A Note on Growth Cycles

Stefano BOSI, Matthieu CAILLAT & Matthieu LEPELLEY

00 – 10
A Note on Growth Cycles

Stefano Bosi, Matthieu Caillat and Matthieu Lepelley

March 20, 2001

Abstract

A constraint of cash-in-advance is introduced in a simple model of endogenous growth with public spending. Under lower intertemporal substitution there is room for transition dynamics and indeterminacy. Deterministic and possibly endogenous growth cycles arise.

Keywords: cash-in-advance, endogenous growth, indeterminacy.

JEL classification: D90; E32; E50.

We would like to thank Michel Guillard for very helpful comments and suggestions. Any remaining errors are our own.

Corresponding author. EPEE, University of Evry-Val d'Essonne, Département d'Economie, 4, Boulevard Mitterrand, 91025 Evry cedex, France. Tél: (33) 1 69 47 70 47. Fax: (33) 1 69 47 70 50. E-mail: Stefano.Bosi@eco.univ-evry.fr

ENSTA, Paris.

ENSTA, Paris.
0.1 Introduction

Business cycle theories focus on the emergence and persistence of short run fluctuations. In our paper we investigate the necessary conditions for the occurrence of long run fluctuations, i.e. growth cycles. More precisely we are interested in the indeterminacy of endogenous growth within a monetary economy.

The seminal model of endogenous growth with public spending we adapt, is Barro (1990), where the public spending enters the production function as a positive externality. This wedge between private and social returns which are assumed to be respectively decreasing and constant, reconciles the profit maximization with a long run endogenous growth.

The need of money is rationalized by a simple cash-in-advance constraint according to Clower’s intuition\(^1\) (1967) and Stockman’s formalization (1981).

In general economic fluctuations are said to be exogenous, if they are generated by shocks on the fundamentals. The Real Business Cycle literature studies these propagation mechanisms. In contrast the occurrence of endogenous fluctuations is due by definition to shocks on the beliefs. Slight departures from the Real Business Cycle models are consistent with the idea that economic fluctuations may be driven not only by productivity disturbances, but also the self-fulfilling beliefs of the agents.

The equilibrium indeterminacy is a kind of equilibrium multiplicity, the necessary condition for the existence of endogenous fluctuations. Our paper precisely focuses on the indeterminacy of the equilibrium growth rate.

The incomplete markets’ theory suggests some equivalence of market perfection (or completeness), equilibrium determinacy and Pareto-optimality. Even if a priori there is no indisputable definition of imperfection, the failure of the first welfare theorem could require by definition the existence of imperfections. In this sense incompleteness, externalities, market power and financial constraints\(^2\) can be viewed as imperfections. However an imperfection does not entail automatically indeterminacy. Literature shows examples of dynamically inept but determinate equilibria (Cass, 1972). Conversely indeterminacy, as equilibrium multiplicity, implies sub-optimality and thereby requires some imperfection.

The literature on indeterminacy of the endogenous growth equilibrium is

\(^1\)As Clower (1967) observed: “Money buys money, goods buy money, but goods do not buy goods”.

\(^2\)For a relevant example of financial imperfection see among others Woodford (1986).
a narrow subset of literature on indeterminacy. A short survey is provided in Benhabib and Rustichini (1994) where externalities and monopoly power are pointed out as causes of indeterminacy. Economic theory lacks predictive power in presence of indeterminacy.

Our paper explores a new channel for growth rate indeterminacy due to a monetary imperfection, the cash-in-advance. Equilibrium multiplicity is removed if the consumer’s elasticity of intertemporal substitution is high enough. Roughly speaking, the intertemporal substitution frees the consumer from the constraint.

The rest of the article is organized as follows. In the first section a representative consumer faces a budget constraint and a cash-in-advance and maximizes an utility function. In the second part the endogenous growth dynamics are characterized. In the third section a lower intertemporal substitution is recognized to matter for local indeterminacy.

1 The Model

The ideal neoclassical worlds of Arrow-Debreu in microeconomic theory, and of Ramsey-Cass-Koopmans in macroeconomics, are characterized by equilibrium existence, optimality, possibly uniqueness and stability. When these charming intellectual constructions are enriched by market imperfections, there is room for Keynesian patterns such as disequilibrium, equilibrium multiplicity, sub-optimality and instability.

