Animal Spirits in Cash-in-Advance Economies

Stefano BOSI, Frédéric DUFOURT & Francesco MAGRIS

02 – 05 R
Animal Spirits in Cash-in-Advance Economies*

Stefano Bosi†
EPEE, University of Evry

Frédéric Dufourt
BETA, University Louis Pasteur - Strasbourg I

Francesco Magris
EPEE, University of Evry

July 22, 2005

Abstract

The empirical relevance of indeterminacy and sunspot fluctuations has been often questioned on the basis of the implausibly high degrees of increasing returns to scale or unconventional calibrations for the fundamentals required. In this paper we study a one-sector economy with partial cash-in-advance constraint on consumption expenditures, and show how such phenomena are by contrast quite pervasive: They appear for arbitrarily small amplitudes of the liquidity constraint, whatever the specification for the fundamentals is. At the same time we assess the cyclical properties of the model by allowing simultaneously technological and beliefs disturbances and observe that it performs as well as other indeterminate models.

*We are grateful to Guido Cazzavillan, Jean-Michel Grandmont, Marco Maffezoli and Alain Venditti for very helpful comments and suggestions. We wish to thank participants to SET 2002 and ESEM 2002 in Venice, T2M 2002 in Evry, and Journée DELTA. Any remaining errors are our own.

†Corresponding author. Maître de Conférences, EPEE, Département d’Économie, Université d’Evry - Val d’Essonne, 4, Bd F. Mitterrand, 91025 Evry Cedex, France. Tel: 00 33 1 69 47 70 52, fax: 00 33 1 69 47 70 50. E-mail: stefano.bosi@univ-evry.fr
Keywords: cash-in-advance, indeterminacy, business cycles.

JEL Classification: D90, E32, E41.
1 Introduction

In this paper, we present a one-sector infinite horizon economy with capital accumulation, endogenous labor supply and liquidity constraint on consumption expenditures. We depart from similar model economies (see Stockman, 1981; Abel, 1985; Svensson, 1985; Lucas and Stokey, 1987; Coleman, 1987; Cooley and Hansen, 1989; Woodford, 1994) by assuming that only a share between zero and one of current consumption purchases must be paid by cash holding accumulated from the previous periods, in the spirit of Grandmont and Younès (1972). We study the stability properties of this model, and assess the conditions under which it may become indeterminate. When it is the case, we analyze the cyclical properties of the model when animal spirits act as a driving force of the business cycle.

By deriving analytically the conditions under which the model is indeterminate, we establish two results which we believe are quite surprising with regard to the literature on endogenous fluctuations. First, we show that a small departure from the traditional Ramsey-Cass-Koopmans model - the requirement that an arbitrarily small amount of consumption purchases must be paid by cash in the hands of the representative consumer - is sufficient to make the equilibrium indeterminate and to allow for the existence of sunspots fluctuations. Next, we show that the occurrence of such fluctuations becomes more and more likely as long as the amplitude of the liquidity constraint is continuously relaxed, decreasing from one (roughly Cooley and Hansen’s 1989 model) to zero (standard Ramsey-Cass-Koopmans model). These two findings are rather surprising, since it is often believed that indeterminacy can occur only in the presence of strong market imperfections, and that the occurrence of such fluctuations is made more and more likely as long as the degree of market imperfection is increased, and not decreased.

In particular, we demonstrate that when the amplitude of the liquidity constraint is close to one, indeterminacy arises only when consumption is not very substitutable across periods (i.e. strong enough income effects). However, as long as the liquidity constraint is relaxed, the range of admissible values for an indeterminate equilibrium becomes larger and larger. Below a certain threshold, it includes the logarithmic case (unitary elasticity of substitution) and below a lower one it coincides with the whole domain of definition of σ. Finally, when the amplitude of the liquidity constraint reaches zero, the model is not continuous since it loses one dimension: Actually, it collapses into the standard Ramsey-Cass-Koopmans model which, as is well
known, exhibits the saddle path stability.

The fact that indeterminacy and sunspots fluctuations may occur for an arbitrarily small market imperfection of financial nature is important, since it tends to suggest that such phenomena, far from being “exotic” or simple theoretical curiosities, are by contrast quite pervasive. The recent literature on endogenous fluctuations had already considerably alleviated the conditions under which such phenomena may arise. However, even the most recent papers continue to rely upon rather discussed features such as mild increasing returns to scale\(^1\), complementariness in production factors\(^2\), unconventional specifications of the utility function\(^3\), or other controversial calibrations of the fundamentals\(^4\). Our paper can thus be seen as a new step toward this increase in realism, since it shows that indeterminacy may occur even for an \textit{arbitrarily small} departure from the conventional Ramsey-Cass-Koopmans model. In our model, the only imperfection is that a certain amount of cash must be accumulated to buy the consumption good. All the other elements are perfectly standard. This simple form of imperfection is sufficient to make the model indeterminate, and to be consistent with self-fulfilling revisions in expectations to act as an independent source of the business cycle. Our model also completes some results obtained in a recent paper by Carlstrom and Fuerst (2003) in which the cash-in-advance constraint is viewed as a limit case of a MIU formulation and preferences are linear in labor: For example, our assumption of an elastic labor supply entails the existence of a whole interval of low shares of consumption to be paid cash generating indeterminacy for whatever fundamentals specification, and not only for some, as it is the case in Carlstrom and Fuerst (2003). At the same time, focusing directly on a partial cash-in-advance constraint, make it easier to define the degree of market imperfection of the economy and study its impact on the emergence of indeterminacy.

Of course, one could still remain skeptical that such a sunspots driven model may be able to account for the main features of actual fluctuations. In the second step of the paper, we thus perform an empirical assessment of

\(^2\)e.g., Grandmont et al. (1998)
\(^3\)e.g., Farmer (1996)
\(^4\)e.g., Bennett and Farmer (2000), Barinci and Chéron (2001). We provide a brief discussion of all these models in the second part of this paper. See also the very complete survey by Benhabib and Farmer (1999) for a more exhaustive presentation.
our model by verifying under which circumstances it can correctly describe the main features of the US business cycle. We also discuss the performance of this model in regard to some recent results established in the related literature.

