Equation (6) is the traditional Euler equation and (7) implicitly determines the desired velocity of circulation of money: the left hand side is the marginal rate of return ("productivity") of real balances and the right hand side is the marginal cost of money holding, that is the nominal interest rate, $i_t = r_t + \pi_t$. Equation (8) equalizes the real rate of return of capital to the real interest rate on bonds and finally (9) is the transversality condition.
2.2 The government

The nominal government budget constraint is given by:

\[\dot{M}_t + \dot{B}_t = i_t B_t - p_t \tau_t \]

(10)

\(M_t \) is the nominal stock of money and \(B_t \) the amount of nominal bonds. Defining \(d_t = (M_t + B_t)/p_t \) and rewriting the preceding expression in real terms, one obtains:

\[\dot{d}_t = r_t d_t - (i_t m_t^s + \tau_t) \]

(11)

where \(m_t^s = M_t/p_t \) is the real money supply.

Integrating the government budget constraint at time 0, we have:

\[\frac{M_0 + B_0}{p_0} = \int_0^\infty (i_t m_t^s + \tau_t) \cdot e^{-\int_0^t r_s ds} dt + \Delta_0 \]

(12)

with

\[\Delta_0 = \lim_{t \to \infty} d_t \cdot e^{-\int_0^t r_s ds} \]

(13)

2.3 Policy regime and market equilibrium

The monetary authority is supposed to follow a simple monetary rule: \(\dot{M}_t/M_t = \mu \) and the government adopts a Ricardian fiscal policy which respects the no-Ponzi game condition \(\Delta_0 = 0 \). At the money market equilibrium, we have \(m_t = M_t/p_t \) and the real balance law of motion is given by:

\[\dot{m}_t = (\mu - \pi_t) m_t \]

(14)

The good market equilibrium is obtained by aggregating the capital asset accumulation constraint of household (3) and (4) with the government real budget constraint (11), that is,

\[\dot{k}_t = [1 - s(v_t)] f(k_t) - \eta k_t - c_t \]

(15)

which corresponds to the capital stock law of motion.
3 The neoclassical framework

The results we obtain within an exogenous growth setup under the above transaction technology are very close to those found by Dornbusch and Frenkel [1973]. In particular the complementariness between money and capital entails a negative relation between inflation and output-per-capita.

Assume a concave production function \((f''(\cdot) < 0)\). Integrating equation (8) in equation (6) one obtains a modified Euler condition.

\[
\dot{c}_t = \sigma \left[(1 - s(v_t) - s'(v_t) v_t) f''(k_t) - \eta - \rho \right] c_t. \tag{16}
\]

Combining (7), (8) and (14) give the following law of motion for real balances:

\[
\dot{m}_t = \{ \mu + [1 - s(v_t) - s'(v_t) v_t] f''(k_t) - \eta - s'(v_t) v_t^2 \} m_t \tag{17}
\]

Equations (15), (16) and (17) constitute the dynamic system

\[
(\dot{m}_t, \dot{k}_t, \dot{c}_t) = \varphi (m_t, k_t, c_t) \tag{18}
\]

3.1 Steady state

At steady state, \(\dot{k}_t = \dot{m}_t = \dot{c}_t = 0\). By imposing these conditions in (6) and (14), we obtain \(\pi^* = \mu\) and \(r^* = \rho\) and the velocity \(v^*\) is implicitly given by equation (7):

\[
s' (v^*) v^{*2} = \rho + \mu \tag{19}
\]

By totally differentiating (19), we notice the positive impact of the parameters \(\mu\) and \(\rho\) on the steady state \(v^*\). The steady state value of the capital stock, \(k^*\), is then derived from (8) with \(r_t = \rho\):

\[
k^* = f'^{-1} \left(\frac{\rho + \eta}{1 - s(v^*) - s'(v^*) v^*} \right) \tag{20}
\]

Therefore the impact of monetary growth on the stationary capital level is negative.

More explicitly in the long run money growth turns completely into inflation and inflation rises the opportunity cost of holding money. Thereby agents reduce their real balances. The transaction costs rise and the net production decreases.
3.2 Dynamic analysis

Initial conditions of the reduced system (18) concern only nominal money, which is denoted by M_0, and capital, k_0. As consumption and real balances are independently non-predetermined, neither is the velocity of circulation of money with respect to consumption. Dynamics described by (18) are three-dimensional and the local dynamics around the steady state are linearized by the following Jacobian matrix:

$J = \begin{bmatrix}
(f' + v)(2s' + vs'')v & (1 - s - vs')(f'' - (f' + v)(2s' + vs'')f' & 0 \\
v^2s' & \rho & -1 \\
\sigma c(2s' + vs'')(f' + v) & \sigma c[(1 - s - vs')f'' - (2s' + vs'')(f')^2]/m & 0
\end{bmatrix}$

Under assumption 1 the trace, $tr(J) = (f' + v)(2s' + vs'')(1 - s - vs')vf''$, is always positive and the determinant,

$$\text{det}(J) = \sigma c(2s' + vs'')(1 - s - vs')vf''$$

is always negative.

In this case one eigenvalue is negative and two have positive real parts. As there are one predetermined variable (capital) and two non-predetermined variables (real balances and consumption), the equilibrium turns out to be determinate. This is summarized by the following proposition:

Proposition 1 In the neoclassical selling-cost model, equilibrium determinacy always prevails.