Money integration in the general equilibrium theory is still an open issue and some anodyne aspects of the theory deal with money.3

The following model has no ambition of providing final answers, but it will just shed a light on this ground. Under the play of a flexible transaction technology, we investigate one special money interference within a real economy and the action of a specific market imperfection for equilibrium multiplicity.

In general contracts become effective at a given instant of time and in particular transactions as well. Timing discontinuity provides a rationale to write down equations in discrete time: monetary transactions and liquidity constraints are properly described. Therefore the continuous time setup of Barro (1990) is reset in discrete time to be augmented by a cash-in-advance constraint.

3See among others Grandmont (1983).
1.1 Preferences

The infinite-lived and representative agent maximizes an intertemporal utility functional

$$\hat{x} = \max_{t=0}^{1} (1 + \mu)^{t} u(c_t)$$

(1)

where \(\mu\) measures the time preference, \(c_t\) denotes the consumption which gives him an utility \(u(c_t)\) at period \(t\). The utility function is assumed to be increasing and strictly concave. The consumer faces a budget constraint at each period

$$M_{t+1} - M_t + p_t(k_{t+1} - k_t) + p_t c_t \cdot (1 + \frac{1}{2})(R_t k_t + W_t l_t^S) + T_t$$

(2)

where \(M_{t+1} - M_t\) and \(k_{t+1} - k_t\) denote respectively the investment in money and capital. The capital by simplicity does not depreciate. \(p_t\) is the price of the sole consumption and production good. On the right hand side of (2) the disposable income is constituted by the capital income \(R_t k_t\) and the labor income \(W_t l_t^S\) after the income tax \(\frac{1}{2}\) and by the monetary transfers \(T_t\). The monetary transfers from the monetary authority to the consumer are the way to inject money into the economic system. For the sake of simplicity on the supply side we assume a constant monetary growth \(1 + \frac{1}{2} = p_t\). \(R_t\) and \(W_t\) are respectively the nominal return on capital and the nominal wage. \(l_t^S\) is the amount of labor services provided by the representative agent during a period of production. We assume an inelastic labor supply \(l_t^S = 1\): In real terms the budget constraint becomes

$$(1 + \frac{1}{2} + 1) m_{t+1} - m_t + k_{t+1} - k_t + c_t \cdot (1 + \frac{1}{2})(r_t k_t + w_t) + \xi_t$$

(3)

where \(1 + \frac{1}{2} + 1\) \(p_{t+1} = p_t\) and \(m_t = p_t\) denote respectively the inflation factor and the real balances. \(r_t\) \(R_t = p_t\) is the real interest rate and \(w_t\) \(W_t = p_t\) is the real wage. \(\xi_t\) \(T_t = p_t\) denotes the real transfers.\(^4\)

\(^4\)More generally we could consider a general taxation system with an income tax \(\frac{1}{2}\) and a value added tax \(\frac{1}{2}\): The real budget constraint becomes

$$(1 + \frac{1}{2} + 1) m_{t+1} - m_t + (1 + \frac{1}{2})(k_{t+1} - k_t + c_t) \cdot (1 + \frac{1}{2})(r_t k_t + w_t) + \xi_t$$

where the value added tax applies on the final goods expenditure \(k_{t+1} - k_t + c_t\): Consumption taxes must be paid cash too and the monetary constraint becomes

$$(1 + \frac{1}{2}) q_t \cdot m_t$$

4
According to the cash-in-advance assumption the consumer needs money to purchase the consumption good. Thereby he must save an amount M_t of nominal money in period $t-1$ to finance the consumption at period t. More formally

$$p_t c_t \cdot M_t$$

or in real terms

$$c_t \cdot m_t$$

1.2 Firm Equilibrium and Budget Equilibrium

A constant private returns to scale production function is specified as in Barro (1990)

$$F(k_t; l_t^d) = A k_t^{\frac{\varphi}{1 - \varphi}} l_t^d$$

where l_t^d is the firm’s labor demand and φ is the capital share on total income. g_t is the public spending which plays as a positive externality in production, and $\varphi > 0$ is the relative elasticity.5

The intensive production is obtained, by normalizing the production function by the labor services l_t^d:

$$f(h_t) = F(k_t; l_t^d) = A(k_t l_t^d)^{\varphi} g_t^\varphi$$

where $h_t = k_t l_t^d$.