We show in that respect that when it is driven by sunspots shocks only, our model suffers from the same difficulties as companion models which do not rely on large increasing returns to scale to generate indeterminacy. In particular, our model does not generate sufficient persistence in output movements, and it tends to predict counter-cyclical movements of investment. This implies that animal spirit shocks alone are not sufficient in our model to explain the most salient features of the US business cycle. However, when animal spirits are instead given the interpretation of an overreaction to fundamental events such as technological innovations, like it is the case in the recent literature, our model becomes able to account for most empirical observations.

Overall, we find that the model performs as well as comparable models in the literature. This is true even though we only require a modest degree of market imperfection, and that we do not rely on any unconventional features regarding the production structure or the utility function.

The remainder of the paper is organized as follows. In Section 2 we present the model and derive the intertemporal equilibrium. Section 3 is devoted to the study of the local stability of the stationary solution while in Section 4 we provide the interpretation of the indeterminacy mechanism. In Section 5 we assess the cyclical properties of the model and, eventually, Section 6 concludes the paper.

2 The model

2.1 The environment

We consider a discrete-time one-sector economy populated by identical long-lived agents and identical firms distributed uniformly along the unitary interval. The representative consumer is endowed with rational expectations and seek to maximize the expected stream of utility functions

$$E_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{c_t^{1-1/\sigma} - 1}{1 - 1/\sigma} - \frac{\bar{i}_t^{1+\chi}}{1 + \chi} \right).$$ \hspace{1cm} (1)
In (1) \(E \) denotes the rational expectation operator, \(0 < \beta < 1 \) the discount factor, \(c \) consumption, \(\sigma > 0 \) the elasticity of intertemporal substitution in consumption, \(l \) labor supply and \(\chi > 0 \) the inverse of the elasticity of labor supply. In each period \(t \geq 0 \), households must respect the dynamic budget constraint

\[
p_t c_t + p_t [k_{t+1} - (1 - \delta) k_t] + M_{t+1} = p_t r_t k_t + p_t w_t l_t + M_t + \tau_t
\]

where \(p \) is the price of the good, \(k \) physical equipment, \(M \) money balances, \(r \) the real rental price of capital, \(w \) the real wage, \(\delta \in [0, 1] \) the depreciation rate of capital and \(\tau \) nominal lump-sum transfers issued by the government. We assume in addition that an amount \(q \in (0, 1] \) of consumption purchases must be paid by cash in the hands of the representative consumer and previously accumulated: In other words, agents when maximizing, must also respect the liquidity constraint

\[
q p_t c_t \leq M_t. \tag{3}
\]

Straightforward computations show that the FOC’s of the household maximization problem write

\[
\begin{align*}
c_t^{\frac{1}{1-\sigma}} &= p_t (\lambda_t + q \mu_t) \tag{4} \\
\lambda_t p_t &= \beta E_t [\lambda_{t+1} p_{t+1} R_{t+1}] \tag{5} \\
l_t^c &= \lambda_t p_t w_t \tag{6} \\
\lambda_t &= \beta E_t [\lambda_{t+1} + \mu_{t+1}] \tag{7}
\end{align*}
\]

where \(\lambda \) and \(\mu \) are non-negative Lagrange multipliers associated to, respectively, budget constraint and cash-in-advance and \(R = 1 - \delta + r \) is the gross real interest rate on physical equipment. According to the arbitrage condition (7), the price of money at time \(t \), \(\lambda_t \), is equal to its expected value in the following period plus the expected value of the implicit dividends \(\mu_{t+1} \) it will pay off. At the same time, \(p_t \lambda_t \) can be viewed as the marginal indirect utility of real income in period \(t \): However, as (4) establishes, at the optimum it does not equalize the marginal utility of consumption, since the individual cannot transform income into consumption unless part of the former is first used to purchase money balances. Condition (5) says that no intertemporal transfer of real income is still possible to increase total utility. Finally, equation (6) states that the marginal disutility of labor must equalize the induced increase in utility.
Constraint (3) binds when the nominal interest factor \(i_t \equiv (1 - \delta + r_t) \pi_t \) is greater than one, \(\pi_t \equiv p_t/p_{t-1} \) being the inflation factor between periods \(t-1 \) and \(t \). Under this condition and by manipulating conditions (4)-(7), we obtain the stochastic Euler equation for the consumer

\[
 c_t^{-\frac{1}{\sigma}} = E_t \left[\frac{1}{c_{t+1}} \frac{q \pi_t R_t + 1 - q}{q \pi_{t+1} + (1 - q) R_{t+1}} \right].
\]

(8)

Again from the FOC’s (4)-(7), we get the consumption-labor arbitrage condition

\[
 l^\chi_t = c_t^{-\frac{1}{\sigma}} w_t q \pi_t R_t + 1 - q.
\]

(9)

Optimal plans for the single household must also satisfy the transversality condition

\[
 \lim_{t \to +\infty} E_t \left[\beta^t c_t^{-\frac{1}{\sigma}} (k_{t+1} + \pi_{t+1} m_{t+1}) \right] = 0 \]

(10)

where \(m_t \equiv M_t/p_t \) are the real balances held by the representative agent at the outset of period \(t \).

The good is produced by means of a Cobb-Douglas aggregate production function

\[
 z K^\alpha L^{1-\alpha}, \quad \alpha \in (0, 1)
\]

(11)

where \(K \) and \(L \) are, respectively, aggregate capital and labor and \(z \) is an exogenous technological process. Profit maximization implies that in each period the real interest rate and the real wage equalize, respectively, the marginal productivity of capital and the marginal productivity of labor:

\[
 r_t = z_t \alpha K_t^{\alpha - 1} L_t^{1-\alpha}
\]

(12)

\[
 w_t = z_t (1 - \alpha) K_t^{\alpha} L_t^{-\alpha}.
\]

(13)

Government follows a very simple monetary policy: it issues in each period lump-sum transfers of money balances at the constant rate \(\mu - 1 > 0 \), so that in period \(t \) the supply of money, \(M_t^* \), satisfies \(M_t^* = \mu t M_0^* \), where \(M_0^* \) is the initial amount of nominal balances. Thus nominal transfers are given by \(\tau_t = (\mu - 1) M_t^* \).

2.2 Equilibrium

Equilibrium in factors market is obtained by setting \(K_t = k_t, L_t = l_t \) for every \(t \geq 0 \). When constraint (3) binds, money market equilibrium requires
\[\pi_{t+1} = \mu m_t/m_{t+1} \] for every \(t \geq 0 \). Finally, Walras law ensures good market clearing in each period. By manipulating the first order conditions and by substituting in them the equilibrium conditions, intertemporal competitive equilibria can be then described by the dynamic evolution of \((k_t, l_t, c_t)\).

