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Abstract

We study optimal lockdown decisions taken by a policymaker facing a pan-

demic modelled according to the standard SIR deterministic model. The poli-

cymaker trades off the economic costs and the mortality record of the pandemic

which depend on the severity and duration of the lockdown. We contrast the

shortsightedness versus the farsightedness of the policymaker. Policy-related

peaks and rebounds are characterized and explain why a zero-Covid policy is

self-defeating. When the ICU constraint is present and the policymaker is short-

sighed, there is a large intermediate range of ’values of life’ for which the optimal

lockdown consists in exactly saturating this constraint. A farsighted policy is

not too severe so as to avoid a rebound. The shortest duration consistent with

a given health goal is not the less costly. In contrast with the case of shortsight-

ness, a farsighted policy taking into account the ICU constraint sets successive

lockdowns of decreasing severity. We address the impact of vaccination on the

optimal choice of a lockdown.
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1 Introduction

The Covid-19 pandemic which started in 2019 has raised the issue of the best way

to tackle it and in particular the extent of lockdown policy as the way to stem the

dissemination of the virus within a given population. There are two main strategies

with respect to lockdown: suppression or mitigation. The suppression strategy (aka

“zero Covid”) does not compromise and aims at eradicating the pandemic by means of

an extreme lockdown policy disregarding the immediate economic costs so generated.

The mitigation strategy (aka “living with Covid”) aims at finding a compromise between

the objective of limiting the number of fatal casualties generated by the pandemic and

the objective of mitigating the economic negative consequences of lockdown measures.

In this paper we investigate the mitigation strategy from a theoretical point of view

and tackle the determination of optimal lockdown policy decided by a policymaker

confronted with a pandemic which is modelled according to the SIR model used in epi-

demiology.1 The propositions resulting from this analytical effort provide illuminating

insights on the interplay between the dynamics of a pandemic and the policy measures

adopted to control it, such as lockdowns. Useful recommendations on the strictness and

duration of a lockdown may be derived from these propositions and should be useful for

policymakers confronted with a pandemic such as the Covid-19. Results derived from a

model which does not overly simplify the dynamics laws of a pandemic by eliminating

state variables or making extreme assumptions appear more general and robust than

those obtained when simpler models of a pandemic’s dynamics are used or when simu-

lation exercises based on calibrated versions of the standard SIR model are performed.

On the whole, they support the view that a society must “live with Covid-19” (or any

epidemic) through a mitigation lockdown policy rather than attempting to follow a

“zero Covid-19” policy (that is, the desire to strongly fight the dissemination of the

virus as soon as possible by means of a very strict lockdown policy). The latter pol-

icy is unsustainable as the epidemic will surge again sooner or later, once the extreme

lockdown measures are lifted, and cannot appear as an optimal policy.2

1Kermack & McKendrick (1927), Murray (2007).
2The covid-19 pandemic proved complex and the simple SIR model does not fully take account of
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We first study the dynamics of a pandemic without any lockdown policy. This

configuration provides us with a benchmark: our analysis crucially hinges on the result

that the peak of a pandemic is attained when the proportion of susceptible agents is

equal to the inverse of the “natural” reproduction number.

An active lockdown policy aims at increasing social distancing during a certain time

period (duration) by restricting freedom of behavior, including freedom of moves: wear-

ing masks, forbidding certain act, limiting access to some activities. Social distancing

limits individual interactions and thus the dissemination of the virus. A lockdown

policy therefore consists in choosing the reproduction number of the pandemic over a

given period. The policymaker faces a standard dilemma between economic and health

objectives. On the one hand, a lockdown inflicts economic losses that the government

wants to limit; on the other hand, it reduces social interaction, thus the spreading of

the virus and the induced loss of lifes. This dilemma is formalized by a welfare function

depending on these two arguments where the relative weight given to the mortality

argument captures the implicit “value of life” as assessed by the policymaker.

We contrast a short-term and a long-term perspective. We define a short-term

perspective as a single setting of a policy-chosen reproduction number when the time

horizon of the policymaker is limited to the duration of the lockdown policy. In contrast,

a long-term perspective takes into account the future consequences of a fixed-duration

lockdown policy. The first one is likely to be more in line with the behavior of some

policymakers observed during the Covid-19 pandemic, insofar as most of them had

a limited time horizon in mind. The second one is more consistent with economic

rationality. We characterize the dynamics of the pandemic in both cases. In particular

we study the impact of the “value of life” parameter on the chosen reproduction number.

For each perspective a series of propositions illuminates the solution of this dilemma.

The importance of the various timings related to lockdown, the timing of action, the

termination date of the pandemic and their interplay with the marginal impact of the

degree of lockdown, is highlighted. Considering the policy duration as given, we show

it. To fully model this precise pandemic would require a complex version of the model, introducing
variants, etc. Yet the basic message is not altered when these modelling refinements are included.
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that the optimal lockdown degree (the optimal reproduction number chosen by the

policymaker) negatively depends on the “value of life” and the fatality parameters.

