Abstract
1 INTRODUCTION
2 DESCRIPTION OF THE ECONOMY
2.1 Population dynamics and employment opportunities

2.1.1 Population dynamics
2.1.2 Employment opportunities and intergenerational opportunities

<table>
<thead>
<tr>
<th>J</th>
<th>(\pi_{JJ})</th>
<th>1 - (\pi_{JJ})</th>
<th>59</th>
<th>60</th>
<th>61</th>
<th>...</th>
<th>69</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(\pi_{AA})</td>
<td>1 - (\pi_{AA})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>1 - (\pi_{59})</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1 - (\pi_{60})</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>1 - (\pi_{61})</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>1 - (\pi_{69})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>1 - (\pi_{RR})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>R</td>
</tr>
</tbody>
</table>

\[\text{ERA} = 5 \]
\[\pi(e') = Pr\{e_{t+1} = e' | e_t = e\} \]

2.2 The household’s decision: retirement choice, consumption and wealth

2.2.1 Preferences

\[\sum_{t=0}^{\infty} \beta^t \left\{ \sum_{s_t \in S} \pi(s_t | s_{t-1}) u(C_t, l_t) + \varrho \Phi \beta \sum_{s_{t+1} \in S} \pi(s_{t+1} | s_t) V(A_{t+1}, s_{t+1}) \right\} \]

\[\pi(s'|s) = Pr\{s_{t+1} = s' | s_t = s\} \]

\[u(c) = \frac{(c^{1-\eta}(1-\lambda)^{\eta})^{1-\sigma}}{1-\sigma} \]

\[A_{t+1} \geq 0 \]
2.2.2 The steady state
(i) \[a' = g(a, s), \psi = \Psi(a, s) \]

\[
\Psi(a, s) = \begin{cases}
1 & v(a, \{s, k\}) \geq v(a, \{R, k\}) \\
0 & \text{otherwise}
\end{cases}
\]

(ii) \[s = e, u \]

\[\lambda(a, s) = \sum_{s'} \lambda(a', s') \]

(iii) \[R = D \]

\[
\lambda(a', s') = \sum_{s} \sum_{\{a, a' = A(a, s)\}} \lambda(a, s) \pi(s'|s')
\]
\[A = \sum_s \sum_a \lambda(a,s)g(a,s) \]

3 SOCIAL SECURITY REFORMS

3.1 The French reform: A defined pension plan

3.1.1 The pre-reform system (post-Balladur system, 1993):
$$P(k) = P_{\text{basic}}(k) + P_{\text{ARRCO}}(k)$$

$$P_{\text{basic}}(k) = \min \left(1, \frac{d}{25}\right) \times \frac{1}{25} \sum_{t=1}^{25} \min(w_t, \text{cap}_t)$$

$$P_{\text{ARRCO}}(k) = \text{points}(k) \times v_d \times \text{penalty}(k)$$

Table:

<table>
<thead>
<tr>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
</tr>
</tbody>
</table>

Notes:

- w_t: Weight of the t-th item
- cap_t: Capacity of the t-th container
- d: Total demand
- v_d: Value of the demand
- ϕ: Parameter for the penalty function
- $\text{points}(k)$: Points assigned to the k-th solution
- $\text{penalty}(k)$: Penalty function for the k-th solution

Algorithm:

1. **Initialization:**
 - Set $P_{\text{basic}}(k) = \min \left(1, \frac{d}{25}\right)$
 - Set $P_{\text{ARRCO}}(k) = 0$
 - Set $\phi = 0.5$
 - Set $v_d = \text{value of demand}$
 - Set $\text{points}(k) = \text{initial points}$
 - Set $\text{penalty}(k) = \text{initial penalty}$

2. **Iteration:**
 - For each item t in the set of items T
 - Determine the best container c_t for item t based on w_t and cap_t
 - Update $P_{\text{basic}}(k)$ using the formula above
 - Update $P_{\text{ARRCO}}(k)$ using the formula above

3. **Finalization:**
 - After iterating over all items, calculate the total $P(k)$
 - Adjust the value of ϕ based on the results
 - Update v_d based on the final solution
 - Calculate the final $\text{points}(k)$ and $\text{penalty}(k)$

Summary:

The presented algorithm combines a basic heuristic with a penalty function to allocate items to containers, optimizing the total value while respecting capacity constraints.
3.1.2 The post reform system (Raffarin Reform, 2003)