Definition 1 An interior rational expectations intertemporal equilibrium is a strictly positive sequence \(\{k_t, l_t, c_t\}_{t=0}^{\infty}\) satisfying, for every \(t \geq 0 \) and for a given sequence of technological process \(\{z_t\}_{t=0}^{\infty}\), equations

\[
(1 - \delta) k_t + z_t k_t^{\alpha} l_t^{1-\alpha} - c_t = k_{t+1}
\]

\[
z_t k_t^{\alpha} l_t^{-(\alpha+\chi)} = E_t \left[\frac{z_{t+1} k_{t+1}^{\alpha} l_{t+1}^{-(\alpha+\chi)}}{\beta \left(1 - \delta + \alpha z_{t+1} k_{t+1}^{\alpha-1} l_{t+1}^{1-\alpha} \right)} \right]
\]

\[
q \mu c_t = E_t \left[\frac{(1 - \alpha) z_{t+1} k_{t+1}^{\alpha} l_{t+1}^{-(\alpha+\chi)} c_{t+1}^{-1/\sigma} - (1 - q) c_{t+1}}{1 - \delta + \alpha z_{t+1} k_{t+1}^{\alpha-1} l_{t+1}^{1-\alpha}} \right]
\]

subject to the initial endowment of capital \(k_0 > 0\) and the transversality condition \((10)\).

2.3 Steady state

A deterministic steady state of the dynamic system defined by equations \((14)-(16)\) is obtained by solving for \((k, l, c)\) system

\[
\begin{cases}
 c = k^{\alpha} l^{1-\alpha} - \delta k \\
 \beta (1 - \delta + \alpha k^{\alpha-1} l^{1-\alpha}) = 1 \\
 (1 - \alpha) k^{\alpha} l^{-(\alpha+\chi)} c^{-1/\sigma} = 1 - q + q \mu \beta^{-1}
\end{cases}
\]

from which we get the unique solution

\[
\bar{k} = \left[\frac{1}{1 - \alpha} \left(1 - q + q \mu \beta \right) \left(\frac{\theta}{\alpha} \right)^{\frac{\alpha+\chi}{\alpha}} \left(\frac{\theta}{\alpha} - \beta \right)^{1/\sigma} \right]^{-\frac{1}{\alpha+1/\sigma}}
\]

\[
\bar{l} = \left(\frac{\theta}{\alpha} \right)^{\frac{1}{\alpha}} \bar{k}
\]

\[
\bar{c} = \left(\frac{\theta}{\alpha} - \delta \right) \bar{k}
\]
where \(\theta \equiv \beta^{-1} - 1 + \delta \). It is easy to verify that constraint (3) binds at the steady state if and only if \(\beta < \mu \). Under this condition, which we will assume to be satisfied throughout the paper, system (20) is consistent with intertemporal equilibria remaining in a small neighborhood of the steady state. By direct inspection of expressions (17)-(19) one immediately sees that \(\bar{k}, \bar{l} \) and \(\bar{c} \) are decreasing in both the factor of money growth \(\mu \) and the amplitude of the liquidity constraint \(q \): An inflationary monetary policy and an higher imperfection in the financial market share indeed the not surprising feature of reducing economic activity.

3 Stability analysis

In order to study the occurrence of (local) indeterminacy, and without any loss of generality, we study the stability of the deterministic dynamics around the steady state. Dropping the expectation operator from (14)-(16) and identifying \(x \) with \((k, l, c) \), we can define \(G_0(x_t) \) and \(G_1(x_{t+1}) \) as the left-hand sides and right-hand sides, respectively, of the deterministic counterpart of equations (14)-(16). Therefore a deterministic intertemporal equilibrium of the economy can be now written in the more compact form as a sequence \(\{x_t\}_{t=0}^{\infty} \) satisfying

\[
G_0(x_t) = G_1(x_{t+1}).
\]

(20)

The steady state of the economy is said to be locally indeterminate if there exists a continuum of sequences \(\{x_t\}_{t=0}^{\infty} \) satisfying system (20) for all \(t \geq 0 \), subject to the initial stock of capital, \(k_0 \), all of which converging to the steady state \(\bar{x} \). Following the usual procedure, the study of (local) indeterminacy requires an exam of the linear operator

\[
A = [DG_1(\bar{x})]^{-1} DG_0(\bar{x}),
\]

(21)

which regulates the linear tangent motion to (20) near the steady state\(^5\). In system (20) appears a unique pre-determined variable, the initial stock of capital \(k_0 \): It follows that the stationary solution will be indeterminate if and only \(A \) possesses at least two eigenvalues lying inside the unit circle. In this case, there will exist different possible choices for placing the remaining initial conditions \(l_0, c_0 \) in such a way that the equilibrium dynamics converges

\(^5DG_i(x), \text{ with } i = 0, 1, \text{ denotes the matrix of the derivatives of } G_i \text{ with respect to } x. \ A \text{ is an isomorphism provided } \sigma \neq 1 + \frac{1+\beta}{\mu}q.\)
and, so, respects the transversality condition (10). In the opposite case, equilibrium of system (20) will be determinate, i.e. there will be only one pair \((l_0, c_0)\) ensuring the convergence of the system towards its steady state. The characteristic polynomial of \(A\) is

\[P(\xi) = \xi^3 - T\xi^2 + \Sigma\xi - D \tag{22} \]

where \(T, \Sigma, D\) are, respectively, the trace, the sum of the principal minors of order two and the determinant of \(A\). Straightforward but tedious computations give the following expressions for \(T, \Sigma, D\):

\[T = \psi - \varsigma (1 - \varphi \upsilon) \]
\[\Sigma = 1/\beta - \varsigma (\varphi + \psi) \]
\[D = -\varsigma/\beta \]

where \(\upsilon \equiv \frac{1-q}{q}\), \(\varsigma \equiv \frac{\sigma}{1-\sigma + \upsilon}\), \(\varphi \equiv \chi \frac{\theta - \alpha}{\alpha + \chi} \left(\frac{\theta}{\alpha} - \delta \right)\), \(\psi \equiv \gamma + \frac{\theta - \alpha}{\alpha + \chi} \left(\frac{\theta}{\alpha\beta} - 1 \right)\), \(\theta \equiv \alpha + (1 - \alpha) \beta \theta\) and \(\gamma \equiv (1 + \beta) / \beta\). The next proposition characterizes the modulus of the eigenvalues of \(A\). It is shown that when the amplitude of liquidity constraint \(q\) is close to one indeterminacy comes about only for low elasticities of intertemporal substitution in consumption \(\sigma\). This result is analogous to those found in the cash-in-advance economies \((q = 1)\) studied in Bloise et al. (2000) and Barinci and Chéron (2001). Conversely, as soon as \(q\) is continuously relaxed the range for \(\sigma\) generating indeterminacy becomes larger and larger and include eventually, for \(q\) low enough, the whole domain of definition of \(\sigma\).