This result rules out the possibility of endogenous fluctuations and sunspot equilibria.

3.3 Monetary policy and the Friedman rule

By totally differentiating (19) and (20), we obtain:

$$\frac{\partial k^*}{\partial \mu} = \frac{f'(k^*)^2}{(\rho + \eta) v^* f''(k^*)} < 0$$

The effect of a rise in the money growth rate is a drop in the steady state capital level. By the quantitative equation, at the steady state, inflation as well as the nominal interest rate rise linearly with μ. Consequently,
agents reduce their real balances \((dv^*/d\mu > 0)\). This in turn raises the cost to “delivering” output to other consumers. Because at the steady state the net marginal productivity, \([1 - s (v) - s' (v) v] f' (k) - \eta\), is equal to \(\rho\), the decline of \([1 - s (v) - s' (v) v]\) has to be compensated by a rise of the gross marginal productivity \(f' (k)\) which is obtained by a drop of capital stock level. During the transition the growth rate becomes negative and converges to zero. So monetary growth is not super-neutral in this model as in the Dornbusch and Frenkel [1973] model.

Let us derive the optimal monetary policy. It is solution of the following simple program:

\[
\max \int_0^\infty e^{-\rho t} u (c_t) \, dt \\
\text{s.t.} \quad \dot{k}_t = [1 - s (v_t)] f (k_t) - \eta k_t - c_t
\]

The first order conditions are given by equations (8) and (15) and by:

\[
s' (v_t) v_t^2 = 0 \quad (= r_t + \pi_t) \quad \forall t
\]

that is, \(v_t = v_t \forall t\) and \(\pi_t = -r_t\). The real balances are at satiation level and the nominal interest rate is equal to zero. The Friedman rule does apply at any times. The transition path is solution of a simple dynamical system composed by the following couple of differential equations:

\[
\dot{k}_t = [1 - s (v_t)] f (k_t) - \eta k_t - c_t, \\
\dot{c}_t = \sigma \{ [1 - s (v_t)] f' (k_t) - \eta - \rho \} c_t,
\]

This optimal path can be implemented by choosing the money growth rate \(\mu_t\) verifying (14), \(\pi_t = -r_t\) and \(\mu m_t = f (k_t)\), that is:

\[
\mu_t = \frac{\dot{m}_t}{m_t} + \pi_t \\
= \left(\frac{f' (k_t)}{f (k_t)} \right) \dot{k}_t - r_t \\
= \eta - (\eta k_t + c_t) \left(\frac{f' (k_t)}{f (k_t)} \right)
\]

The optimal steady state is then defined by equation (20) with \(v^* = v\):

\[
\hat{k} = f'^{-1} \left(\frac{\rho + \eta}{1 - s (v)} \right)
\]
and the steady state value for the rate of monetary expansion is simply \(\dot{\mu} = -\rho \). By comparison of (20) and (22), the optimal steady state is clearly associated to a higher value of capital stock.

4 Endogenous growth

The neoclassical growth is characterized by a negative trade-off between inflation and output-per-capita. However the exogenous growth setup by definition is powerless to take in account the link between inflation and the long run growth. Therefore we are naturally brought to focus on the endogenous causes of growth.

The impact of inflation on growth is clarified within the endogenous growth framework. Furthermore quite richer dynamics arise accounting for real complexity.

In this section the main outcomes of the paper are presented.

As we are interested in the monetary dynamics emerging from transaction costs of selling, we do not want to weigh down the production side with superfluous justifications and we straight assume the basic linear form:

\[f(k_t) \equiv Ak_t \]

By repeating the steps performed in the previous section, i.e. combining equations (6), (7), (8), (14) and (15), we obtain the reduced dynamic system:

\[
\begin{align*}
\dot{v}_t &= \left((A + v_t) s'(v_t) v_t - \mu - x_t \right) v_t \\
\dot{x}_t &= \sigma \left\{ (1 - s(v_t) - s'(v_t) v_t) A - \eta - \rho \right\} x_t \\
&\quad - \left\{ \left[1 - s(v_t) \right] A - \eta - x_t \right\} x_t
\end{align*}
\]

where \(x_t = c_t/k_t \) is the consumption - capital ratio. The stationary growth rates for real balances, capital, production and consumption are equal, i.e. the growth, as usual in this class of models, is balanced.

4.1 Balanced growth: multiplicity

By definition of steady state, derivatives in the right hand sides of (23) and (24) are equal to zero. Thereby the two differential equations becomes simple algebraic expressions and the stationary velocity of money \(\nu^* \) solves the
reduced equation:

\[s' (v^*) v^{*2} + (\sigma - 1) \{ [1 - s (v^*) - s' (v^*) v^*] A - \eta \} = \mu + \sigma \rho \] (25)

The balanced growth rate \(\gamma^* \equiv (\dot{c}_t/c_t)^* = (\dot{m}_t/m_t)^* = (\dot{k}_t/k_t)^* \) is given by (6):

\[\gamma^* = \sigma \{ r^* - \rho \} \] (26)

where the equilibrium real interest rate \(r^* \) is easily obtained by putting \(f'(k_t) = A \) and \(v_t = v^* \) (from (25)) in (8):

\[r^* = [1 - s (v^*) - s' (v^*) v^*] A - \eta \] (27)