<table>
<thead>
<tr>
<th>$P(T)$</th>
<th>$P(k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(T) = \left(\frac{1}{5} \sum_{t=1}^{5} w_{age-t} \right) \times \text{Max} (T, 40) \times \tau$</td>
<td>$P(k) = c \times \sum_{t=1}^{R} 0.33 \times w_{t} (1 + \gamma)^{k-t}$</td>
</tr>
<tr>
<td>$\gamma = 5 \cdot \frac{w_{t}}{\sum_{t=1}^{R} w_{t}}$</td>
<td></td>
</tr>
</tbody>
</table>

3.2 The Italian reform : Switching to a contributive system

3.2.1 The pre-reform system (before 1992)

3.2.2 The post-reform system (after 1997)
4 DOES THE MODEL FIT THE DATA?
5 WELFARE EFFECTS OF SOCIAL SECURITY REFORMS

\[W = \int a V(\cdot, J) \lambda(\cdot, J) da \]

5.1 France

\[W = \int a V(\cdot, J) \lambda(\cdot, J) da = \frac{1}{(1 - \beta)(1 - \sigma)} \tilde{C}^{1 - \sigma} \]

\[\tilde{C} = \frac{\tilde{C} - \tilde{C}' \bar{C}}{\tilde{C}' \bar{C} - \tilde{C'^2}} \]
5.2 Italy
6 CONCLUSION
<table>
<thead>
<tr>
<th>Private No studies</th>
<th>Private Pre + Sup</th>
<th>Private Secondary</th>
<th>Self Pre + Sup</th>
<th>Self Secondary</th>
<th>Self No studies & Sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>*6D > D</td>
<td>*6A > D</td>
<td>*64 > D</td>
<td>*6A > D</td>
<td>*6A > D</td>
<td>*6A > D</td>
</tr>
<tr>
<td>*6D > D</td>
<td>*6A > D</td>
<td>*64 > D</td>
<td>*6A > D</td>
<td>*6A > D</td>
<td>*6A > D</td>
</tr>
<tr>
<td>*6D > D</td>
<td>*6A > D</td>
<td>*64 > D</td>
<td>*6A > D</td>
<td>*6A > D</td>
<td>*6A > D</td>
</tr>
<tr>
<td>*6D > D</td>
<td>*6A > D</td>
<td>*64 > D</td>
<td>*6A > D</td>
<td>*6A > D</td>
<td>*6A > D</td>
</tr>
<tr>
<td>*6D > D</td>
<td>*6A > D</td>
<td>*64 > D</td>
<td>*6A > D</td>
<td>*6A > D</td>
<td>*6A > D</td>
</tr>
<tr>
<td>*6D > D</td>
<td>*6A > D</td>
<td>*64 > D</td>
<td>*6A > D</td>
<td>*6A > D</td>
<td>*6A > D</td>
</tr>
</tbody>
</table>

![Graph](image-url)
A Optimizing programs

Choice when young \((s \in J^z)\) with \(x = E\) (Employed) or \(U\) (unemployed) :

\[
\begin{align*}
\max_{a, J^E} & u(c, l) + \beta \left\{ \pi_{JJ} [\pi_{\pi_{E,E}} v(a', J^E) + (1 - \pi_{\pi_{E,E}}) v(a', J^U)] + (1 - \pi_{JJ}) [\pi_{\pi_{E,A}} v(a', A^E) + (1 - \pi_{\pi_{E,A}}) v(a', A^U)] \right\} \\
(1 + g)a' & = (1 + r)a + w(J) - \Theta(w(J)) - c \\
& \geq 0
\end{align*}
\]
Choice when adult \((s \in A^x)\) with \(x = E\) or \(U\):

\[
v(a, A^E) = \max_{c \geq 0} u(c, l)
\]

\[
+ \beta \left\{ \begin{array}{l}
\pi_{A} \left[\pi_{ee,A} v(a', A^E) + (1 - \pi_{ee,A}) v(a', A^U) \right] \\
\pi_{ee,59} v(a', 59^E) + (1 - \pi_{ee,59}) v(a', 59^U)
\end{array} \right\}
\]

\[
(1 + g) a' = (1 + r) a + w(A^E) - \Theta(w(A^E)) - c
\]

\[
a' \geq 0
\]