Proposition 2 The linear operator \(A\) possesses a real eigenvalue \(\xi_1 \in (0, 1)\) and an eigenvalue \(\xi_2\) with modulus greater than one. Moreover, defining

\[\hat{q} \equiv \frac{1}{1 + \mu \frac{\beta}{\beta}} \left(1 + \frac{2}{\eta} \right) \tag{23} \]

and

\[\hat{\sigma} \equiv \frac{1 + \frac{1-q}{q} \frac{\beta}{\mu}}{2 + \eta \left(1 - \frac{1-q}{q} \frac{\beta}{\mu} \right)} \tag{24} \]

where

\[\eta \equiv \frac{\beta \left(\frac{\theta}{\alpha} - \delta \right) (1 - \alpha) \lambda \chi}{2^{1+\beta} \left(\alpha + \lambda \right) + (1 - \alpha) \theta \left(3 + \beta + \frac{1-\alpha}{\alpha} \beta \theta \right)} \tag{25} \]
we have:

(i) \(0 < q < \hat{q}\). Then the third root \(\xi_3\) belongs to \((-1, 0)\) and the steady state is locally indeterminate.

(ii) \(\hat{q} \leq q \leq 1\). Then for \(\sigma < \hat{\sigma}\) the third root \(\xi_3\) belongs to \((-1, 0)\) and the steady state is locally indeterminate, meanwhile for \(\sigma > \hat{\sigma}\), it has modulus greater than one and the steady state is locally determinate. In addition, when \(\sigma\) goes through \(\hat{\sigma}\), the steady state undergoes a flip bifurcation.

Proof. The eigenvalues of \(A\) correspond to the roots of the characteristic polynomial (22). Performing simple computations we obtain

\[
P(0) = \frac{\varsigma}{\beta} \\
P(-1) = (\varsigma - 1) (\gamma + \psi) - (v - 1) \varsigma \varphi \\
P(1) = (\varsigma + 1) (\gamma - \psi) - (v + 1) \varsigma \varphi
\]

Observe that \(\lim_{\xi \to +\infty} P(\xi) = +\infty\), \(\lim_{\xi \to -\infty} P(\xi) = -\infty\) and that the polynomial is a continuous function and its domain is connected. One can easily verify that \(P(1) P(0) < 0\). This implies that there is always a real root, say \(\xi_1\), in \((0, 1)\). At the same time straightforward computations show that \(P(-1) P(1) > 0\) either when \(0 < q < \hat{q}\) or, for \(\hat{q} < q \leq 1\), when \(\sigma < \hat{\sigma}\). Therefore two main regimes are possible.

(i) \(0 < q < \hat{q}\). Then \(P(-1) P(1) > 0\) for all \(\sigma\). It follows that there is a root belonging to \((-1, 0)\) and by continuity of the polynomial, a third real root with modulus greater than one.

(ii) \(\hat{q} < q \leq 1\). Then \(P(-1) P(1) > 0\) if and only if \(\sigma < \hat{\sigma}\). In such a case there is a root belonging to \((-1, 0)\) and a third one with modulus greater than one. The steady state is thus locally indeterminate. When \(\sigma > \hat{\sigma}\) observe in addition that \(D = -P(0) > 1\) and that the determinant corresponds to the product of the eigenvalues. It follows that there exists at least one root with modulus greater than one. If such a root is real and positive, by the continuity of the polynomial, one has \(\xi_i > 1\) for \(i = 2, 3\). If it is real and negative, one has \(\xi_i < -1\) for \(i = 2, 3\). If such a root is complex, there are two conjugate eigenvalues \(\xi_2, \xi_3\) such that \(|\xi_2| = |\xi_3| > 1\). In either cases, the steady state is locally determinate.

Finally, since \(-1\) is a root of the characteristic polynomial when \(\sigma = \hat{\sigma}\), the steady state undergoes a flip bifurcation.

In view of Proposition 2, for \(0 < q < \hat{q}\) indeterminacy comes about for all \(\sigma\)'s, meanwhile for \(\hat{q} < q \leq 1\), for all \(\sigma < \hat{\sigma}\). It is easy to verify that
such a \(\hat{\sigma} \) is decreasing in \(q \in [\hat{q}, 1] \): The immediate implication of such a feature is that indeterminacy is more and more likely to emerge as soon as \(q \) is relaxed, as it is illustrated in Fig. 1, before including eventually all possible \(\sigma \)'s (\(0 < q < \hat{q} \)).

Proposition 2 also shows that the change in stability in correspondence to which the steady state from determinate becomes indeterminate occurs always through a flip bifurcation: for a given \(q > \hat{q} \), when \(\sigma = \hat{\sigma} \) there is indeed one characteristic root going through \(-1\). Given the non-linearity of the system, this in turn implies (see, e.g., Grandmont, 1988) that when \(\sigma \) is set arbitrarily close to \(\hat{\sigma} \), there will generically emerge, according to the direction of the bifurcation, a stable or unstable two-period cycle\(^6\).

Fig. 1 shows the local dynamics generated by the combinations of \(q \) and \(\sigma \). In particular, the shaded area corresponds to the indeterminacy region, and its boundary coincides with those \(\hat{\sigma} \) undergoing a flip bifurcation. We have assumed the period to be short, of about one quarter. As a consequence, we focus on the following calibration for the structural parameters: \(\beta = 0.99 \), \(\delta = 0.025 \), \(\mu = 1.01 \), \(\alpha = 0.3 \). In addition, we assume utility to be linear in labor, namely \(\chi = 0 \).