Rewriting equation (7) at steady state,

\[s' (v^*) v^{*2} = i^* \] (28)

one can express implicitly the velocity of circulation of money as a function of the nominal interest rate, \(v^* = \tilde{v} (i^*) \), with,

\[\tilde{v}' (i^*) = \frac{1}{\tilde{v} (i^*)} [2s' (\tilde{v}(i^*)) + \tilde{v}(i^*)s'' (\tilde{v}(i^*))]^{-1} \] (29)

which is always positive under assumption 1. Using (28), equation (25) becomes:

\[i^* = \mu + \sigma \rho - (\sigma - 1) \{ [1 - s (\tilde{v}(i^*)) - s' (\tilde{v}(i^*)) \tilde{v}(i^*)] A - \eta \} \] (30)

Differentiating this expression in \(i^* \) and \(\mu \), we get the derivative of the implicit function \(\mu = \tilde{\mu} (i^*) \):

\[\tilde{\mu}' (i^*) = 1 - (\sigma - 1) \frac{A}{\tilde{v}(i^*)} \] (31)

We then make the following assumption:

Assumption 2:

- \(v < (\sigma - 1) A \)
- \(\tilde{\mu}(0) = (\sigma - 1) \{ [1 - s (\underline{v})] A - \eta \} - \sigma \rho > 0 \)

Under this assumption, the function \(\mu = \tilde{\mu} (i^*) \) can be represented by the following convex curve:
As we will show, the 45° line permits us to exclude from the solution space some stationary equilibria which violates the transversality condition. At steady state, the transversality condition (9) becomes:

$$\lim_{t \to \infty} c_0^{1-1/\sigma} a_0 \cdot e^{-(\rho-(1-1/\sigma)\gamma^*)t} = 0$$

which requires:

$$\rho > (1 - 1/\sigma)\gamma^*$$ \hspace{1cm} (32)

By inspecting (26), this condition is equivalent to the more traditional no-Ponzi game condition:

$$r^* > \gamma^*$$ \hspace{1cm} (33)

Using (26) and (27), one can rewrite equation (30) in the following form:

$$i^* = \mu + r^* - \gamma^*$$ \hspace{1cm} (34)

which is simply, by noting that $i^* - r^* = \pi^*$, the dynamic version of the quantitative equation. Noting that the condition (33) is equivalent to $i^* > \mu$,

13
it constitutes a restriction in the solution space and one can exclude the area above the 45° line in the figure 1. This implies the following proposition:

Proposition 2 Under Assumptions 1 and 2, the Friedman rule, i.e. \(i^* = 0 \), violates the transversality condition \(r^* > \gamma^* \) and is not achievable.

Let us define \(\tilde{\mu} \) and \(\mu \) such that \(\tilde{\mu} = \tilde{\mu} (\mu) \), and \(\mu = \tilde{\mu} (\tilde{i}) \) where \(\tilde{i} \) verifies \(\tilde{\mu}' (\tilde{i}) = 1 - A_\sigma / \tilde{v} (\tilde{i}) = 0 \) with \(A_\sigma \equiv (\sigma - 1) A \), or equivalently,

\[
0 = [1 - s (\tilde{v}(\tilde{\mu})) - s' (\tilde{v}(\tilde{\mu})) \tilde{v}(\tilde{\mu})] A_\sigma - [\sigma \rho + (\sigma - 1) \eta]
\]

and, using (30),

\[
\mu = \tilde{v}^{-1} (A_\sigma) + [1 - s (A_\sigma) - s' (A_\sigma) A_\sigma] A_\sigma - [\sigma \rho + (\sigma - 1) \eta]
\]

Then, observing figure 1, we easily obtain the following results:

- for \(\mu < \mu_0 \), there exist no stationary equilibria at all;
- for \(\mu \in [\mu_-, \mu_+] \), there exist two stationary equilibria: the first verifies, \(\tilde{v} (i^-) < A_\sigma \) and the second, \(\tilde{v} (i^+) > A_\sigma \);
- for \(\mu > \mu_+ \), there exists only one stationary equilibrium which satisfies the transversality condition; it verifies \(\tilde{v} (i^+) > A_\sigma \).

We are now able to provide useful comparative statics. Using (26), (27) and (29), one obtain:

\[
\frac{d \gamma^*}{d \mu} = \frac{-\sigma A}{\tilde{v} (i^*)}\tag{35}
\]

and combining this result with the inverse of (31), we get:

\[
\frac{d \gamma^*}{d \mu} = \frac{\sigma A}{A_\sigma - \tilde{v} (i^*)}
\]

The monetary growth rate \(\mu \) affects negatively the balanced growth rate \(\gamma^* \) if and only if the following condition holds:

\[
\tilde{v} (i^+) > A_\sigma = (1 - \sigma) A \tag{36}
\]

This result seems to be natural in a model where real balances increase the (net of selling-costs) productivity of capital. When inflation rises, agents
reduce their real balances which in turn raise the cost to “delivering” output
to other consumers. In contrast the impact is positive if condition (36) is
violated.