Choice when mature \((s \in M)\):

\[
v(a, k^E) = \max_{c \geq 0} u(c, l)
\]

\[
+ \beta \left\{ \begin{array}{l}
(1 - \pi_{kk'}) \Phi_{kk'} v(a', J^U)
\end{array} \right\}
\]

\[
+ \pi_{kk'} \max \left[\pi_{ee,k'} v(a', k^E) \right] + (1 - \pi_{ee,k'}) v(a', k^E)
\]

\[
(1 + g) a' = (1 + r) a + w(k^E) - \Theta(w(k^E)) - c
\]

\[
a' \geq 0
\]

If the individual is employed at age \(k\):

\[
v(a, k^U) = \max_{c \geq 0} u(c, l)
\]

\[
+ \beta \left\{ \begin{array}{l}
(1 - \pi_{kk'}) \Phi_{kk'} v(a', J^U)
\end{array} \right\}
\]

\[
+ \pi_{kk'} \max \left[\pi_{uu,k'} v(a', k^U) \right] + (1 - \pi_{uu,k'}) v(a', k^U)
\]

\[
(1 + g) a' = (1 + r) a + \theta^u w(k) - c
\]

\[
a' \geq 0
\]
If retiree at age k:

$$v(a, k^{Rx}) = \max_{c \geq 0} u(c, l) + \beta \left\{ (1 - \pi_{kk'}) \Phi_q v(a', J^U) + \pi_{kk'} v(a', k^{Rx}) \right\}$$

$$(1 + g)a' = (1 + r)a + \omega(k) - c$$

$$a' \geq 0$$

If retiree at age k^{Rx} in 3^{nd} period $x = E \left(\max_{U} U \right)$ such that $x_{k^{Rx}} \geq k_{kk'}$ and $x_{k_{kk'}}$ is the optimal value of $k_{kk'}$.

If retiree at age 69:

$$v(a, 69^{x}) = \max_{c \geq 0} u(c, l) + \beta \left\{ (1 - \pi_{kk'}) \Phi_q v(a', J) + \pi_{kk'} v(a', 69^{x}) \right\}$$

$$(1 + g)a' = (1 + r)a + w(69) - \Theta(w(69)) - c$$

$$a' \geq 0$$

If retiree at age $x = E(U) = w(69) - \Theta(w(69))$ in 3^{rd} period $x = E \left(\max_{U} \theta^u w(69) \right)$.

B Data

France:

Italy:

C
C Calibration

C.1 Demographics, technology, real interest rate and preferences

59 60 61 62 63 64 65 66 67 68 69 70

<table>
<thead>
<tr>
<th>0-9</th>
<th>AAA</th>
<th>A4K</th>
<th>A4K6</th>
<th>A46</th>
<th>A4K4</th>
<th>A4K6</th>
<th>A4K4</th>
<th>A46</th>
<th>A4K</th>
<th>A4K6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-19</td>
<td>A4</td>
<td>A4A</td>
<td>A4A6</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
</tr>
</tbody>
</table>

2 59 60 61 62 63 64 65 66 67 68 69 70

<table>
<thead>
<tr>
<th>0-9</th>
<th>AAA</th>
<th>A4K</th>
<th>A4K6</th>
<th>A46</th>
<th>A4K4</th>
<th>A4K6</th>
<th>A4K4</th>
<th>A46</th>
<th>A4K</th>
<th>A4K6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-19</td>
<td>A4</td>
<td>A4A</td>
<td>A4A6</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
</tr>
</tbody>
</table>

3 60 61 62 63 64 65 66 67 68 69 70

<table>
<thead>
<tr>
<th>0-9</th>
<th>AAA</th>
<th>A4K</th>
<th>A4K6</th>
<th>A46</th>
<th>A4K4</th>
<th>A4K6</th>
<th>A4K4</th>
<th>A46</th>
<th>A4K</th>
<th>A4K6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-19</td>
<td>A4</td>
<td>A4A</td>
<td>A4A6</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
</tr>
</tbody>
</table>

4 60 61 62 63 64 65 66 67 68 69 70

<table>
<thead>
<tr>
<th>0-9</th>
<th>AAA</th>
<th>A4K</th>
<th>A4K6</th>
<th>A46</th>
<th>A4K4</th>
<th>A4K6</th>
<th>A4K4</th>
<th>A46</th>
<th>A4K</th>
<th>A4K6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-19</td>
<td>A4</td>
<td>A4A</td>
<td>A4A6</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
</tr>
</tbody>
</table>

5 60 61 62 63 64 65 66 67 68 69 70

<table>
<thead>
<tr>
<th>0-9</th>
<th>AAA</th>
<th>A4K</th>
<th>A4K6</th>
<th>A46</th>
<th>A4K4</th>
<th>A4K6</th>
<th>A4K4</th>
<th>A46</th>
<th>A4K</th>
<th>A4K6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-19</td>
<td>A4</td>
<td>A4A</td>
<td>A4A6</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
</tr>
</tbody>
</table>