\(^6\)In an analogous way one may fix \(\sigma \) and then study the family of maps indexed by the amplitude of the liquidity constraint \(q \). A flip bifurcation will possibly emerge in correspondence to those \(q \) such that \(\sigma = \hat{\sigma}(q) \).
As it emerges in Fig. 1, for \(q = 1 \) indeterminacy requires \(\sigma < 1/2 \). As soon as \(q \) is relaxed, the range of \(\sigma \) generating indeterminacy improves: it is for example \((0, 1)\) for \(q = 0.48 \) and \((0, 2)\) for \(q = 0.22 \).

4 The indeterminacy mechanism

Proposition 2 includes a result which may appear at first sight surprising. In our model, indeterminacy becomes more or more likely to emerge as long as the amplitude of the liquidity constraint - as measured by \(q \), the share of consumption purchases to be paid cash - decreases continuously. In short, indeterminacy is more likely to occur for low degrees of credit market imperfections. Because such a result contrasts widely with most related models in the literature, and in particular in models of increasing returns to scale for which the required degree of IRS must be sufficiently high, it is important to understand the mechanisms which lead to an indeterminate equilibrium in our model.

In fact, a simple analysis of the arbitrage equations (4)-(7) and the induced equation (8) is sufficient to provide an intuitive interpretation of why indeterminacy occur for low degrees of market imperfections. In order to illustrate this, let us rewrite the deterministic counterpart of (8) in the following way:

\[
\left(\frac{1}{\pi_{t+1}} \right)^{1/\sigma} = \beta \frac{q_i t + 1 - q}{q \pi_{t+1} + \pi_{t+1} i_{t+1} (1 - q)}
\]

(26)

which incorporates the equilibrium condition in money market \(c_{t+1}/c_t = \pi_{t+1} \) and takes into account the definition of nominal interest factor \(i \equiv R \pi_t \). At the same time, it is useful to manipulate appropriately (4)-(7) and to assume utility to be linear in labor\(^7\) (i.e. \(\chi = 0 \)) in order to obtain the following consumption-labor static arbitrage condition:

\[
1 = [1 + q (i_t - 1)] c_t^{1/\sigma}.
\]

(27)

Now, let us suppose that the system is in period \(t \) at its steady state equilibrium and verify under which conditions it may be possible to construct an

\(^7\)In the indeterminacy mechanism, the elasticity of labor supply plays a role relatively less important than the curvature of the utility in consumption. Thus, the assumption of an infinite elastic labor supply - as we also make in our simulations - does not affect considerably the generality of our explanation.
alternative equilibrium where agents anticipate, say, a fall in next period’s price level, i.e. a decrease in the inflation rate \(\pi_{t+1} \). Under this conjecture and the assumption that the liquidity constraint is still binding, both foregoing investment and tomorrow’s consumption will be driven up. But, in view of (27) evaluated in period \(t+1 \), this in turn will require a depreciation in tomorrow’s nominal interest factor \(i_{t+1} \).

Now suppose that the degree of the liquidity constraint is high, i.e. \(q \) is rather close to one: If the intertemporal elasticity of substitution \(\sigma \) is not very low (and, so, the expected contraction in \(\pi_{t+1} \) does not translate into an arbitrarily large variation in \(\pi_{t+1}^{-1/\sigma} \)), the re-establishment of (26) requires only a relatively mild increase in foregoing nominal interest factor \(i_t \), namely an increase lower, in absolute terms, than the corresponding contraction of \(i_{t+1} \), the weight of the former, \(q \), being larger than that of the latter, \(1 - q \). But this implies a contracting backwards dynamics, and therefore an explosive forward dynamics violating the transversality condition.

If, conversely, \(q \) is rather small, the right-hand side of (26) is more sensitive to \(i_{t+1} \) than to \(i_t \). Therefore, in order to restore (26), \(i_t \) must increase considerably more than how \(i_{t+1} \) has fallen. As a consequence, this will make the system to move back towards its steady state, although following an oscillatory path.

Following the logic of this experiment, one immediately verifies that the higher \(\sigma \), the lower the increase of the left-hand side of (26) induced by a given fall of \(\pi_{t+1} \), and therefore, for any given \(q \), the softer the required adjustment in its right-hand one. Thus, the mechanism above described will lead to convergent dynamics only in correspondence to lower \(q \)'s; This explains the negative trade-off occurring between \(\sigma \) and \(q \) in the indeterminacy conditions, as described in Fig. 1.

5 Model properties

In this final section, we assess the cyclical properties of the model and study the conditions under which it is able to account for the main features of the US business cycle.

Since the seminal papers by Benhabib and Farmer (1994), Farmer and Guo (1994) and Galí (1994), it is widely recognized that some business cycle models driven by sunspots only may account for most empirical stylized facts in a way which is at least as satisfactory as standard RBC models. However,
the conditions under which these successful models may generate an indeterminate equilibrium have been criticized for being implausible and at odds with the data. For example, in Benhabib and Farmer (1994), externalities and increasing returns to scale must be high enough to imply that the labor demand curve is upward sloping, and slopes even steeper than the labor supply curve. The required degree of increasing returns to scale is around 60%, which is considerably higher than what is suggested by most empirical studies, which find - if any - much smaller markups and increasing returns to scale of the order of 3% (see Basu and Fernald, 1997, and Burnside, Eichenbaum and Rebelo, 1995)\(^8\).

For these reasons, a more recent generation of papers have been devoted to show that indeterminacy could be obtained under much weaker restrictions regarding markups and increasing returns to scale. In Benhabib and Farmer (1996) and Perli (1998), two-sector versions of the original Benhabib and Farmer’s 1994 model are shown to become indeterminate for increasing returns to scale around 7% and 16%, respectively. This is closer to the empirical estimates reported in Basu and Fernald (1997). Similarly, Wen (1998) shows that adding a variable capital utilization rate to a standard one-sector model may make indeterminacy occurring for a degree of increasing returns to scale of the order of 10%.