Using (25) to (28) and $\pi^* = i^* - r^*$, it is easy to check that the equilibrium
growth rate is always negatively correlated to the inflation rate. We get
$\gamma^* = \gamma(\pi^*)$, with:

$$\frac{d\gamma^*}{d\pi^*} = -\sigma A \frac{-\sigma A}{A + \hat{v}(i^*)} < 0.$$

Consequently, when (36) is not verified, the positive impact of a rise of mon-
etary growth rate on the growth rate is associated with a negative relation
between the monetary growth and the inflation rate. Totally differentiating
the dynamical version of the quantitative equation,

$$\mu = \pi^* + \gamma(\pi^*),$$

we find:

$$\frac{d\pi^*}{d\mu} = \frac{A + \hat{v}(i^*)}{\hat{v}(i^*) - A\sigma}$$

which is positive if and only if condition (36) holds. If not, the (rather
surprising) negative relation between money growth and inflation is clearly
due to a (negative) over-reaction of the growth rate to a modification of the
inflation rate.

4.2 Dynamic analysis: determinacy and indeterminacy

We carry out the local analysis in the neighborhood of a steady state. As
usual we linearize the dynamic system of (23) and (24) around the steady
state. The Jacobian matrix evaluated at the steady state is:

$$J = \begin{bmatrix}
v^* \{s'(v^*) v^* + (A + v^*) [s'(v^*) + s''(v^*) v^*] - v^* \\
A \{s'(v^*) - \sigma [2s'(v^*) + s''(v^*) v^*] \} x^* & -v^* \\
\end{bmatrix}$$

(37)

Under Assumption 1 the trace is always positive. The determinant is positive
if and only if (36) hold. Sink configurations are ruled out by the positive
trace. The steady state is a source if and only if (36) holds. Otherwise it is
a saddle.
As real balances and consumption are non-predetermined variables, the velocity of circulation of money \(Ak_t/m_t \) and the consumption-capital ratio \(x_t \) are not predetermined as well. More precisely even if either the real balances or consumption are fixed, the other variable remains non-predetermined. Thereby the velocity \(v \) and the consumption-capital ratio \(x \) are independently non-predetermined.

Indeterminacy is that particular multiplicity of equilibrium trajectories arising whenever the dimension of the stable manifold is greater than the number of predetermined variables. As now two variables are not predetermined and sinks are ruled out, local indeterminacy requires a saddle configuration.

Under Assumption 1 and 2 for every monetary growth \(\mu \in (\underline{\mu}, \overline{\mu}) \), there are two steady states according to figure 1. The lower growth rate is associated to the higher interest rate and satisfies condition (36). According to the previous discussion, this equilibrium is determinate. To the converse the higher growth rate is indeterminate. The following proposition sums up the results.

Proposition 3 Under Assumption 1 and 2, if \(\mu < \mu < \overline{\mu} \), there are two steady states of endogenous growth, the lower balanced growth rate is determinate while the higher is indeterminate. The impact of monetary growth is negative on the lower growth rate and positive on the higher.

Under indeterminacy there is room for stochastic sunspot equilibria, i.e. endogenous fluctuations. The sense of this conjecture is illustrated by Woodford [1986] and Chiappori and Guesnerie [1989] among the others.

A geometric representation

Now we shape the phase diagram in the \((v, x)\) space. We plot the two curves \(\dot{v} = 0 \) and \(\dot{x} = 0 \) in the \((v, x)\) space. From (23) and (24) we obtain respectively

\[
\begin{align*}
x &= (A + v) s'(v) v - \mu \\
x &= [1 - s(v)] A - \eta - \sigma \left\{ [1 - s(v) - s'(v) v] A - \eta - \rho \right\}
\end{align*}
\]

If \(\mu < \mu < \overline{\mu} \), the two curves intersect twice at the stationary velocity \(v^- \) and \(v^+ > v^- \). Thereby inside the interval \((v^-, v^+)\) the locus \(\dot{v} = 0 \) lies below
\[\dot{x}_t = 0, \text{ and above outside. Moreover if the elasticity } s''(v) v/s'(v) \text{ is greater than } -1, \text{ both the curves } \dot{v}_t = 0, \dot{x}_t = 0 \text{ are positive-sloped.} \]

As seen above \((v^-, x^-)\) is a saddle and \((v^+, x^+)\) is a source.

An example

To perform a numerical simulation, we specify the transaction costs functional form and parameter values. First we take a limit version of the function (1) when \(\delta \to 1^+\) such that \(s(v)\) becomes linear for \(v > \bar{v}\), i.e. \(s(v) = \beta v\). The coefficient \(\beta\) simply captures the sensitivity of transaction costs to money velocity. The two curves \(\dot{v}_t = 0\) and \(\dot{x}_t = 0\) are positive-sloped and the phase diagram is very close to that of figure 2.

Second we fix the measurable parameters as follows \(A = 0.15, \eta = 0.1, \mu = 0, \rho = 0.02\). As the measure of the intertemporal substitution \(\sigma\) and sensitivity \(\beta\) of transaction costs is problematic, we locate the admissible parameter region in the \((\sigma, \beta)\) space. Conditions for reality, positivity and determinacy of the steady states define two curve in the \((\sigma, \beta)\) space and divide it in two regions (see figure 3). Two stationary equilibria arise in the shaded area: the lower is determinate, while the higher one, is indeterminate.
Outside the shaded area, on the left of the vertical line, there is a unique steady state, the lower growth rate, which remains determinate. Below the non-linear curve there are no steady states at all.

To complete the characterization of the steady states, their Pareto ranking is now provided.