Using the long-term perspective we show that a post-policy pandemic rebound may

happen if the lockdown policy has been too strict and/or its duration too short: it hap-

pens when controlled pandemic has not passed its peak, that is when the end-of-policy

proportion of susceptible agents is above the inverse of the natural reproduction num-

ber. This explains why a zero-Covid policy is self-defeating. Realistically considering

that it cannot last forever, there will be a rebound once this policy is lifted and this

rebound may lead to a very high number of deaths and a low proportion of end-of-time

susceptible agents. Taking into account the possibility of rebounds explains why the

optimal reproduction number chosen in the long-term perspective may be higher than

the reproduction number chosen in the short-term perspective.

The dynamics of the pandemic may be affected by the existence of hospital capacity

constraints. As these constraints impact on the mortality record, not trespassing the

hospital capacity has clearly been an objective common to many different governments

during the Covid-19 pandemic, eventhough they may have differed in their relative as-

sessment of the various costs of a mitigation policy. Tackling this issue in our theoretical

model, we prove that stricly keeping to this limit is indeed consistent with differing val-

ues of life and fatality parameters. In a long-term perspective, respecting this limit may

imply successive lockdown measures, decreasing in intensity and implying multiple re-

bounds. Again this is consistent with casual observations of what happened during the

Covid-19 pandemic.

When addressing the role of the duration of a lockdown policy, we show that the

shortest policy able to reach a given mortality number, implying a stricter lockdown

policy (the choice of a lower reproduction number), is not economically the less costly:

a less severe lockdown policy extending over a longer period of time generates less eco-

nomic losses. Relaxing the assumption of a given lockdown duration and endogenizing

duration, we prove that there exists an optimal couple of duration and reproduction

number solving the policy trade-off. Finally we address the impact of a gradual vaccina-

tion policy. The end-of-time susceptible proportion is null in the presence of vaccination.
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We prove that a vaccination policy cannot prevent a rebound. However, the intensity of

the rebound depends negatively on the rate of vaccination. Over time, a more massive

vaccination policy through a higher vaccination rate reduces mortality.

Literature review

The Covid-19 pandemic has generated a flurry of papers aiming at finding the proper

lockdown policy either through calibration exercises or analytical approaches.3.

Focusing on SIR models, Federico & Ferrari (2021) explore the impact of a lockdown

assuming that the transmission rate follows a diffusive stochastic process and resort to

numerical techniques to investigate the properties of the optimal policy. Caulkins et al.

(2021) use simulation techniques to investigate optimal lockdown strategies within a

SIR model but do not tackle the analytical solution of the problem. Camera & Gioffré

(2021) analytically study the economic impact of a sequence of short-lived but extreme

lockdowns in a model based on the theory of random matching, which makes explicit

how epidemics spread through economic activity. They do not study the extent of

lockdown and therefore do not address the issue of optimal lockdowns. Lastly Gonzalez-

Eiras & Niepelt (2020b) resort to two simplified and tractable versions of the modified

SIR model developed by Bohner et al. (2019) in order to study an optimal lockdown

policy4. The first one neglects the death burden and the distinction between infected

and recovered. The second one rests on the assumption of full mortality for the infected

and of equal productivity of the susceptible and the infected. The lockdown variable

adjusts continuously. These models are calibrated. In a companion paper, Gonzalez-

Eiras & Niepelt (2020a) building upon Bailey (1975) simplify the SIR model and restrict

it to a single state variable, eliminating the possibility of recovery after infection and

thus mortality; this model is calibrated searching for the optimal lockdown trajectory.

These various simplifying assumptions drastically reduce the scope of a lockdown policy.

The impact of ICU constraints has been addressed by Loertscher & Muir (2021) as

3For a survey on the economics of Covid-19, cf. Brodeur et al. (2020). For papers using calibration
techniques, see for example Eichenbaum, Rebelo, and Trabandt (2020a), Eichenbaum, Rebelo, and
Trabandt (2020b), Alvarez, Argente, and Lippi (2020), Piguillem and Shi (2020), Acemoglu et al.
(2021)).

4They justifiy their choice by writing: “SIR models of various avours feature two endogenous epi-
demiological state variables; this makes it difficult to embed economic choices in those frameworks with-
out sacricing analytical tractability, transparency, and generality.” Gonzalez-Eiras & Niepelt (2020b)
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they analyze a lockdown policy in a SIR theoretical model which maximizes output

subject to the constraint that contagion is contained so that total hospitalizations do

not exceed the health capacity constraint both with a homogeneous population and an

heteregenous population. Miclo et al. (2022) assume that the ICU cannot be overpassed

(contrarily to what we assume) and obtain a lockdown policy which is decreasing over

a limited interval of time. Lastly, several papers use alternative models such as SIS

models to study lockdown policies in the context of endemic diseases (See Bosi et al.

(2021), Atolia et al. (2021), La Torre et al. (2021)).