As in Barro (1990) we set $\varphi = 1$ to allow for a balanced growth. Therefore

$$f(h_t) = A h_t^{\varphi} g_t^{1 - \varphi}$$

Firm equilibrium requires

$$r_t = f^0(h_t)$$
$$w_t = f(h_t) - f^0(h_t) h_t$$

This model is perfectly equivalent to the model with the sole income tax provided that we set

$$1 + \frac{1}{2} = 1 + \frac{1}{2}$$

Notice that equivalence (4) holds because both the taxes are simply proportional. Otherwise the equivalence fails (for instance if the income tax turns out to be progressive).

5By simplicity we consider a Cobb-Douglas specification instead of a more general production function with constant returns to scale.
Equation (7) implies
\[r_t = \beta \Delta h_t \Delta g_{t+1} \]
Because of the inelastic labor supply at equilibrium we get \(l_t^d = l_t^s = 1 \).
Therefore
\[h_t = k_t \]
In this model the income tax is the only way to finance public spending. Budget equilibrium requires
\[g_t = \frac{1}{2} (r_t k_t + w_t) = \frac{1}{2} f(k_t) = \frac{1}{2} \beta \Delta h_t \Delta g_{t+1} \]
It follows that
\[g_t = \frac{1}{2} (r_t k_t + w_t) = \frac{1}{2} f(k_t) = \frac{1}{2} \beta \Delta h_t \Delta g_{t+1} \]
\[r_t = \beta \Delta h_t \Delta k_t \]

The production per unit of labor services is linear in the intensive capital, while the real interest rate is a constant \(r \) and depends on the technological parameters \(\beta \) and \(A \) and on the income tax rate \(\frac{1}{2} \).

2 Equilibrium Dynamics

The representative agent maximizes the intertemporal functional (1) under the budget constraint (3) and the liquidity constraint (6). \(M_0 \) and \(k_0 \) are given as initial conditions. The choice sequences are \(f m_{t+1} k_{t+1} m_t k_t c_t \). We set the Lagrangian
\[L = \sum_{t=0}^{\infty} (1 + \mu)^t u(c_t) \]
\[+ \sum_{t=0}^{\infty} \sum_{i=1}^{k_t} [\frac{1}{2} (r_t k_t + w_t) + \zeta_t i (1 + \frac{1}{2} m_{t+1} m_t + m_t k_{t+1} + k_t c_t) \]
\[+ \sum_{t=0}^{\infty} \sum_{i=1}^{k_t} [m_t i c_t] \]
where \(\zeta_t \) and \(\Delta \) are non-negative Lagrangian multipliers.
We obtain the following necessary first order conditions which are also sufficient because of the strict concavity of the utility function.

\[\frac{\partial L}{\partial m_t} = 0 \] (10)
\[\frac{\partial L}{\partial k_t} = 0 \] (11)
\[\frac{\partial L}{\partial c_t} = 0 \] (12)
\[\lim_{t \to 1} (\dot{c}_t + \frac{1}{1} k_t) = 0 \] (13)

Notice that (10) and (12) must hold for \(t = 0; 1; \ldots \); (11) must hold for \(t = 1; 2; \ldots \); and (13) is the usual transversality condition.

Rearranging (10), (11) and (12), we get the relevant Euler equation:

\[\frac{u(c_t)}{u(c_{t+1})} = \frac{1 + \frac{1}{4} \left(1 + \frac{1}{4} r_t \right)}{1 + \frac{1}{4} r_t + 1 + \mu} \] (14)

Equation (14) can be reinterpreted as follows:

\[\frac{u(c_t)}{u(c_{t+1})} = \frac{1 + i_t}{(1 + i_{t+1})} = \frac{1 + (1 + \frac{1}{4} r_t)}{1 + (1 + \frac{1}{4} r_{t+1})} \] (15)

where \(1 + i_t = (1 + \frac{1}{4}) [1 + (1 + \frac{1}{4} r_t)] \) is the nominal interest factor, i.e. the product of the inflation factor and the real interest factor after tax. The left-hand side of (15) is the marginal rate of substitution between the present good and the future. The right-hand side is the ratio of the price of the present good, \(1 + i_t \); and the discounted price of the future good \(1 + i_{t+1} = [1 + (1 + \frac{1}{4} r_{t+1})] \); The presence of the nominal interest rate \(i_t \) in the price of period \(t \) depends on money immobilization decided at period \(t 1 \); The immobilization opportunity cost \(i \) is approximately the differential between the return on capital \((1 + \frac{1}{4} r) \) and the return on money, i.e. the negative of the inflation rate \(\frac{1}{4} \).