These models have made a crucial step toward more realism by proving that the most counter-factual assumptions required to obtain indeterminacy could be considerably alleviated as long as more sophisticated versions of the standard one-sector models were considered. But it is fair to recognize that this gain toward more realism has raised some new difficulties, however\(^9\). For example, simulations experiments show that if increasing returns to scale are set at their minimal value, multi-sector models are generally unsuccessful to match several moments of the US data, especially when business cycles are driven by sunspot shocks only. More precisely, several counter-factual features tend to emerge in the context of indeterminate models with low increasing returns to scale: (i) the tendency of these models to generate counter-cyclical movements of consumption or investment, (ii) the tendency

\(^8\)In Galí (1994), returns to scale are constant, but markup margins above 100% are assumed to generate an indeterminate equilibrium. No empirical studies tend to confirm such high levels for the markups, most empirical estimates lying instead in the range 10%-40% (see, e.g., Morrison, 1988, Rotemberg and Woodford, 1991).

\(^9\)For a detailed discussion, see the survey by Benhabib and Farmer (1999), as well as the recent paper by Schmitt-Grohé (2000).
to overestimate or underestimate the volatility of consumption or investment, and (iii) the lack of sufficient persistency in output movements, as measured by the first-order auto-correlation coefficient in the production series. The main causes for these failures are well documented in Wen’s mentioned paper and in the recent survey by Benhabib and Farmer (1999), so we refer the interested reader to these papers for a more detailed discussion.

Two complementary solutions have been advocated to overcome these difficulties: The first one is to finally increase, when performing simulations, the degree of returns to scale to a value which is above the minimal value that is required to obtain indeterminacy. Because increasing returns to scale act as a major propagation mechanism and allow for a more pro-cyclical pattern of consumption’s movements, this may prove sufficient in itself to make the model more consistent with the data. The disadvantage of this practice is that the new degree of IRS is generally inconsistent with the empirical evidence reported in Basu and Fernald (1997) and Burnside et al. (1995). As a consequence, a second solution which has been introduced in the literature is to consider that animal spirits, rather than being purely exogenous shifts in expectations disconnected from any real event, are in fact overreaction to technological innovations. Models of this type have been generally found to be successful in matching the data as long as the degree of increasing returns to scale is in the range 10-20% (see e.g. Benhabib and Farmer, 1996, Perli, 1998, and Weder, 2000).

In this section, we wish to test the performance of our model in accounting for the main features of the US business cycle, allowing for both possibilities regarding the role of animal spirits. In order to do so, we first assume that technology follows the simple first order process

$$\ln z_t = \rho \ln z_{t-1} + \gamma \varepsilon_{z,t}$$

where $\rho \in [0,1]$, $\varepsilon_{z,t}$ is an i.i.d. technological innovation with zero mean and variance σ^2_{z}, and γ is a parameter taking values 0 or 1. Under the conditions generating indeterminacy, animal spirits shocks η_t - as measured by unforecastable increases in the consumption level, $\eta_t \equiv \{C_t - E_{t-1}C_t\}$ - act as a second source of disturbance. We assume that these shocks evolve according to

\[10\] In Benhabib and Farmer (1996), at least 20% of increasing returns to scale are required for the model with sunspots only to generate empirically realistic business cycles.
\[\eta_t = \gamma \varepsilon_{z,t} + (1 - \gamma) \varepsilon_{x,t} \]

(29)

where \(\varepsilon_{x,t} \) is an i.i.d. shock with zero mean and variance \(\sigma_x^2 \). The advantage of equations (28)-(29) is that they can handle as special cases the two different interpretations of animal spirits that we emphasized earlier. In particular, for \(\gamma = 0 \), animal spirits are uncorrelated to any real events and act in this case as the unique source of disturbance. By contrast, for \(\gamma = 1 \), animal spirits are perfectly correlated to technological innovations and act in this case as an amplification mechanism of these shocks.

We show that, when driven by sunspots shocks only, our model suffers from the same difficulties as other models which do not rely on large increasing returns to scale or large markups to generate indeterminacy. Hence, animal spirits alone are not sufficient in our model to explain the most salient features of the US business cycle. However, when coupled with technological shocks, our model performs at a similar level as these formerly mentioned papers. This is true even though we do not rely on increasing returns to scale or on other non-standard features regarding the production structure or the utility function. In our model, the only source of imperfection is the requirement that some cash holdings must be accumulated from the preceding period to pay a fraction of total consumption purchases. All other elements are perfectly standard: preferences are separable, technology is Cobb-Douglas, and the intertemporal elasticity of substitution is unitary\(^{11}\). Only the presence of this arbitrarily small degree of market imperfection, and the assumption that technology shocks and animal spirit innovations are positively correlated, are required for our model to generate appropriate statistical properties, as we illustrate now.

5.1 Calibration

We first briefly discuss the calibration of our main parameters (see Table 1). Since we want to remain as close as possible to comparable business cycle models with indeterminacy, we follow Benhabib and Farmer (1996) by assuming an elasticity of production with respect to capital of \(\alpha = 0.3 \), a quarterly depreciation rate of capital of \(\delta = 0.025 \), a discount factor of \(\beta = 0.99 \), and an average amount of hours worked representing 20% of total

\(^{11}\) As shown in Barinci and Chéron (2001), a strong complementarity in the intertemporal baskets of consumption may be a cause of indetermination.
Table 1 - Structural parameters

<table>
<thead>
<tr>
<th>β</th>
<th>α</th>
<th>δ</th>
<th>χ</th>
<th>σ</th>
<th>q</th>
<th>ρ</th>
<th>σ_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99</td>
<td>0.3</td>
<td>0.025</td>
<td>0</td>
<td>1</td>
<td>0.33</td>
<td>0.95</td>
<td>0.007</td>
</tr>
</tbody>
</table>

available time. Following Hansen (1985) and Rogerson (1988), we also assume an infinitely elastic labor supply with a unitary coefficient and set $\chi = 0$. Finally, we assume that the growth rate of money is $\mu = 1.01$, based on the M0 series for the US economy.

In our simulations, we proceeded with two experimentations, $\gamma = 0$ and $\gamma = 1$. When technological shocks are present, we set an auto-correlation coefficient in the technological process of $\rho = 0.95$, and assume a standard deviation of technological innovation of $\sigma_z = 0.007$.