4.3 Welfare analysis

We are interested in evaluating the welfare associated to each steady state. As we consider a representative agent, the measure of welfare is simply given by the value of the intertemporal utility functional evaluated along the optimal consumption path. The optimal trajectory associated to a steady state in endogenous growth is characterized by a constant balanced growth rate. Thereby growth is exponential and we can compute the intertemporal utility. In our paper felicity $u(c_t)$ takes a CES form. The optimal consumption path is $c_t = c_0 e^{\gamma t}$, where $\gamma = \sigma [(1 - s - vs') A - \eta - \rho]$ is the balanced growth rate and $s = s(v)$. The initial consumption of steady state $c_0 = k_0 [(1 - s) A - \eta - \gamma]$ is determined by the law of capital accumulation (15). Integrating all these informations and computing the intertemporal utility along the exponential consumption path, we obtain the optimal value
function, which is a welfare index.

\[U(v) = \frac{\sigma}{\sigma - 1} \left\{ k_0^{1-1/\sigma} \frac{((1 - s) A - \eta - \sigma [(1 - s - vs') A - \eta - \rho])^{1-1/\sigma}}{\rho - (\sigma - 1)(1 - s - vs') A - \eta - \rho} - \frac{1}{\rho} \right\}. \]

Note that this computation is possible if and only if the transversality condition (32) holds. Otherwise the intertemporal utility (2) diverges under the law of motion (4) and maximization fails. The value \(U(v) \) depends on the stationary velocity we consider. Such a welfare measure allows to compare and rank the steady states. Under the transversality condition the welfare measure is always strictly decreasing, i.e.

\[U'(v) < 0. \]

This inequality provides a straightforward and robust conclusion: the higher the growth rate, the lower the velocity of money, the higher the welfare. The higher stationary growth is implemented by a lower initial consumption. Nevertheless from the welfare point of view the higher stationary growth rate \(\gamma^+ \) is always preferred to \(\gamma^- \), irrespective to the initial consumption. Welfare analysis is the natural introduction to policy analysis we develop in the next section.

5 Fiscal and monetary policy

As seen above under a constant money growth there is room for real indeterminacy. Such an equilibrium multiplicity can be removed by adopting a simple alternative monetary rule, i.e. an interest peg. However the nominal indeterminacy, i.e. price indetermination, may persist and we need to complete the monetary policy with a specific fiscal policy.

There is a general agreement about the claims that under a Ricardian fiscal policy the quantity theory holds: money supply determines the price level, while the interest pegging fails (Sargent and Wallace [1975]). Woodford [1995] shows that under a non-Ricardian fiscal policy effects are reversed: money supply is powerless to stabilize the price level, which is in contrast determined by the control of the nominal interest rate.
5.1 Monetary policy: interest rate peg

Consider the maximization of a usual intertemporal utility under constraints (3) and (4). Moreover assume the following interest rate rule,

$$i_t = i > \bar{\mu}$$

even during a possible transition\(^9\). The new constraint enters the first order condition defining the velocity of money

$$s' (v_t) v_t^2 = i$$

Equation (39) implicitly determines \(\hat{v}(i)\), and then the consumption growth

$$\hat{c}_t/c_t = \sigma \{[1 - s (\hat{v} (i)) - s' (\hat{v} (i)) \hat{v} (i)] A - \eta - \rho\} = \hat{\gamma} (i)$$

The law of motion (15) determines a unique value for initial consumption, which is compatible with the equilibrium

$$c_0 = k_0 \{[1 - s (\hat{v} (i))] A - \hat{\gamma} (i) - \eta\}$$

Hence the economy jumps on its balanced growth (40) and transition is ruled out as in the basic Rebelo’s \(Ak\) model. Finally notice that the interest rate rule (38) determines the initial real balances \(m_0 = Ak_0/v(i)\) but that the general level of price is not yet determinate because \(M_0\) is now endogenous. Actually, under an interest rate peg, the relevant state variable is \(M_0 + B_0\), the total government liability, but \(M_0\) (as well as \(B_0\)) can jump in response to a modification of the nominal interest rate.

5.2 Fiscal policy and the price level determination

The monetary policy plays a key role for equilibrium selection in real terms. However it is powerless to stabilize the prices. Conversely fiscal policy matters for price determination.

More precisely the question is whether the government can use some other policy tools, such as taxes or debt policy, in conjunction with monetary policy to fix the initial price level and thereby the price path.

\(^9\)Note that \(i = \bar{\mu} + \varepsilon\), where \(\varepsilon\) is very small, is a good candidate for such a policy because it maximizes welfare.
According to Woodford [1995] the government’s choice of how to finance its debt is not neutral. To introduce the fiscal theory of the price level he clarifies the sense of Ricardian policy. A fiscal regime is said to be Ricardian if the present discounted value of government liabilities converges to zero irrespective of the price path\(^{10}\). More precisely the limiting condition (a no-Ponzi game) holds for the government intertemporal budget constraint regardless of the evolution of the other endogenous variables\(^{11}\).

The Ricardian policy is interpreted as a special regime; the fiscal policy plays no role at all in price-level determination, while the path of the money supply clearly does. This is the domain of validity for the quantity theory.

In a non-Ricardian regime the interest rate pegging delivers a unique price level, while a constant money supply growth yields a multiplicity of solutions.