6 60 61 62 63 64 65 66 67 68 69 70

<table>
<thead>
<tr>
<th>0-9</th>
<th>AAA</th>
<th>A4K</th>
<th>A4K6</th>
<th>A46</th>
<th>A4K4</th>
<th>A4K6</th>
<th>A4K4</th>
<th>A46</th>
<th>A4K</th>
<th>A4K6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-19</td>
<td>A4</td>
<td>A4A</td>
<td>A4A6</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
</tr>
</tbody>
</table>

7 60 61 62 63 64 65 66 67 68 69 70

<table>
<thead>
<tr>
<th>0-9</th>
<th>AAA</th>
<th>A4K</th>
<th>A4K6</th>
<th>A46</th>
<th>A4K4</th>
<th>A4K6</th>
<th>A4K4</th>
<th>A46</th>
<th>A4K</th>
<th>A4K6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-19</td>
<td>A4</td>
<td>A4A</td>
<td>A4A6</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
</tr>
</tbody>
</table>

8 60 61 62 63 64 65 66 67 68 69 70

<table>
<thead>
<tr>
<th>0-9</th>
<th>AAA</th>
<th>A4K</th>
<th>A4K6</th>
<th>A46</th>
<th>A4K4</th>
<th>A4K6</th>
<th>A4K4</th>
<th>A46</th>
<th>A4K</th>
<th>A4K6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-19</td>
<td>A4</td>
<td>A4A</td>
<td>A4A6</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
</tr>
</tbody>
</table>

9 60 61 62 63 64 65 66 67 68 69 70

<table>
<thead>
<tr>
<th>0-9</th>
<th>AAA</th>
<th>A4K</th>
<th>A4K6</th>
<th>A46</th>
<th>A4K4</th>
<th>A4K6</th>
<th>A4K4</th>
<th>A46</th>
<th>A4K</th>
<th>A4K6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-19</td>
<td>A4</td>
<td>A4A</td>
<td>A4A6</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
<td>A4A4</td>
</tr>
</tbody>
</table>

A
| \(g \) | \(F \) | \(6F \) |
| \(l \) | \(1-l \) | \(BA \) |

| \(r \) | \(F \) |
| \(\sigma \) | \(- \) |

| \(\eta \) | \(\text{connection} \) |
| \(g \) | \(\text{connection} \) |

\[1 - \frac{1}{3} = 2/3 \]
C.2 Wages, employment risks and social mobility

<table>
<thead>
<tr>
<th>θ_a</th>
<th>$\theta_a > $</th>
<th>$\theta_a < $</th>
<th>$\theta_a = $</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$? >> 6$</td>
<td>$? >> 6$</td>
<td>$? >> 6$</td>
</tr>
<tr>
<td>4</td>
<td>$A << 4$</td>
<td>$A << 4$</td>
<td>$A << 4$</td>
</tr>
<tr>
<td>6</td>
<td>$D >> 6$</td>
<td>$D >> 6$</td>
<td>$D >> 6$</td>
</tr>
</tbody>
</table>

France and Italy.
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\Rightarrow64 & \Rightarrow4K & \Rightarrow6KJD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\Rightarrow64</td>
<td>\Rightarrow4K & \Rightarrow6KJD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\Rightarrow4K</td>
<td>\Rightarrow6KJD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\Rightarrow6KJD</td>
<td>\Rightarrow4K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\Rightarrow4K</td>
<td>\Rightarrow6KJD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\Rightarrow64 & \Rightarrow4K & \Rightarrow6KJD</td>
<td></td>
</tr>
<tr>
<td>\Rightarrow64</td>
<td>\Rightarrow4K & \Rightarrow6KJD</td>
<td></td>
</tr>
<tr>
<td>\Rightarrow4K</td>
<td>\Rightarrow6KJD</td>
<td></td>
</tr>
<tr>
<td>\Rightarrow6KJD</td>
<td>\Rightarrow4K</td>
<td></td>
</tr>
<tr>
<td>\Rightarrow4K</td>
<td>\Rightarrow6KJD</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

```
K   6 4K 6KJD
K   4 6KJD 6D6K
6KJD 666 664A>
6KJD 666 664A>
6? KD 6 6KJD 6KJD
6>AR A=K6 4KJD
```