The utility function is now assumed to display a constant elasticity of intertemporal substitution \(\frac{1}{4} \):

\[u(c_t) \cdot \frac{c_t^{1 + \frac{1}{4}}} {1 - i} \cdot \frac{1}{1 - \frac{1}{4}} \] (16)

In the following we will investigate the local dynamics in a neighborhood of the stationary state. If at the steady state the constraint of cash-in-advance is binding, by continuity there exists a neighborhood where this

\[\text{More precisely } i = [1 + (1 + \frac{1}{4} r)(1 + \frac{1}{4}) 1 + \frac{1}{4} (1 + \frac{1}{4} r) i (1 + \frac{1}{4}); \]

7
constraint remains binding. The right condition to observe the liquidity constraint (6) with equality is that the stationary nominal interest rate \(i \); i.e. the opportunity cost of holding money, is strictly positive. More precisely in discrete time
\[
1 + (1 + \frac{r}{1+\mu}) > 1 = (1 + \frac{r}{1+\mu})
\]
(17)
In this case the consumer prefers capital to money in his portfolio and holds the minimal amount of real balances compatible with constraint (6). We will find the restriction for parameter values under which (17) holds at steady state and in a neighborhood.

Inequality (17) implies that the nominal liquidity constraint (5) holds with equality, i.e.
\[
\frac{p_{t+1}c_{t+1}}{p_tc_t} = \frac{M_{t+1}}{M_t}
\]
or equivalently
\[
1 + \frac{r}{1+\mu} = (1 + \frac{r}{1+\mu})c_t = c_{t+1}
\]
(18)
From (14), (16) and (18) we obtain the consumption dynamics:
\[
\frac{c_{t+1}}{c_t} = \frac{1 + (1 + \frac{r}{1+\mu})}{1 + \mu} \left(\frac{\beta}{1+\gamma} \right)^{\frac{1}{1+\gamma}} \frac{c_t}{c_{t-1}}
\]
where \(r \) is provided by (9). In terms of consumption growth rates we write
\[
1 + \sigma_{t+1} = \frac{1 + (1 + \frac{r}{1+\mu})}{1 + \mu} \left(\frac{\beta}{1+\gamma} \right)^{\frac{1}{1+\gamma}} (1 + \sigma_t)^{\frac{1}{1+\gamma}}
\]
(19)
where \(1 + \sigma_{t+1} \cdot c_{t+1} = c_t \):

3 Steady State and Balanced Growth

The steady state of dynamics (19) is the following:
\[
1 + \sigma = \frac{1 + (1 + \frac{r}{1+\mu})}{1 + \mu}
\]
(20)
The impact of the time preference (\(\mu \)) and of the income tax rate (\(\frac{1}{1+\mu} \)) on the stationary growth rate is negative. The effect of the interest rate (\(r \)) and of the elasticity of intertemporal substitution (\(\gamma \)) is positive. The technological
parameter A plays a positive role for the interest rate and then for growth, while the impact of the capital share β on total income is ambiguous.

At the steady state growth is balanced, i.e. the growth rate is the same for money, capital and consumption. Different growth rates would be incompatible with the equilibrium conditions.

The initial capital is given. Therefore the intensive capital simply grows as follows:

$$ k_t = (1 + \sigma)^t k_0 $$

(21)

where σ is the balanced growth rate.