2 The model.

We consider a closed society which is affected by a pandemic. There is no shock in this

setting and according to the standard deterministic SIR model, the dynamics of the

pandemic is given by the following set of equations for any t ∈ R :

ds

dt
= −β0i (t) s (t) (1)

di

dt
= β0i (t) s (t) − γi (t) (2)

dr

dt
= γi (t) (3)

where s (t) is the proportion of individuals susceptible of being infected in the population

at a given instant t, i (t) the proportion in the population of infected individuals and

r (t) the proportion of removed (or recovered) individuals, with s (t) + i (t) + r (t) = 1

at every instant t.5 We set R0 ≡ β0

γ
the natural (initial) reproduction number.6 The

parameter β0 refers to social interactions and controls the spreading of the pandemic

as it affects the variation of the size of the “susceptible” agents. It is specific to a

pandemic and captures the physical impact of social interactions within society on the

5For a brief presentation of the SIR model, see Avery et al. (2020).
6aka “basic” reproduction number. As noted by Avery et al. (2020), this number “embodies both

the underlying biological ability of the pathogen to jump from person to person in various types of
interactions as well as the number of interactions of each type that people have in the ordinary course
of their daily lives” (p.84) and may partially result from self-interested voluntary measures of social
distancing.
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dynamics of the pandemic. This structural parameter is related to social habits and

collective mores. The parameter γ is positive and corresponds to the rate of infected

individuals recovering in a given unit of time. “Recovering” means either returning

to perfect health or death. A fraction δ of the “recovered” dies from the pandemic.

This parameter δ is the infection fatality rate. It is assumed here that once someone

recovers from the virus, he or she is never infected again: recovery is permanent7. We

shall return to this point in the conclusion. This model has been used by Rowthorn and

Maciejovski (2020) for simulation exercises related to the Covid-19 pandemic. Here we

shall analytically solve it, under various lockdown policy configurations. The “natural”

reproduction number may capture the rearrangement of the production process such

as teleworking, and more generally, the changes of voluntary behavior induced by the

advent of the pandemic. We abstract from investigating this issue.

We first study the dynamics of the pandemic when there is no lockdown policy

imposed by a public authority.8 The pandemic develops freely according to the re-

production number R0 and dies away when a sufficient fraction of the population has

recovered and does not transmit the virus any more. This policy has been dubbed a

“collective immunity” strategy. In this case, the pandemic eventually vanishes through

herd immunity: the number of recovered people is large enough so that the virus does

not find a significant number of “susceptible” individuals and does not reproduce itself

anymore. We shall use this configuration as a benchmark against which the various

lockdown policies may be compared. We assume R0 > 1, otherwise the pandemic can-

not start. Following Krœger and Schlickeiser (2020), we assume the following boundary

conditions: s (−∞) = 1, i (−∞) = 0 and r (−∞) = 0.

Collective immunity is reached when the pandemic is extinct. Given the determin-

istic nature of the model, it is reached at the “end of time”. Formally it is defined

as (s∞, 0, r∞): there are no more infected people, the proportion of susceptible s∞ is

positive and the proportion of recovered r∞ is equal to 1 − s∞. We refer to s∞ as

7This assumption doen not properly reflect the Covid-19 pandemic. Yet the model captures its
basic characteristics when new variants are neglected. Variants can be introduced in the model at the
cost of increasing complexity.

8Boris Johnson, UK prime minister: “We should all basically just go about our normal daily lives.”,
30 March 2020.
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the end-of-pandemic (or “terminal”) susceptible proportion. It corresponds to herd

immunity.

Assuming that the reproduction number does not vary over time, we have the fol-

lowing proposition on the dynamics of the SIR model, that is the “natural” laws of

motion of the three key variables s (t) , i (t) and r (t) of the pandemic (when driven by

R0)
9.

Proposition 1. (i) The dynamics of the pandemic for t ∈ R is given by

r (t) = −
1

R0

ln s (t) (4)

i (t) = 1 − s (t) +
1

R0

ln s (t) (5)

∫ s(0)

s(t)

1

β0s
[
1 − s + 1

R0
ln s

]ds = t . (6)

t Ô→ s (t) is a decreasing function, and t Ô→ r (t) is an increasing function.

(ii) The proportion of infected i(t) is first increasing, then decreasing. It is maximal

when s (t) = 1
R0

and equal to imax = 1 − 1
R0

[1 + ln (R0)].

(iii) At the end of the pandemic, we have (s, i, r) = (s∞, 0, r∞), with r∞ = 1 − s∞ and

s∞ given by

R0 = −
ln (s∞)

1 − s∞

, 0 < s∞ < 1. (7)

Proof. See Appendix A.1.

This proposition explicits the functional dynamics of the three variables of interest,

the numbers of susceptible, infected and recovered people from the SIR model and

establishes some properties of these dynamics. (i) details the interdependence between

the dynamics of these variables. Eq.(4) shows that the proportion of recovered is a

decreasing function of the proportion of susceptible; Eq.(5) shows that the proportion of

9For a similar result see Harko et al. (2014), p.187.
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infected is a non-monotone function of the proportion of susceptible. Eq.(6) shows that

the proportion of susceptible varies with time depending on β0 and γ. As expected, the

proportion of susceptible decreases with time and the proportion of recovered increases

with time.