| | \Rightarrow64 & \Rightarrow4K & \Rightarrow6KJD |
|----------------|-----|-----|-----|
| \Rightarrow64 | \Rightarrow4K & \Rightarrow6KJD |
| \Rightarrow4K | \Rightarrow6KJD |
| \Rightarrow6KJD | \Rightarrow4K |
| \Rightarrow4K | \Rightarrow6KJD |

| | \Rightarrow64 & \Rightarrow4K & \Rightarrow6KJD |
|----------------|-----|-----|-----|
| \Rightarrow64 | \Rightarrow4K & \Rightarrow6KJD |
| \Rightarrow4K | \Rightarrow6KJD |
| \Rightarrow6KJD | \Rightarrow4K |
| \Rightarrow4K | \Rightarrow6KJD |

Notes:

```
K   6 4K 6KJD
K   4 6KJD 6D6K
6KJD 666 664A>
6KJD 666 664A>
6? KD 6 6KJD 6KJD
6>AR A=K6 4KJD
```

Notes:

```
K
```
\[
\Pi_{k,i} = \begin{pmatrix}
\pi_{ee,ki} & \pi_{eu,ki} \\
\pi_{ue,ki} & \pi_{uu,ki}
\end{pmatrix} = \begin{pmatrix}
1 - \pi_{ee,ki} & \pi_{eu,ki} \\
\pi_{ue,ki} & 1 - \pi_{ue,ki}
\end{pmatrix}
\]

\[
D_{ki} = \frac{1}{\pi_{eu,ki}}
\]

\[
E_{ki} = \frac{1}{\pi_{eu,ki}} = \frac{1}{\pi_{eu,ki}}
\]

\[
U_{ki} = \frac{D_{ki}}{E_{ki} + D_{ki}}
\]

\[
\pi_{eu,ki} = \frac{U_{ki}}{D_{ki}(1 - U_{ki})}
\]

C.3 Social Security
N | 6KDA | 6Dh64 | 6Dh4 | 6h4 | 6h4 >
keva

French Complementary Schemes

<table>
<thead>
<tr>
<th>$\text{c}_{1\text{ARRC}}$</th>
<th>$\text{c}_{2\text{ARRC}}$</th>
<th>p_{ARRC}</th>
<th>$v_{d\text{ARRC}}$</th>
<th>$c_{2\text{AGIRC}}$</th>
<th>p_{AGIRC}</th>
<th>$v_{d\text{AGIRC}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>KA</td>
<td>KS</td>
<td>KS</td>
<td>KS</td>
<td>KA</td>
<td>KA</td>
<td>KA</td>
</tr>
</tbody>
</table>

| 6\text{h4} | 6\text{h4} > |

6\text{h4} | 6\text{h4} > |

penalty(k)

| k | K | ? | D | > | K | K6 | K4 | KA | K4 |

penalty(k) | K4A | D | ? | K4 | $\text{K}6$ | $\text{K}4$ | $\text{K}4$ | $\text{K}4$ | $\text{K}4$ |