From (8) and (21) we obtain the production dynamics:

$$ f(k_t) = A \frac{1}{\beta} \frac{1}{\gamma} (1 + \sigma)^t k_0 $$

We observe that at equilibrium $(1 + \frac{1}{\gamma} + 1) m_{t+1} = m_t$ and that the budget constraint (3) becomes a resource constraint.

$$ k_{t+1} = k_t + c_t = (1 + \frac{1}{\gamma} f(k_t)) $$

Along the stationary growth path $(k_1 = (1 + \sigma) k_0)$ we get

$$ c_0 = (1 + \frac{1}{\gamma} f(k_0)) \sigma k_0 $$

The explicit consumption dynamics at steady state is

$$ c_t = (1 + \sigma)^t [(1 + \frac{1}{\gamma} f(k_0)) \sigma k_0] $$

(22)

Real balance dynamics is similar because we assume the cash-in-advance (6) to be binding:

$$ m_t = (1 + \sigma)^t [(1 + \frac{1}{\gamma} f(k_0)) \sigma k_0] $$

The parameter values must satisfy two restrictions at the steady state: the transversality condition and the positivity of the nominal interest rate.

(i) The transversality condition (13) can be rewritten in terms of the fundamental parameters.

$$ \lim_{t \to \infty} (1 + \epsilon + \gamma) k_t = \lim_{t \to \infty} (1 + \mu)^t u^0(c_t) k_t = $$

$$ = \lim_{t \to \infty} (1 + \mu)^t c_t \gamma \sigma k_t $$

$$ = \lim_{t \to \infty} (1 + \mu)^t \gamma \sigma (1 + \sigma)^t c_0 \gamma \sigma k_0 $$

$$ = \lim_{t \to \infty} (1 + \mu)^t (1 + \sigma)^t c_0 \gamma \sigma k_0 = 0 $$
The term into the brackets must be less than one, i.e.

\[1 + \mu > (1 + \theta)^{1} \]

where \(\theta \) is given by (20). Inequality (23) is the general transversality condition for a discrete time endogenous growth.

(ii) The cash-in-advance constraint is binding if and only if

\[1 + r > 1 = (1 + \frac{1}{q}) ; \text{i.e. if} \]

\[(1 + \frac{1}{q})(1 + r) > 1 + \theta \]

where \(r \) and \(\theta \) are explicitly provided by (9) and (20).

There are two major remarks on the dynamics (19).

(i) On the one hand monetary growth \((\frac{1}{q}) \) plays no role on growth \((\theta) \); i.e. money is superneutral, even during transition.

(ii) On the other hand the introduction of money via the cash-in-advance constraint is not neutral for dynamics, because we actually get a transition. In Barro (1990), as well as in the Ak model, there is no transition at all. The economy jumps from the beginning on its long run growth rate which is exactly given by (20):

\[\theta_{t} = \theta \]

a constant for every \(t = 1; 2; \ldots \) In our model not only the transition exists (equation (19)), but it allows for equilibrium multiplicity.

4 Indeterminacy

The union of paths converging to one particular attractor, such as a steady state, is said to be a stable manifold. The local indeterminacy we consider, is the equilibrium multiplicity arising when the dimension of the stable manifold is strictly greater than the number of pre-determined variables.

We set \(x_{t} \) \(1 + \theta_{t} \): Equation (19) becomes

\[x_{t+1} = (1 + \theta)^{\frac{1}{q}(1; \frac{1}{q}) x_{t}^{\frac{1}{q}(1; \frac{1}{q})}} \]

As \(\theta_{t} \) is a non-predetermined variable, local indeterminacy requires the stationary state to be locally stable. In other words

\[j^{\theta} (1 + \theta) j \leq 1 \]
where \(1 + \gamma\) is the balanced growth factor. Solving for the derivative, we obtain

\[
j_i \frac{\partial}{\partial i} (1 + \gamma) j < 1
\]

As the elasticity of intertemporal substitution is positive, we get

\[
0 < \gamma < 1 = 2
\]
(24)

This is the range for equilibrium multiplicity. Notice that indeterminacy depends only on the taste parameter \(\gamma\). Therefore there is no room for policy to rule out this equilibrium multiplicity.

If inequality (24) holds the derivative \(\gamma^0\) evaluated at the steady state is negative. Hence the transition growth factor, oscillates around the steady state and converges. Therefore for lower intertemporal substitution we observe growth cycles (see figure).

If \(\gamma > 1 = 2\); the sole solution which is compatible with the rational equilibrium requirement is the stationary state: \(\gamma_t = \gamma\) for every \(t\). Rational agents who know the fundamentals, are able to compute the stationary growth and coordinate their behaviors to stay from the beginning in the steady state without deviating.
5 Conclusion

Money is no longer neutral in a simple model of endogenous growth with public spending. More precisely under a lower intertemporal substitution there is room for transition dynamics and indeterminacy. The transition growth rate fluctuates around the balanced one.