11
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Figure 1: Variations of i with respect to s in the plane (s, i)

Figure 1 gives a graphical representation of the dynamics of the pandemic in the

plane (s, i). At the very beginning (when t → −∞) the point (s(t), i(t)) is close to

(1; 0). When t increases s(t) decreases, and i(t) first increases then decreases. At the

end of the pandemic (when t → +∞) the point (s(t), i(t)) is close to (s∞; 0).

(ii) proves that the relation between the proportion of infected and the proportion

of susceptible is non-monotone and reaches a maximum when s (t) is equal to 1
R0

. The

higher the natural reproduction number, the higher the peak of the pandemic. As we

shall see later, the reproduction number plays a critical role in the dynamics of the

pandemic once a lockdown policy is put in place. Once having recovered, one cannot

be infected again. Thus the evolution of the proportion of infected depends on both the

reproduction number and the evolution of the pool of susceptible. At the beginning of

the pandemic for a given R0, the pool of susceptible is large and the number of infections

increases since newly infected agents easily spread the virus into a large population of
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susceptible. But the pool (hence the proportion) of susceptible necessarily declines once

the pandemic has started. Over time newly infected spread the virus into a smaller

and smaller population even with the same reproduction number. This negative effect

curbs down the rate of new infections and the proportion of infected declines. Thus the

proportion of infected is a non-monotonous function of the proportion of susceptible.

The maximum rate is achieved when the proportion of susceptible is just equal to the

inverse of the natural reproduction number. The higher this number, the lower the

susceptible proportion after which the number of infected people starts declining. At

s (t) = 1/R0, there is a “herd immunity” threshold: the expected number of people

that a newly infected person will directly infect is equal to 1.

Finally (iii) characterizes the final (end-of-time) proportion of susceptible denoted

by s∞, where s∞ is a decreasing function of R0: the higher is R0, the more violent and

deadly is the pandemic. All this is consistent with intuition and observations of actual

pandemics.

3 Shortsighted lockdown policies.

We now assume that the “government” ruling this society (aka a public authority able to

impose some lockdown policy) is able to act at a given period t0.
10 Social interactions,

namely “social distancing”, can be modified by law and public punishments (fines, etc.)

decided by the government. Here we assume that a lockdown policy amounts to replace

the parameter β0 by β lower than β0 over a limited and definite interval of time: it is

supposed to be put in place in t0 and ends in period T. The policy duration is therefore

the interval (t0, T ). It negatively affects the reproduction number which becomes R = β
γ

instead of R0 = β0

γ
during this interval. After T, the reproduction number is back to

its “natural” value. The stricter the lockdown policy, the lower β and the lower the

reproduction number. It is thus controlled by the public authority and represents its

10This is in line with Schlickeiser and Kröger (2021). Schlickeiser and Kröger assume that the
pandemic, while in infancy, is taken into account from some given date denoted by “0”, equivalent to
our t0: at this date there is a small but positive number of infected people. This amounts to consider
the pandemic at “its infancy”. The susceptible proportion is close to 1 and the infection number is
close to 0.

10



lockdown policy instrument. We define a “short-term” policy by the following property:

the consequences of this policy after T until the end of the pandemic are not taken into

account by the policymaker. Said in other words, this policymaker is “short-sighted”.

3.1 The dynamics of the pandemic with lockdown policy.

Assume that a decision of lockdown or general social distancing is taken at date t0 ∈ R,

before the epidemic attains its maximum, i.e. s (t0) > 1
R0

. A lockdown policy decided in

instant t0 consists in setting a new reproduction number R which applies to the period

from t0 onwards up to T . There are two periods to be distinguished in the evolution of

the pandemic until the end of the lockdown:

– Before t0, the reproduction number is R0 and the dynamics is governed by Eqs.

(1)-(3).

– In the interval between t0 and T , the reproduction number is R = β/γ, with

R < R0, the dynamic system capturing the dynamics of the pandemic after t0 becomes

ds

dt
= −βi (t) s (t) (8)

di

dt
= βi (t) s (t) − γi (t) (9)

dr

dt
= γi (t) (10)

with β < β0.

In short, the dynamics of the pandemic starts as in Figure 1, being governed by R0.

When s (t0) is reached, it bifurcates as it is then governed by R, up to T . s (t), i (t),

r (t) will be denoted by sR (t), iR (t), rR (t) for t ∈]t0, T ] when it will be necessary to

stress their dependency to R. The laws of motion of the three variables s (t) , i (t) and

r (t) under a temporary lockdown policy are specified in the following

Proposition 2. Assume that the reproduction number is R0 = β0

γ
on t < t0 and R =β

γ

on t ∈ [t0; T ], with R < R0, and s (t0) > 1
R0

, i.e. t0 is before the natural peak of the

epidemic is reached. Assume also that s (T ) < 1
R

, i.e. T is after the lockdown-related

peak.
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(i) The dynamics of the pandemic until the end of the lockdown is given by the

following sets of equations:

For t < t0, the dynamics is given by eqs. (4)-(6).