At equilibrium, the no-Ponzi game condition (13) has to be satisfied for a constant real interest rate, \(i.e.,\)

\[
\Delta_0 = \lim_{t \to \infty} d_t \cdot e^{-rt} = 0 \tag{41}
\]

5.2.1 A general class of fiscal policy

Let us consider the following class of fiscal policy:

\[
\tau_t = \alpha_{bt} \frac{iB_t}{p_t} - \alpha_{mt} \frac{iM_t}{p_t} + \delta_t \tag{42}
\]

where \(\alpha_{bt}, \alpha_{mt}, \delta_t\) are exogenous time functions with \(\alpha_{bt}, \alpha_{mt} \in [0, 1] \ \forall t\).

The nominal and the real government budgetary constraints, respectively (10) and (11), then become:

\[
\dot{M}_t + \dot{B}_t = (1 - \alpha_{bt}) iB_t + \alpha_{mt} iM_t - \delta_t \tag{43}
\]

and

\[
\dot{d}_t = (r - \alpha_{bt} i) d_t - [(1 - \alpha_{bt} - \alpha_{mt}) iM_t + \delta_t] \tag{44}
\]

\(^{10}\)Barro’s Ricardian equivalence simply means the irrelevance of government debt for real quantities (Barro [1974]).

\(^{11}\)In contrast Cushing [1999] claims that a rational expectation equilibrium does not require the no-Ponzi-game condition for government to be respected.
Integrating the last equation between 0 an $+\infty$, we get:

$$d_0 = \int_0^\infty [(1 - \alpha_{bt} - \alpha_{mt}) i m_t + \delta_t] \cdot e^{-\int_0^t (r - \alpha_{bt} i) dt} dt + \tilde{\Delta}_0,$$

where $\tilde{\Delta}_0$ is defined by:

$$\tilde{\Delta}_0 \equiv \lim_{t \to -\infty} d_t e^{-\int_0^t (r - \alpha_{bt} i) dt}$$

Noting that the real balance level grows at the constant rate γ, i.e. $m_t = m_0 e^{\gamma t}$, we can easily verify than equation (45) holds under two assumptions on the exogenous time functions\footnote{For instance such assumptions are satisfied, if the function $\alpha_{bt} = \alpha_b$ is constant over time and the inequality $r - \alpha_b i > \gamma$ holds. The latter condition is equivalent to $\mu(i) < (1 - \alpha_b) i$, which constitutes a new restriction on the choice of i in the figure 1.} $\alpha_{bt} + \alpha_{mt}$ and δ_t, i.e.:

$$\left| \int_0^\infty [1 - (\alpha_{bt} + \alpha_{mt})] \cdot e^{\int_0^t (r - \alpha_{bt} i - \gamma) dt} dt \right| < +\infty,$$

and

$$\left| \int_0^\infty \delta_t e^{-\int_0^t (r - \alpha_{bt} i) dt} dt \right| < +\infty.$$

5.2.2 Ricardian Policy

Consider now the following restriction:

$$(1 - \alpha_{bt} - \alpha_{mt}) i m_t + \delta_t = 0 \quad \forall t$$

(43), (44) and (45) become respectively:

$$\dot{M}_t + \dot{B}_t = (1 - \alpha_{bt}) i (B_t + M_t),$$

and

$$\dot{d}_t = (r - \alpha_{bt} i) d_t$$

(47)

Equation (47) indicates that the real government liability grows at a rate, $(r - \alpha_{bt} i)$, that allows us to write:

$$\dot{d}_t = d_0 e^{\int_0^t (r - \alpha_{bt} i) dt}.$$
Then, by taking the limit of d_t the equation (46) give immediately $\Delta_0 = d_0$. In consequence, equation (48) is uninformative about the equilibrium value of $d_0 = (M_0 + B_0)/p_0$ which is indeterminate as well as the initial price level p_0. We can easily verify that the no-Ponzi game condition (41) is always satisfied\footnote{Our example of Ricardian policy slightly generalizes the case studied by Schmitt-Grohé and Uribe [2000]. In this article a secondary surplus policy is considered, i.e. taxes are used for paying the debt interests: $\tau_i = \delta_i$. This policy is captured in our context by simply setting $\alpha_{bt} = 1, \alpha_{mt} = \delta_i = 0$ for every t.} for $\alpha_{bt} > 0$.

5.2.3 Non-Ricardian Policy

Generically the exogenous time paths α_{bt}, α_{mt}, δ_t satisfy the condition

$$\int_0^\infty [(1 - \alpha_{bt} - \alpha_{mt})r m_t + \delta_i] \cdot e^{-\int_0^t (r - \alpha_{bt})dr} dt \neq 0$$

Under some feasibility condition $|\Delta_0| < \infty$, the initial value of the government liability d_0 is uniquely determinate as well as the price level p_0. These results are summarized in the following proposition:

Proposition 4 Under interest rate rule ($i_t = i$) equilibrium real determinacy always prevails. Nominal determinacy prevails if and only if the fiscal policy is non-Ricardian.

Summing up, a monetary policy which pegs the interest rate, determines the real equilibrium and in particular the inflation. A non-Ricardian fiscal policy fixes the initial price p_0. Therefore this policy mix jointly determines the whole price path.

6 Conclusion

In this paper, we have investigated the role of firm’s money detention which is supposed to reduce selling costs.
Within a neoclassical setup standard results arise. In particular we highlight the equilibrium determinacy and a long run negative relationship between inflation and output.