A higher intertemporal substitution interpreted as behavior flexibility, frees the consumer from the monetary constraint, i.e. from the relative effects in terms of equilibrium indeterminacy.

6 References

Documents de recherche EPEE

2002

<table>
<thead>
<tr>
<th>02 - 01</th>
<th>Inflation, salaires et SMIC: quelles relations?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yannick L’HORTY & Christophe RAULT</td>
</tr>
<tr>
<td>02 - 02</td>
<td>Le paradoxe de la productivité</td>
</tr>
<tr>
<td></td>
<td>Nathalie GREENAN & Yannick L’HORTY</td>
</tr>
<tr>
<td>02 - 03</td>
<td>35 heures et inégalités</td>
</tr>
<tr>
<td></td>
<td>Fabrice GILLES & Yannick L’HORTY</td>
</tr>
<tr>
<td>02 - 04</td>
<td>Droits connexes, transferts sociaux locaux et retour à l’emploi</td>
</tr>
<tr>
<td></td>
<td>Denis ANNE & Yannick L’HORTY</td>
</tr>
<tr>
<td>02 - 05</td>
<td>Animal Spirits with Arbitrarily Small Market Imperfection</td>
</tr>
<tr>
<td></td>
<td>Stefano BOSI, Frédéric DUFOURT & Francesco MAGRIS</td>
</tr>
<tr>
<td>02 - 06</td>
<td>Actualité du protectionnisme :</td>
</tr>
<tr>
<td></td>
<td>l’exemple des importations américaines d’acier</td>
</tr>
<tr>
<td></td>
<td>Anne HANAUT</td>
</tr>
</tbody>
</table>

2001

<table>
<thead>
<tr>
<th>01 - 01</th>
<th>Optimal Privatisation Design and Financial Markets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stefano BOSI, Guillaume GIRMENS & Michel GUILLARD</td>
</tr>
<tr>
<td>01 - 02</td>
<td>Valeurs extrêmes et series temporelles :</td>
</tr>
<tr>
<td></td>
<td>application à la finance</td>
</tr>
<tr>
<td></td>
<td>Sanvi AVOUYI-DOVI & Dominique GUEGAN</td>
</tr>
<tr>
<td>01 - 03</td>
<td>La convergence structurelle européenne :</td>
</tr>
<tr>
<td></td>
<td>rattrapage technologique et commerce intra-branche</td>
</tr>
<tr>
<td></td>
<td>Anne HANAUT & El Mouhoub MOUHOUD</td>
</tr>
<tr>
<td>01 - 04</td>
<td>Incitations et transitions sur le marché du travail :</td>
</tr>
<tr>
<td></td>
<td>une analyse des stratégies d’acception et des refus d’emploi</td>
</tr>
<tr>
<td></td>
<td>Thierry LAURENT, Yannick L’HORTY, Patrick MAILLE & Jean-François OUVRARD</td>
</tr>
<tr>
<td>01 - 05</td>
<td>La nouvelle économie et le paradoxe de la productivité :</td>
</tr>
<tr>
<td></td>
<td>une comparaison France - Etats-Unis</td>
</tr>
<tr>
<td></td>
<td>Fabrice GILLES & Yannick L’HORTY</td>
</tr>
<tr>
<td>01 - 06</td>
<td>Time Consistency and Dynamic Democracy</td>
</tr>
<tr>
<td></td>
<td>Toke AIDT & Francesco MAGRIS</td>
</tr>
<tr>
<td>01 - 07</td>
<td>Macroeconomic Dynamics</td>
</tr>
<tr>
<td></td>
<td>Stefano BOSI</td>
</tr>
<tr>
<td>01 - 08</td>
<td>Règles de politique monétaire en présence d’incertitude :</td>
</tr>
<tr>
<td></td>
<td>une synthèse</td>
</tr>
<tr>
<td></td>
<td>Hervé LE BIHAN & Jean-Guillaume SAHUC</td>
</tr>
<tr>
<td>01 - 09</td>
<td>Indeterminacy and Endogenous Fluctuations</td>
</tr>
<tr>
<td></td>
<td>with Arbitrarily Small Liquidity Constraint</td>
</tr>
<tr>
<td></td>
<td>Stefano BOSI & Francesco MAGRIS</td>
</tr>
<tr>
<td>01 - 10</td>
<td>Financial Effects of Privatizing the Production of Investment Goods</td>
</tr>
<tr>
<td></td>
<td>Stefano BOSI & Carine NOURREY</td>
</tr>
</tbody>
</table>
01 - 11 On the Woodford Reinterpretation of the Reichlin OLG Model: a Reconsideration
Guido CAZZAVILLAN & Francesco MAGRIS