For t ∈ [t0,T ],

r (t) = r (t0) +
1

R
ln s (t0) −

1

R
ln s (t) (11)

i (t) = i (t0) + s (t0) − s (t) +
1

R
ln s (t) −

1

R
ln s (t0) (12)

∫ s(t0)

s(t)

1

βs
[
i (t0) + s (t0) − s + 1

R
ln s − 1

R
ln s (t0)

]ds = t − t0. (13)

t Ô→ s (t) is a decreasing function, and t Ô→ r (t) is an increasing function.

(ii) If s (t0) ≥ 1
R

, then on t ≤ T the proportion of infected individuals i(t) is first

increasing, then decreasing. It is maximal when s (t) = 1
R

.

If s (t0) < 1
R

, then i(t) is maximal at t = t0 . It is decreasing on t ∈ [t0, T ].

(iii) For R′ > R, the curve (sR′ (t) , iR′ (t)) t≥t0 is strictly above (sR (t) , iR (t)) t≥t0

in the plane (s, i), except a unique common point at (s (t0) , i (t0)).

R Ô→ s(t) = sR (t) is a decreasing function of R.

Proof. See Appendix A.2.

(i) shows the dynamic impact of the lockdown policy. It obviously has no impact

over the period before t0. Given the number of susceptible s (t0), the dynamics of the

pandemic during the policy period is governed by a similar set of equations than in the

previous period but depending on R. Figure 2 gives a graphical representation of the

dynamics of the pandemic with a lockdown of reproduction number R, beginning at t0

and ending at T .

(ii) tackles the impact of the policy reproduction number R over the interval [t0, T ]

on the dynamics of i(t). It is either non-monotone or decreasing, depending on R.

If, given the initial number of susceptible in t0, the reproduction number R is not

too low, i(t) is first increasing, then decreasing. The explanation is similar as the

12



one given above for the dynamics driven by R0. If R is sufficiently high, higher than

1/s (t0), the contamination policy is too lenient to allow for an immediate decrease in

the number of infected. This one first continues to grow and reaches a maximum when

the susceptible proportion attains 1/R. It is important to note that this value does

not depend on the other parameters of the model, in particular depends neither on

t0 nor on T . If, on the other hand, the policy number R is low enough (lower than

1/s (t0)), i(t) is immediately decreasing. The social distancing is strong enough, R being

sufficient small, to overcome the existence of a relatively large pool of agents susceptible

of becoming infected and thus the easy spreading of the pandemic, so as to trigger an

immediate decrease in the number of infected. The lower R, the steeper the slope of the

increasing function relating the proportion of susceptible and the proportion of infected.

Such a strong lockdown policy can be dubbed a “(almost-)zero Covid policy”: the

policymaker wants to see the pandemic decreasing immediately and forcefully, despite

the immediate negative economic consequences of this policy with the hope of getting

rid of the pandemic and be able to resume a “normal” life with no lockdown and a low

number of deaths. Notice that the higher is t0, the lower is s (t0), the initial pool of

susceptible, making the spreading of the pandemic more difficult.

According to (iii), the number of susceptible in a given instant is a decreasing

function of R. This is consistent with intuition: the pool of susceptible agents decreases

more rapidly when the reproduction number is high as the virus spreads more rapidly:

the proportion of susceptible sR′ (t) related to R′ is consistently below sR (t) when

R′ > R. Consequently sR (T ) > sR′ (T ): a higher policy-chosen reproduction number

leads to a lower end-of-lockdown proportion of susceptible and a higher mortality record.

Furthermore there is no “catching-up” effect: a lenient lockdown policy (corresponding

to R′) cannot reach a combination (s, i) reached by a stricter policy (corresponding to

R). Since the curves (sR′ (T ) , iR′ (T ))t≥t0
and (sR (T ) , iR (T ))t≥t0

with R Ó= R′ have

a unique common point at (s (t0) , i (t0)), a given pair (s, i) can be attained by one

lockdown policy only and at one instant T only.

13



1100

Figure 2: Variations of i with respect to s in the plane (s, i) with decision at date t0

3.2 Shortsighted optimal lockdown policies

The previous section allowed us to understand how a lockdown policy aiming at reduc-

ing the reproduction number of the pandemic affects its dynamics and the proportion

of recovered individuals at any period. We now tackle the dilemma facing the poli-

cymaker: a lockdown policy mitigates the health consequences of the pandemic but

negatively affects the economy by restricting the social interactions between economic

agents. In other words, there is a trade-off between economic and health objectives

and a responsible government must solve this trade-off: how to optimally live with a

pandemic?

In order to investigate the issue of defining the optimal lockdown policy in the

presence of economic costs, we take for given the starting instant t0 and ending instant

T . Fixing the duration of a lockdown policy makes sense. The policymaker may

be constrained by political conditions such as the term of her mandate or subject to

economic pressures to end the policy before a certain date. She may be unable to act

after a certain period for constitutional reasons or she may be unable or unwilling to

anticipate the entire future of the pandemic. Above all, it corresponds to the very

plausible case when the policymaker is myopic and does not foresee beyond a given
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date. It is also true that the dynamics of a pandemic is such that the most of the

contamination happens in a very short period and not much is lost by fixing this

period. The marginal gains of increasing the policy period beyond a plausible duration

may be limited. Lastly addressing the optimal lockdown problem with two instruments

in a non-linear system such as the one governing a pandemic is quite complex and

likely to obscure the picture for little analytical gains. We will address this issue in

Section 5.1, once important results, easy to understand and empirically relevant, have

been obtained. In brief, it is reasonable to first reason with T given and focus on the

lockdown policy-determined reproduction number: it is the parameter which attracts

the most attention and is critical in the dynamics of the pandemic as proven above.