Italian post-1997 system

$\text{g} = 1.5\%$.
<table>
<thead>
<tr>
<th>Document Number</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0501</td>
<td>Animal Spirits in Woodford and Reichlin Economies: The Representative Agent Does Matter</td>
<td>Stefano Bosi & Thomas Seegmuller</td>
</tr>
<tr>
<td>0502</td>
<td>Fiscal Policy and Fluctuations in a Monetary Model of Growth</td>
<td>Stefano Bosi & Francesco Magris</td>
</tr>
<tr>
<td>0503</td>
<td>Is Training More Frequent When the Wage Premium Is Smaller? Evidence from the European Community Household Panel</td>
<td>Andrea Bassanini & Giorgio Brunello</td>
</tr>
<tr>
<td>0504</td>
<td>Training, Wages and Employment Security: An Empirical Analysis on European Data</td>
<td>Andrea Bassanini</td>
</tr>
<tr>
<td>0505</td>
<td>Financial Development, Labor and Market Regulations and Growth</td>
<td>Raquel Fonseca & Natalia Utrero</td>
</tr>
<tr>
<td>0506</td>
<td>Testing Heterogeneity within the Euro Area Using a Structural Multi-Country Model</td>
<td>Eric Jondeau & Jean-Guillaume Sahuc</td>
</tr>
<tr>
<td>0507</td>
<td>On Outward-Looking Comparison Utility, Heterogeneous Preferences & the Third Dimension: A Geometric Perspective</td>
<td>Jean-Paul Barinci & Jean-Pierre Drugeon</td>
</tr>
<tr>
<td>0508</td>
<td>Welfare Effects of Social Security Reforms across Europe: the Case of France and Italy</td>
<td>Raquel Fonseca & Theptida Sopraseuth</td>
</tr>
<tr>
<td>0401</td>
<td>Instabilité de l'emploi : quelles ruptures de tendance?</td>
<td>Yannick L'horty</td>
</tr>
<tr>
<td>0402</td>
<td>Vingt ans d'évolution de l'emploi peu qualifié et du coût du travail : des ruptures qui coïncident?</td>
<td>Islem Gafsi, Yannick L'horty & Ferhat Mihoubi</td>
</tr>
<tr>
<td>0403</td>
<td>Allègement du coût du travail et emploi peu qualifié : une réévaluation</td>
<td>Islem Gafsi, Yannick L'horty & Ferhat Mihoubi</td>
</tr>
<tr>
<td>0404</td>
<td>Revenu minimum et retour à l'emploi : une perspective européenne</td>
<td>Yannick L'horty</td>
</tr>
<tr>
<td>0405</td>
<td>Partial Indexation, Trend Inflation, and the Hybrid Phillips Curve</td>
<td>Jean-Guillaume Sahuc</td>
</tr>
<tr>
<td>Paper Number</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>0406</td>
<td>Partial Indexation and Inflation Dynamics: What Do the Data Say?</td>
<td>Jean-Guillaume Sahuc</td>
</tr>
<tr>
<td>0407</td>
<td>Why Do Firms Evaluate Individually Their Employees: The Team Work Case</td>
<td>Patricia Crifo, Marc-Arthur Diaye & Nathalie Greenan</td>
</tr>
<tr>
<td>0408</td>
<td>La politique environnementale française : une analyse économique de la répartition de ses instruments du niveau global au niveau local</td>
<td>Jean De Beir, Elisabeth Deschanet & Mouez Fodha</td>
</tr>
<tr>
<td>0409</td>
<td>Incentives in Agency Relationships: To Be Monetary or Non-Monetary?</td>
<td>Patricia Crifo & Marc-Arthur Diaye</td>
</tr>
<tr>
<td>0410</td>
<td>Mathematics for Economics</td>
<td>Stefano Bosi</td>
</tr>
<tr>
<td>0411</td>
<td>Statistics for Economics</td>
<td>Stefano Bosi</td>
</tr>
<tr>
<td>0412</td>
<td>Does Patenting Increase the Private Incentives to Innovate? A Microeconometric Analysis</td>
<td>Emmanuel Duguet & Claire Lelarge</td>
</tr>
<tr>
<td>0413</td>
<td>Should the ECB Be Concerned about Heterogeneity? An Estimated Multi-Country Model Analysis</td>
<td>Eric Jondeau & Jean-Guillaume Sahuc</td>
</tr>
<tr>
<td>0414</td>
<td>Does Training Increase Outflows from Unemployment? Evidence from Latvian Regions</td>
<td>Jekaterina Dmitrijeva & Michails Hazans</td>
</tr>
<tr>
<td>0415</td>
<td>A Quantitative Investigation of the Laffer Curve on the Continued Work Tax: The French Case</td>
<td>Jean-Olivier HiraULT, François Langot & Thepthida Sopraseuth</td>
</tr>
<tr>
<td>0416</td>
<td>Intergenerational Conflicts and the Resource Policy Formation of a Short-Lived Government</td>
<td>Uk Hwang & Francesco Magris</td>
</tr>
<tr>
<td>0417</td>
<td>Voting on Mass Immigration Restriction</td>
<td>Francesco Magris & Giuseppe Russo</td>
</tr>
<tr>
<td>0418</td>
<td>Capital Taxation and Electoral Accountability</td>
<td>Toke Aidt & Francesco Magris</td>
</tr>
<tr>
<td>0419</td>
<td>An Attempt to Evaluate the Impact of Reorganization on the Way Working Time Reduction Has Been Implemented by French Firms since 1996</td>
<td>Fabrice Gilles</td>
</tr>
<tr>
<td>0420</td>
<td>Dette souveraine: crise et restructuration</td>
<td>Facundo Alvaredo & Carlos Winograd</td>
</tr>
<tr>
<td>0421</td>
<td>Renouvellement des générations, asymétrie de position et dynamique technologique des entreprises</td>
<td>Uk Hwang & Francesco Magris</td>
</tr>
</tbody>
</table>