01 - 12 Mathematics for Economics
Stefano BOSI

01 - 13 Real Business Cycles and the Animal Spirits Hypothesis in a Cash-in-Advance Economy
Jean-Paul BARINCI & Arnaud CHERON

01 - 14 Privatization, International Asset Trade and Financial Markets
Guillaume GIRMENS

01 - 15 Externalités liées dans leur réduction et recyclage
Carole CHEVALLIER & Jean DE BEIR

01 - 16 Attitude towards Information and Non-Expected Utility Preferences: a Characterization by Choice Functions
Marc-Arthur DIAYE & Jean-Max KOSKIEVIC

01 - 17 Fiscalité de l’épargne en Europe: une comparaison multi-produits
Thierry LAURENT & Yannick L’HORTY

01 - 18 Why is French Equilibrium Unemployment so High: an Estimation of the WS-PS Model
Yannick L’HORTY & Christophe RAULT

01 - 19 La critique du « système agricole » par Smith
Daniel DIATKINE

01 - 20 Modèle à Anticipations Rationnelles de la Conjoncture Simulée: MARCOS
Pascal JACQUINOT & Ferhat MIHOUBI

01 - 21 Qu’a-t-on appris sur le lien salaire-emploi? De l’équilibre de sous emploi au chômage d’équilibre: la recherche des fondements microéconomiques de la rigidité des salaires
Thierry LAURENT & Hélène ZAJDELA

01 - 22 Formation des salaires, ajustements de l’emploi et politique économique
Thierry LAURENT

2000

00 - 01 Wealth Distribution and the Big Push
Zoubir BENHAMOUCHE

00 - 02 Conspicuous Consumption
Stefano BOSI

00 - 03 Cible d’inflation ou de niveau de prix: quelle option retenir pour la banque centrale dans un environnement « nouveau keynésien »?
Ludovic AUBERT

00 - 04 Soutien aux bas revenus, réforme du RMI et incitations à l’emploi: une mise en perspective
Thierry LAURENT & Yannick L’HORTY

00 - 05 Growth and Inflation in a Monetary « Selling-Cost » Model
Stefano BOSI & Michel GUILLARD

00 - 06 Monetary Union : a Welfare Based Approach
 Martine CARRE & Fabrice COLLARD

00 - 07 Nouvelle synthèse et politique monétaire
 Michel GUILLARD

00 - 08 Neoclassical Convergence versus Technological Catch-Up :
 a Contribution for Reaching a Consensus
 Alain DESDOIGTS

00 - 09 L’impact des signaux de politique monétaire sur la volatilité
 intrajournalière du taux de change deutschemark - dollar
 Aurélie BOUBEL, Sébastien LAURENT & Christelle LECOURT

00 - 10 A Note on Growth Cycles
 Stefano BOSI, Matthieu CAILLAT & Matthieu LEPELLEY

00 - 11 Growth Cycles
 Stefano BOSI

00 - 12 Règles monétaires et prévisions d’inflation en économie ouverte
 Michel BOUTILLIER, Michel GUILLARD & Auguste MPACKO PRISIO

00 - 13 Long-Run Volatility Dependencies in Intraday Data
 and Mixture of Normal Distributions
 Aurélie BOUBEL & Sébastien LAURENT

1999

99 - 01 Liquidity Constraint, Increasing Returns and Endogenous Fluctuations
 Stefano BOSI & Francesco MAGRIS

99 - 02 Le temps partiel dans la perspective des 35 heures
 Yannick L’HORTY & Bénédicte GALTIER