In endogenous growth dynamics are richer and less obvious. If the monetary authority controls the money growth, under mild assumptions there are two stationary growth rates. The higher growth rate is indeterminate, superior in terms of welfare and increasing in money growth. A robust negative relation between inflation and growth holds.

If the monetary authority pegs the interest rate, there is no longer room for real indeterminacy. Moreover the residual nominal indeterminacy is ruled out by non-Ricardian fiscal policies.

Among the model extensions we envisage, two research lines matter more. On the one side usual consumer’s transaction costs can interact with the selling costs. On the other side the framework can be augmented by theoretical blocks such as an overlapping dynasties hypothesis or a New Keynesian Phillips Curve in order to account for the non-linearity of the growth-inflation relationship, i.e. a positive and negative link for respectively low and high inflation rates.

References

24

Documents de recherche EPEE

2002

02 - 01 Inflation, salaires et SMIC: quelles relations?
 Yannick L’HORTY & Christophe RAULT

02 - 02 Le paradoxe de la productivité
 Nathalie GREENAN & Yannick L’HORTY

02 - 03 35 heures et inégalités
 Fabrice GILLES & Yannick L’HORTY

02 - 04 Droits connexes, transferts sociaux locaux et retour à l’emploi
 Denis ANNE & Yannick L’HORTY

02 - 05 Animal Spirits with Arbitrarily Small Market Imperfection
 Stefano BOSI, Frédéric DUFORT & Francesco MAGRIS

02 - 06 Actualité du protectionnisme :
 l’exemple des importations américaines d’acier
 Anne HANAUT

2001

01 - 01 Optimal Privatisation Design and Financial Markets
 Stefano BOSI, Guillaume GIRMENS & Michel GUILLARD

01 - 02 Valeurs extrêmes et series temporelles :
 application à la finance
 Sanvi AVOUYI-DOVI & Dominique GUEGAN

01 - 03 La convergence structurelle européenne :
 rattrapage technologique et commerce intra-branche
 Anne HANAUT & El Mouhoub MOUHOUD

01 - 04 Incitations et transitions sur le marché du travail :
 une analyse des stratégies d’acceptation et des refus d’emploi
 Thierry LAURENT, Yannick L’HORTY, Patrick MAILLE & Jean-François OUVRARD

01 - 05 La nouvelle économie et le paradoxe de la productivité :
 une comparaison France - Etats-Unis
 Fabrice GILLES & Yannick L’HORTY

01 - 06 Time Consistency and Dynamic Democracy
 Toke AIDT & Francesco MAGRIS

01 - 07 Macroeconomic Dynamics
 Stefano BOSI

01 - 08 Règles de politique monétaire en présence d’incertitude :
 une synthèse
 Hervé LE BIHAN & Jean-Guillaume SAHUC

01 - 09 Indeterminacy and Endogenous Fluctuations
 with Arbitrarily Small Liquidity Constraint
 Stefano BOSI & Francesco MAGRIS

01 - 10 Financial Effects of Privatizing the Production of Investment Goods
 Stefano BOSI & Carine NOURRY
01 - 11 On the Woodford Reinterpretation of the Reichlin OLG Model: a Reconsideration
Guido CAZZAVILLAN & Francesco MAGRIS

01 - 12 Mathematics for Economics
Stefano BOSI

01 - 13 Real Business Cycles and the Animal Spirits Hypothesis in a Cash-in-Advance Economy
Jean-Paul BARINCI & Arnaud CHERON

01 - 14 Privatization, International Asset Trade and Financial Markets
Guillaume GIRMENS

01 - 15 Externalités liées dans leur réduction et recyclage
Carole CHEVALLIER & Jean DE BEIR

01 - 16 Attitude towards Information and Non-Expected Utility Preferences: a Characterization by Choice Functions
Marc-Arthur DIAYE & Jean-Max KOSKIEVIC

01 - 17 Fiscalité de l’épargne en Europe: une comparaison multi-produits
Thierry LAURENT & Yannick L'HORTY

01 - 18 Why is French Equilibrium Unemployment so High: an Estimation of the WS-PS Model
Yannick L'HORTY & Christophe RAULT

01 - 19 La critique du « système agricole » par Smith
Daniel DIATKINE

01 - 20 Modèle à Anticipations Rationnelles de la Conjoncture Simulée: MARCOS
Pascal JACQUINOT & Ferhat MIHOUBI

01 - 21 Qu’a-t-on appris sur le lien salaire-emploi? De l’équilibre de sous emploi au chômage d’équilibre: la recherche des fondements microéconomiques de la rigidité des salaires
Thierry LAURENT & Hélène ZAJDELA

01 - 22 Formation des salaires, ajustements de l’emploi et politique économique
Thierry LAURENT

2000

00 - 01 Wealth Distribution and the Big Push
Zoubir BENHAMOUCHE

00 - 02 Conspicuous Consumption
Stefano BOSI

00 - 03 Cible d’inflation ou de niveau de prix: quelle option retenir pour la banque centrale dans un environnement « nouveau keynésien »?
Ludovic AUBERT

00 - 04 Soutien aux bas revenus, réforme du RMI et incitations à l’emploi: une mise en perspective
Thierry LAURENT & Yannick L’HORTY