We will consider a shortsighted government which limits its time horizon to the end

of its lockdown policy T . In the following section we will consider a farsighted govern-

ment which considers the entire future and therefore the after-lockdown dynamics of the

pandemic, knowing that her lockdown policy affects this dynamics. This distinction is

relevant. When observing the behavior of governments during the Covid-19 pandemic,

one notices that policymakers regularly adopted a position of advocating before public

opinion that the decided lockdown policy put in place would be sufficient to return to

“normal life” and the economy would soon “pass the corner”. Public opinion too seems

to be oblivious of the long-term duration of a pandemic and such an attitude affects

the decision process of the policymaker.

3.2.1 Optimal lockdown policy with no hospital constraints.

We first consider the simple case where the pandemic develops without meeting any

other barrier than the social distancing measure adopted by the government. In partic-

ular, there is no health constraint such as the availability of properly equipped hospital

beds and there is no change in the therapy against it. The health system is structurally

able to “properly” deal with patients. Formally, we assume that the infection fatality

rate δ > 0 is constant, independent of circumstances and exogenously given.

The cumulated mortality rate in the population is mT = δ(r(T )+i(T )) = δ(1−s(T ))

where 1 − s(T ) denotes the fraction of the population which eventually recovers (or
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dies) from the pandemic after having being infected before T . Denoting by N the

total population, the final number of deaths due to contaminations before T is MT =

NmT . A lockdown policy consists in adopting a series of compulsory social distancing

measures so as to affect the reproduction number of the pandemic at any given period

of time. Assuming that the inverse link between social distancing and this number is

deterministic amounts to say that the government controls the reproduction number

R. Again we assume that a decision of lockdown or general social distancing is taken at

date t0, before the epidemic attains its maximum, i.e., s (t0) > 1
R0

and consists in setting

a single reproduction rate which applies to any period from t0 onwards: R (t) = R, ∀t ∈

[t0; T ]. As we abstract from any shock, including on the biological characteristics of the

virus, and any change in government, this assumption is reasonable. MT depends on

R, so we write MT = MT (R).

It is reasonable to assume that a benevolent policymaker is willing to limit the

amount of casualties of the pandemic by means of an active control of the reproduction

number. Given her shortsightedness, the policymaker takes into account the cumulated

mortality MT (R) due to contaminations occurring up to T . This mortality record is

affected by her choice of R. It is defined as

MT (R) ≡ δN (iR (T ) + rR (T )) = δN (1 − sR (T ))

A lockdown policy also incurs economic losses: social distancing affects both the supply

and the demand sides of the economy. On the one hand, some firms cannot open, some

workers cannot work as efficiently as in “normal” times, or are out of work. On the

whole the capacity to produce goods and services is impaired. On the other hand, some

goods are not demanded because the social distancing prevent their consumption. Con-

sumption and investment are depressed and the well-being of individuals is negatively

affected by the desire to control the pandemic by means of social distancing measures.

The goverment trades off the economic losses and the sanitary adverse consequences of
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the pandemic. Formally the welfare function of the decision-maker is assumed to be

VT (R) = (T − t0) y (R) − λMT (R) = (T − t0) y (R) − λδN (1 − sR (T )) (14)

where y (R) is an aggregate output index such as GDP per unit of time, depending

on the lockdown parameter R, and λ ∈ [0; ∞) is the weight put on mortality relative

to economic activity (as measured by y). It captures the “value of life” as assessed

by the policymaker relative to the economic target of boosting the economy11. The

function y (R), in addition to the reduction of activity directly due to the reduction in

mobility, may capture the change in the production process decided when the lockdown

is imposed. Here we abstract from distinguishing the various channels which shape the

relationship between y and R and directly reason on the reduced form given by y (R).

During the pandemic, the economic index y is an increasing concave function of R :

the more lenient the lockdown policy, the higher the aggregate output index. We assume

that the marginal gain of relaxing the lockdown policy (increasing the reproduction

number) is diminishing with this number and an immediate impact of R on y without

lagged effects. The lowest value of y is obtained when the social distancing is at its

maximum, that is, when R is equal to 0: economic losses are at their maximum. We

consider that y (0) is equal to 0 since then all activities, including productive ones, are

frozen12. Thus y (R) can be seen as the gain from relaxing the lockdown parameter

from 0 to R. When R increases above 0 (the social distancing constraint is relaxed), the

economy partially recovers and losses are reduced. We assume y is a strongly concave

function of R, and even that y′ (0) = +∞. When R equals R0, this corresponds to the

“hands-off” regime characterized by the natural reproduction number and there are no

economic losses.