Two important parameters remain to be calibrated at this stage. The first one is σ, the value of the intertemporal elasticity of substitution. This value is highly controversial, since it influences directly some important properties of the models, and since the existing empirical evidence does not allow a clear statement about it. Some papers, like Bennett and Farmer (2000), assume a rather strong intertemporal substitutability ($\sigma > 3$) in order to get an indeterminate equilibrium. Others papers, like Barinci and Chéron (2001), assume instead a strong intertemporal complementariness ($\sigma < 0.5$) to get indeterminacy. By contrast to these papers, indeterminacy may occur in our model for a large range of values for σ including the complementariness and substitutability cases (see Fig. 1 above). We thus follow the most conventional RBC practice by simply setting $\sigma = 1$, i.e. we assume that the utility function is logarithmic in consumption.

Finally, the last parameter that remains to be calibrated is q, the overall degree of market imperfection we are willing to introduce in our model. Note that a simple interpretation of q is that of the (inverse) long run velocity of money, $q = 1/v$. Using the monetary base as their definition of money, Carlstrom and Fuerst (2003) estimate an average velocity of money (at a quarterly frequency) for the US economy which is around $v = 3$. We thus follow Carlstrom and Fuerst (2003) and set correspondingly $q = 1/3$.

5.2 Simulation results

For each version of the model, we simulated 100 series of 150 innovations each, and we used them to derive from our dynamical system below a set of
Table 2 - Cyclical properties

a. Relative standard deviations std(x)/std(output)

<table>
<thead>
<tr>
<th>Data</th>
<th>autonomous sunspots (γ = 0)</th>
<th>correlated sunspots (γ = 1)</th>
<th>RBC</th>
<th>BF (correlated sunspots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0.74</td>
<td>13.79</td>
<td>0.74</td>
<td>0.24</td>
</tr>
<tr>
<td>I</td>
<td>4.79</td>
<td>44.64</td>
<td>3.73</td>
<td>4.41</td>
</tr>
<tr>
<td>H</td>
<td>0.98</td>
<td>1.26</td>
<td>0.78</td>
<td>0.57</td>
</tr>
<tr>
<td>Q</td>
<td>0.42</td>
<td>0.49</td>
<td>0.29</td>
<td>0.45</td>
</tr>
</tbody>
</table>

b. Autocorrelation coefficient on output: AR(1)

<table>
<thead>
<tr>
<th>Data</th>
<th>γ = 0</th>
<th>γ = 1</th>
<th>RBC</th>
<th>BF (γ = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.85</td>
<td>-0.44</td>
<td>0.67</td>
<td>0.70</td>
<td>0.66</td>
</tr>
</tbody>
</table>

c. Contemporaneous correlation with output

<table>
<thead>
<tr>
<th>Data</th>
<th>γ = 0</th>
<th>γ = 1</th>
<th>RBC</th>
<th>BF (γ = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0.83</td>
<td>0.98</td>
<td>0.61</td>
<td>0.84</td>
</tr>
<tr>
<td>I</td>
<td>0.91</td>
<td>-0.98</td>
<td>0.81</td>
<td>0.99</td>
</tr>
<tr>
<td>H</td>
<td>0.92</td>
<td>0.93</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>Q</td>
<td>0.34</td>
<td>-0.35</td>
<td>0.86</td>
<td>0.98</td>
</tr>
</tbody>
</table>

series for the main macroeconomic variables. The model-implied moments reported in Table 2 are then the average moments for all these series, after each series was filtered through the HP filter. These theoretical moments are then compared to their empirical counterparts in the US economy, which are taken from the survey of RBC models by Cooley and Prescott (1995).

We first discuss the results for the version of the model which introduces animal spirit shocks only (γ = 0). Results from this experiment can be seen in the second column of Table 2. As we stressed earlier, our model suffers from the same difficulties as former models which do not rely on large increasing returns to scale to generate indeterminacy. In particular, our model
strongly overestimates the relative volatilities of consumption and investment with respect to output, and predicts counter-cyclical movements of investment. Furthermore, the auto-correlation coefficient on output is negative in the model, when it is strongly positive in the US data. This conforms to the Benhabib and Farmer’s findings that most endogenous persistence in traditional sunspots models comes from the assumption of large increasing returns to scale.

We now turn to the simulation results when we let technological and animal spirit shocks coexist, and that we assume a perfect correlation between them \((\gamma = 1)\). In this case, animal spirits act as an important amplification mechanism of technological innovation. Results from this experiment are reported in the third column of table 2. From this table, we see that the match with actual US fluctuations is pretty good for all the dimensions that have been considered.

First, the model now predicts the correct pattern of fluctuations for the relative volatilities between all variables. Consumption is about three-quarter as volatile as output, while investment is about four times as volatile as output. Productivity also remains significantly less volatile than output, which is consistent with what is found in the data. Finally, hours worked appears slightly less volatile in the model than they are in the US economy. It remains that overall, these numbers are in a much closer accordance with the data than what could be inferred from the version of the model in which animal spirits were the only source of disturbance.

The same kind of results holds for the contemporaneous correlation between all variables. As can be seen from Table 2, consumption, investment and hours worked are now strongly pro-cyclical, and productivity is no longer counter-cyclical: The contemporaneous correlation between productivity and output is even slightly higher now in the model than it is the data.

Finally, Table 2 reports the first-order auto-correlation coefficient on the production series. The model-implied coefficient of 0.67 compares to a value of 0.85 in the data. Thus, there remains a slight deficit of persistence in our theoretical model with liquidity constraints. However, the performance of the model remains rather good, especially if one reminds that returns to scale are assumed to be constant in our simulation experiments. The rather high first-order auto-correlation coefficient reported in Table 2 is thus not obtained at the price of a counter-factually strong degree of increasing returns to scale.

Overall, our model does therefore pretty well in accounting for the main features of actual fluctuations. The remainder of Table 2 displays for com-
parison purpose the corresponding theoretical moments which are implied by the standard RBC model of Cooley and Prescott (1995), and the multi-sector model of Benhabib and Farmer (1996). As is apparent, our model performs at a similar level as these former models, even though we do not rely on increasing returns to scale or on non-standard features concerning the production structure or the utility function.