00 - 05 Growth and Inflation in a Monetary « Selling-Cost » Model
Stefano BOSI & Michel GUILLARD

00 - 06 Monetary Union : a Welfare Based Approach
Martine CARRE & Fabrice COLLARD

00 - 07 Nouvelle synthèse et politique monétaire
Michel GUILLARD

00 - 08 Neoclassical Convergence versus Technological Catch-Up :
a Contribution for Reaching a Consensus
Alain DESDOIGTS

00 - 09 L’impact des signaux de politique monétaire sur la volatilité
intrajournalière du taux de change deutschemark - dollar
Aurélie BOUBEL, Sébastien LAURENT & Christelle LECOURT

00 - 10 A Note on Growth Cycles
Stefano BOSI, Matthieu CAILLAT & Matthieu LEPELLEY

00 - 11 Growth Cycles
Stefano BOSI

00 - 12 Règles monétaires et prévisions d’inflation en économie ouverte
Michel BOUTILLIER, Michel GUILLARD & Auguste MPACKO PRISO

00 - 13 Long-Run Volatility Dependencies in Intraday Data
and Mixture of Normal Distributions
Aurélie BOUBEL & Sébastien LAURENT

1999

99 - 01 Liquidity Constraint, Increasing Returns and Endogenous Fluctuations
Stefano BOSI & Francesco MAGRIS

99 - 02 Le temps partiel dans la perspective des 35 heures
Yannick L’HORTY & Bénédicte GALTIER

99 - 03 Les causes du chômage en France :
Une ré-estimation du modèle WS - PS
Yannick L’HORTY & Christophe RAULT

99 - 04 Transaction Costs and Fluctuations in Endogenous Growth
Stefano BOSI

99 - 05 La monnaie dans les modèles de choix intertemporels :
quelques résultats d’équivalences fonctionnelles
Michel GUILLARD

99 - 06 Cash-in-Advance, Capital, and Indeterminacy
Gaetano BLOISE, Stefano BOSI & Francesco MAGRIS

99 - 07 Sunspots, Money and Capital
Gaetano BLOISE, Stefano BOSI & Francesco MAGRIS

99 - 08 Inter-Jurisdictional Tax Competition in a Federal System
of Overlapping Revenue Maximizing Governments
Laurent FLOCHEL & Thierry MADIES

99 - 09 Economic Integration and Long-Run Persistence
of the GNP Distribution
Jérôme GLACHANT & Charles VELLUTINI

99 - 10 Macroéconomie approfondie : croissance endogène
Jérôme GLACHANT
99 - 11 Growth, Inflation and Indeterminacy in a Monetary « Selling-Cost » Model
Stefano BOSI & Michel GUILLARD

99 - 12 Règles monétaires, « ciblage » des prévisions et (in)stabilité de l’équilibre macroéconomique
Michel GUILLARD

99 - 13 Educating Children: a Look at Household Behaviour in Côte d’Ivoire
Philippe DE VREYER, Sylvie LAMBERT & Thierry MAGNAC

99 - 14 The Permanent Effects of Labour Market Entry in Times of High Aggregate Unemployment
Philippe DE VREYER, Richard LAYTE, Azhar HUSSAIN & Maarten WOLBERS

99 - 15 Allocating and Funding Universal Service Obligations in a Competitive Network Market
Philippe CHONE, Laurent FLOCHEL & Anne PERROT

99 - 16 Intégration économique et convergence des revenus dans le modèle néo-classique
Jérôme GLACHANT & Charles VELLUTINI

99 - 17 Convergence des productivités européennes : réconcilier deux approches de la convergence
Stéphane ADJEMIAN

Stefano BOSI & Francesco MAGRIS

99 - 19 Structure productive et procyclicité de la productivité
Zoubir BENHAMOUCHE

99 - 20 Intraday Exchange Rate Dynamics and Monetary Policy
Aurélie BOUBEL & Richard TOPOL

1998

98 - 01 Croissance, inflation et bulles
Michel GUILLARD

98 - 02 Patterns of Economic Development and the Formation of Clubs
Alain DESDOIGTS

98 - 03 Is There Enough RD Spending? A Reexamination of Romer’s (1990) Model
Jérôme GLACHANT

98 - 04 Spécialisation internationale et intégration régionale. L’Argentine et le Mercosur
Carlos WINOGRAD

98 - 05 Emploi, salaire et coordination des activités
Thierry LAURENT & Hélène ZAJDELA

98 - 06 Interconnexion de réseaux et charge d’accès : une analyse stratégique
Laurent FLOCHEL

98 - 07 Coût unitaires et estimation d’un système de demande de travail : théorie et application au cas de Taiwan
Philippe DE VREYER
98 - 08 Private Information :
an Argument for a Fixed Exchange Rate System
Ludovic AUBERT & Daniel LASKAR

98 - 09 Le chômage d'équilibre. De quoi parlons nous ?
Yannick L'HORTY & Florence THIBAULT

98 - 10 Deux études sur le RMI
Yannick L'HORTY & Antoine PARENT

98 - 11 Substituabilité des hommes aux heures et ralentissement de la productivité ?
Yannick L'HORTY & Chistophe RAULT

98 - 12 De l'équilibre de sous emploi au chômage d'équilibre :
la recherche des fondements microéconomiques de la rigidité des salaires
Thierry LAURENT & Hélène ZAJDELA