In the sequel, when we want to get a more precise analytical understanding of the

trade-off between the (negative) economic and (positive) sanitary consequences of a

11This welfare function, displaying an economic argument and a ”loss of life” one, is similar to the
functions used by Acemoglu et al. (2021) and Rowthorn and Maciejowski (2020).

12We neglect household productions.
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lockdown decision, we shall use the following specification:

y (R) = ARα (15)

with A > 0 and 0 < α < 1.

We assume that VT (R) is a concave function of R (i.e. y is sufficiently concave rela-

tive to MT (R) to have VT (R) concave for R ≤ R0). The first term in (14) corresponds

to the cumulative economic effect of the decision R from t0 up to T . The second term

corresponds to the health cost of the pandemic, measured in the total of deaths due to

the pandemic up to date T . The optimal policy consists in choosing Ropt maximizing

the welfare function, that is

Ropt = arg max
R≤R0

VT (R) (16)

This optimal value generates a mortality record, an economic loss and thus a given level

of welfare. On the whole, the global configuration with optimal policy is characterized

by (Ropt, MT (Ropt) , y (Ropt) , VT (Ropt)). We could equivalently say that the decision-

maker wants to minimize the short-term loss due to the pandemic and the lockdown

LT (R) = (T − t0) (y (R0) − y (R)) + λMT (R) . (17)

We are able to offer the following

Proposition 3.

Setting λ0 = (T −t0)y′(R0)

−δN

(
∂sR(T )

∂R

)
R=R0

≥ 0 we have:

(i) Ropt is equal to R0 for λ ∈ [0; λ0] and is a decreasing function of λ for λ ∈ [λ0; ∞),

with lim
λ→∞

Ropt = 0.

(ii) For λ ≥ λ0, Ropt is a decreasing function of t0 if y′ (Ropt) > λδN
(

∂2sR(T )
∂R∂t0

)
R=Ropt

and an increasing function of t0 otherwise.

(iii) For λ ≥ λ0, Ropt is an increasing function of T if y′ (Ropt) > −λδN
(

∂2sR(T )
∂R∂T

)
R=Ropt

and a decreasing function of T otherwise.
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(iv) When (15) applies, for λ ≥ λ0, Ropt is always an increasing function of A and is

an increasing function of α on 1 + α ln(Ropt) > 0, i.e. on Ropt > e−1/α.

Proof. See Appendix A.3.

(i) states that the optimal lockdown policy consists in having a low reproduction

number when the ”value of life” weight in the welfare function is sufficiently high. When

the value of life weight is close to 0, the lockdown optimal policy is the laissez-faire

policy, corresponding to no imposition of social distancing measures. This comes from

the fact that the marginal loss of imposing a stricter policy is high while the marginal

welfare gain in terms of saved life is negligible, given that λ is low. When the weight is

sufficiently high, the optimal value of Ropt starts decreasing. The more the policymaker

cares about the mortality record of the pandemic relative to the adverse economic

consequences of social distancing (the higher λ), the stricter is the chosen lockdown.

When λ tends to infinity, Ropt tends to 0. When the value of life is arbitrarily large,

the best policy is to neglect the economic costs for the sake of saving lifes by imposing

an extremely severe lockdown. By a similar reasoning, notice that Ropt is a decreasing

function of the fatality rate13 δ.14

According to (ii), the optimal decision depends on the time of action t0. It is not

possible to state that it always increases or decreases monotonically with this date.

Delaying action (increasing t0) has two effects on the optimal value of the lockdown

parameter. First, if the time of action is delayed from t0 to t′
0 > t0, the impact of the

natural reproduction number R0 is increased and the number of susceptible at the time

of action is significantly reduced because during the interval (t′
0 − t0) the reproduction

number is R0 > Ropt, thus s (t′
0) < s (t0). Keeping constant the optimal reproduction

number associated to t0 is not adequate. It becomes economically too costly because

it amounts to lockdown the entire population to protect a reduced pool of susceptible.

This effect induces an increase in the optimal reproduction number. But a second effect

13The Ebola epidemics which is highly deadly leads to the most extreme lockdown measures.
14Rowthorn and Maciejovski (2020), based on simulation of the model, find that a 10-week lockdown

is optimal if the value of life for Covid-19 victims exceeds £10m.
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Figure 3: Variations of Ropt with respect to λ

is at work. If t′
0 > t0, the duration of lockdown is reduced: (T − t′

0) < (T − t0). The

lockdown policy is effective during a shorter period. This leads the policymaker to

tighten the reproduction number in order to compensate this shorter period of action

on the health (mortality) record. This latter effect counters the former one and this

explains the ambiguity result stated in (ii). Given these opposed effects, the impact of a

higher lag in action on the optimal decision is ambiguous. Postponing action may lead

either to an increase in the lockdown effort or a reduction. The second effect interacts

with the value of R since the function s (T ) = sR (T ) derived from (13) is highly non

linear. Thus the impact on mortality of a variation of Ropt coincidental on the increase

in t0 depends on the cross-derivative of the function sR(T ) evaluated at this time of

decision for this precise value of R.