99 - 03 Les causes du chômage en France :
 Une ré-estimation du modèle WS - PS
 Yannick L’HORTY & Christophe RAULT

99 - 04 Transaction Costs and Fluctuations in Endogenous Growth
 Stefano BOSI

99 - 05 La monnaie dans les modèles de choix intertemporels :
 quelques résultats d’équivalences fonctionnelles
 Michel GUILLARD

99 - 06 Cash-in-Advance, Capital, and Indeterminacy
 Gaetano BLOISE, Stefano BOSI & Francesco MAGRIS

99 - 07 Sunspots, Money and Capital
 Gaetano BLOISE, Stefano BOSI & Francesco MAGRIS

99 - 08 Inter-Jurisdictional Tax Competition in a Federal System
 of Overlapping Revenue Maximizing Governments
 Laurent FLOCHEL & Thierry MADIES

99 - 09 Economic Integration and Long-Run Persistence
 of the GNP Distribution
 Jérôme GLACHANT & Charles VELLUTINI

99 - 10 Macroeconomie approfondie : croissance endogène
 Jérôme GLACHANT

III
99 - 11 Growth, Inflation and Indeterminacy in a Monetary « Selling-Cost » Model
Stefano BOSI & Michel GUILLARD

99 - 12 Règles monétaires, « ciblage » des prévisions et (in)stabilité de l’équilibre macroéconomique
Michel GUILLARD

99 - 13 Educating Children : a Look at Household Behaviour in Côte d’Ivoire
Philippe DE VREYER, Sylvie LAMBERT & Thierry MAGNAC

99 - 14 The Permanent Effects of Labour Market Entry in Times of High Aggregate Unemployment
Philippe DE VREYER, Richard LAYTE, Azhar HUSSAIN & Maarten WOLBERS

99 - 15 Allocating and Funding Universal Service Obligations in a Competitive Network Market
Philippe CHONE, Laurent FLOCHEL & Anne PERROT

99 - 16 Intégration économique et convergence des revenus dans le modèle néo-classique
Jérôme GLACHANT & Charles VELLUTINI

99 - 17 Convergence des productivités européennes : réconcilier deux approches de la convergence
Stéphane ADJEMIAN

Stefano BOSI & Francesco MAGRIS

99 - 19 Structure productive et procyclicité de la productivité
Zoubir BENHAMOUCHE

99 - 20 Intraday Exchange Rate Dynamics and Monetary Policy
Aurélie BOUBEL & Richard TOPOL

1998

98 - 01 Croissance, inflation et bulles
Michel GUILLARD

98 - 02 Patterns of Economic Development and the Formation of Clubs
Alain DESDOIGTS

98 - 03 Is There Enough RD Spending ?
A Reexamination of Romer’s (1990) Model
Jérôme GLACHANT

98 - 04 Spécialisation internationale et intégration régionale. L’Argentine et le Mercosur
Carlos WINOGRAD

98 - 05 Emploi, salaire et coordination des activités
Thierry LAURENT & Hélène ZAJDELA

98 - 06 Interconnexion de réseaux et charge d’accès : une analyse stratégique
Laurent FLOCHEL

98 - 07 Coût unitaires et estimation d’un système de demande de travail : théorie et application au cas de Taiwan
Philippe DE VREYER
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>98 - 08</td>
<td>Private Information : an Argument for a Fixed Exchange Rate System</td>
<td>Ludovic AUBERT & Daniel LASKAR</td>
</tr>
<tr>
<td>98 - 09</td>
<td>Le chômage d'équilibre. De quoi parlons nous ?</td>
<td>Yannick L'HORTY & Florence THIBAULT</td>
</tr>
<tr>
<td>98 - 10</td>
<td>Deux études sur le RMI</td>
<td>Yannick L'HORTY & Antoine PARENT</td>
</tr>
<tr>
<td>98 - 11</td>
<td>Substituabilité des hommes aux heures et ralentissement de la productivité ?</td>
<td>Yannick L'HORTY & Christophe RAULT</td>
</tr>
<tr>
<td>98 - 12</td>
<td>De l'équilibre de sous emploi au chômage d'équilibre : la recherche des fondements microéconomiques de la rigidité des salaires</td>
<td>Thierry LAURENT & Hélène ZAJDELA</td>
</tr>
</tbody>
</table>