6 Conclusion

In this paper we have presented a one-sector productive economy with partial cash-in-advance constraint on consumption purchases and studied the occurrence of indeterminacy and endogenous fluctuations as well as the cyclical properties of the model. We have shown that the relaxation of the liquidity constraint makes indeterminacy more and more likely to occur. Yet, for an amplitude of the liquidity constraint sufficiently low, the unique steady state is bound to be indeterminate for whatever fundamentals specification. These findings seem to suggest that indeterminacy and sunspot fluctuations - very far from being some kind of “exotic” or “pathological” feature in macroeconomic models - are very pervasive. It is sufficient indeed to perturb slightly the standard RBC models in order to obtain multiple deterministic as well as stochastic equilibria. When performing simulations, we have shown that this model is able to correctly account for the main features of US economic fluctuations, as long as animal spirits and technological innovations coexist and are rather strongly correlated. In this aspect, the model performs as well as other indeterminate models without relying upon strong increasing returns at odds with empirical estimates or any specific - if not even unconventional - calibration for utility functions and technology.

References

22

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0516 Animal Spirits and Public Production in Slow Growth Economies</td>
<td>Stefano BOSI & Carine NOURRY</td>
</tr>
<tr>
<td>0517 Credibility, Irreversibility of Investment, and Liberalization Reforms in LDCs: A Note</td>
<td>Andrea BASSANINI</td>
</tr>
<tr>
<td>0518 Pression fiscale sur les revenus de l’épargne : une estimation dans trois pays européens</td>
<td>Yannick L’HORTY</td>
</tr>
<tr>
<td>0519 La qualité de l’emploi en France : tendance et cycle</td>
<td>Florent FREMIGACCI & Yannick L’HORTY</td>
</tr>
<tr>
<td>0520 Welfare-Theoretic Criterion and Labour Market Search</td>
<td>Stéphane MOYEN & Jean-Guillaume SAHUC</td>
</tr>
<tr>
<td>0521 Default Recovery Values and Implied Default Probabilities Estimations: Evidence from the Argentinean Crisis</td>
<td>Ramiro SOSA NAVARRO</td>
</tr>
<tr>
<td>0522 Indeterminacy with Constant Money Growth Rules and Income-Based Liquidity Constraints</td>
<td>Stefano BOSI & Frédéric DUFORT</td>
</tr>
<tr>
<td>0523 Following the High Road or Not: What Does It Imply for Firms As to WTR Implementation</td>
<td>Fabrice GILLES</td>
</tr>
<tr>
<td>0524 Optimal Cycles and Social Inequality: What Do We Learn from the Gini Index?</td>
<td>Stefano BOSI & Thomas SEEGMULLER</td>
</tr>
<tr>
<td>0525 Sunspot Bubbles</td>
<td>Stefano BOSI</td>
</tr>
<tr>
<td>0526 The Taylor Principle and Global Determinacy in a Non-Ricardian World</td>
<td>Jean-Pascal BENASSY & Michel GUILLARD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>0401 Instabilité de l’emploi : quelles ruptures de tendance?</td>
<td>Yannick L’HORTY</td>
</tr>
<tr>
<td>0402 Vingt ans d’évolution de l’emploi peu qualifié et du coût du travail : des ruptures qui coïncident?</td>
<td>Islem GAFSI, Yannick L’HORTY & Ferhat MIHOUBI</td>
</tr>
<tr>
<td>0403 Allègement du coût du travail et emploi peu qualifié : une réévaluation</td>
<td>Islem GAFSI, Yannick L’HORTY & Ferhat MIHOUBI</td>
</tr>
<tr>
<td>0404 Revenu minimum et retour à l’emploi : une perspective européenne</td>
<td>Yannick L’HORTY</td>
</tr>
<tr>
<td>0405 Partial Indexation, Trend Inflation, and the Hybrid Phillips Curve</td>
<td>Jean-Guillaume SAHUC</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Partial Indexation and Inflation Dynamics: What Do the Data Say?</td>
<td>Jean-Guillaume SAHUC</td>
</tr>
<tr>
<td>Why Do Firms Evaluate Individually Their Employees: The Team Work Case</td>
<td>Patricia CRIFO, Marc-Arthur DIAYE & Nathalie GREENAN</td>
</tr>
<tr>
<td>La politique environnementale française : une analyse économique de la répartition de ses instruments du niveau global au niveau local</td>
<td>Jean DE BEIR, Elisabeth DESCHANET & Mouez FODHA</td>
</tr>
<tr>
<td>Incentives in Agency Relationships: To Be Monetary or Non-Monetary?</td>
<td>Patricia CRIFO & Marc-Arthur DIAYE</td>
</tr>
<tr>
<td>Mathematics for Economics</td>
<td>Stefano BOSI</td>
</tr>
<tr>
<td>Statistics for Economics</td>
<td>Stefano BOSI</td>
</tr>
<tr>
<td>Does Patenting Increase the Private Incentives to Innovate? A Microeconometmic Analysis</td>
<td>Emmanuel DUGUET & Claire LELARGE</td>
</tr>
<tr>
<td>Should the ECB Be Concerned about Heterogeneity? An Estimated Multi-Country Model Analysis</td>
<td>Eric JONDEAU & Jean-Guillaume SAHUC</td>
</tr>
<tr>
<td>Does Training Increase Outflows from Unemployment? Evidence from Latvian Regions</td>
<td>Jekaterina DMITRIJEVA & Michails HAZANS</td>
</tr>
<tr>
<td>A Quantitative Investigation of the Laffer Curve on the Continued Work Tax: The French Case</td>
<td>Jean-Olivier HAIRAULT, François LANGOT & Thepthida SOPRASEUTH</td>
</tr>
<tr>
<td>Intergenerational Conflicts and the Resource Policy Formation of a Short-Lived Government</td>
<td>Uk HWANG & Francesco MAGRIS</td>
</tr>
<tr>
<td>Voting on Mass Immigration Restriction</td>
<td>Francesco MAGRIS & Giuseppe RUSSO</td>
</tr>
<tr>
<td>Capital Taxation and Electoral Accountability</td>
<td>Toke AIDT & Francesco MAGRIS</td>
</tr>
<tr>
<td>An Attempt to Evaluate the Impact of Reorganization on the Way Working Time Reduction Has Been Implemented by French Firms since 1996</td>
<td>Fabrice GILLES</td>
</tr>
<tr>
<td>Dette souveraine: crise et restructuration</td>
<td>Facundo ALVAREDO & Carlos WINOGRAD</td>
</tr>
<tr>
<td>Renouvellement des générations, asymétrie de position et dynamique technologique des entreprises</td>
<td>Marc-Arthur DIAYE, Nathalie GREENAN, Claude MINNI & Sonia ROSA MARQUES</td>
</tr>
</tbody>
</table>