(iii) gives similar results for the impact of T on the optimal choice of the policy

rate. It has an ambiguous impact because two opposite effects are at work. A lengthier

policy duration from T to T ′ > T is beneficial in terms of control of the pandemic and

generates a lower mortality ratio, assuming Ropt associated to T to be kept constant.

This pleads for a relaxation of the policy-chosen reproduction number for economic

reasons: mitigating the adverse negative impact of an increased duration by reducing
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the strictness of the lockdown, given the positive impact on mortality of the increased

duration. However increasing the term of a short-term lockdown policy means that

the policymaker lengthens its planning horizon and therefore takes into consideration

a higher number of infected agents ceteris paribus. This leads then to strengthen its

lockdown policy (reducing the reproduction number). Therefore there are two contra-

dictory effects on welfare of an increase in the reproduction number. Because of the

non-linearity of the function sR (T ), it is impossible for one effect to systematically

dominate the other one given that the cross-derivatives of this function matter. If they

are equal to (close to) 0, an extension of the policy period by increasing T or by decreas-

ing t0 leads to an increase of Ropt: the marginal economic effect is sufficiently strong so

as to allow a relaxing of the lockdown rate for economic gains.

(iv) assesses the sensitivity of the optimal policy rate to the parameters of the

economic function (15). A being a multiplier, its marginal effect is constant for R

given. If it increases, the marginal gain of a relaxing of the social distancing measures

increases and this leads to an increase in the optimal policy reproduction number. On

the contrary an increase in the parameter α has an impact on this marginal gain which

varies with the value of α. We face a non-linearity issue again.

3.2.2 Optimal lockdown policy with hospital capacity constraints.

We now introduce a hospital capacity constraint in the SIR model and study the optimal

lockdown policy in the presence of such a constraint. We model this constraint as

follows. There is a limit to the hospital capacity in intensive care, so that beyond a

certain number of patients the infection fatality rate increases sharply. This is because

when the intensive care units are full, the extra sick cannot be treated properly. The

proportion of infected beyond which mortality increases for this reason is denoted by i.

Once this limit is reached, additional infected patients cannot be treated in intensive

care units (ICU) and are subject to higher death hazard. The ICU saturation exemplifies

hospital capacity constraints. Therefore, due to these constraints and the induced dual

treatment of patients, the infection fatality rate is δ′ > 0 for the patients treated outside

intensive care units, that is for the proportion of patients
(
i − i

)
when i is higher than
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i, with δ′ > δ > 0. This affects the mortality record of the pandemic. It is assumed

here that i ∈ [i (t0) ; imax (R0)]. The decision is made on date t0 before the intensive

care units are full, but knowing that they will be saturated if no lockdown decision is

made. More precisely, modifying previous equations, we get

For R ≤ R, we have mT (R) = δ (iR (T ) + rR (T )) = δ (1 − sR (T )) (18)

For R > R, we have mT (R) = δ(1 − sR(T )) + (δ′ − δ) z (R) (19)

The excess mortality rate is the difference between the number of deaths when ICU are

saturated during a certain interval (and the mortality rate jumps to δ′) and the number

of deaths that would be generated by the pandemic in the absence of ICU saturation

over the interval (t0, T ). This rate, for a given policy reproduction ratio R, is detailled

in the following

Proposition 4. The excess mortality rate due to ICU saturation over (t0, T ) is equal

to (δ′ − δ) z
(
R, i

)
, where

z
(
R, i

)
= (rR (T2) − rR (T1)) − γi (T2 − T1)

for R > R, and z
(
R, i

)
= 0 for R ≤ R, with R such that imax

(
R

)
= i where

imax

(
R

)
= i (t0) + s (t0) − 1

R
−

ln(R)

R
− 1

R
ln (s (t0)). T1 is the first instant t such that

i(t) ≥ i and T2 is the last instant t such that i(t) ≥ i.

The excess mortality rate is an increasing function of R and a decreasing function

of i.

Proof. See Appendix A.4.

It is assumed that t0 < T1 < T2 < T , i.e. the lockdown is decided before the

saturation of ICU and the lockdown is lifted after the end of the saturation. ICU

saturation is reached at T1. As the proportion of infected continues to grow, the infection

fatality rate becomes δ′ for the patients treated outside ICU. After the pandemic peak

(when s (t) = 1/R), the number of deaths declines and reaches again the ICU limit

22



1100

Figure 4: Excess mortality between T1 and T2 if R > R.

at T2. Afterwards the infection fatality rate returns to δ. The excess mortality rate

depends positively on the difference between δ′ and δ and the duration of the period of

ICU saturation (T2 − T1). The higher the policy reproduction number, the higher the

excess mortality rate. If R is high, the pandemic spreads quickly after t0 and reaches

more rapidly the ICU limit i. Consequently the excess mortality rate is an increasing

function of R. On the other hand, for a given R, if the ICU constraint i increases,

it is reached later (T1 is increased) and the excess mortality period is shortened (T2 is

decreased).

The optimal policy R
opt
h with hospital capacity constraints is studied in the following

Proposition 5.

Let R
opt
h be the optimal value of R with hospital capacity constraints. Then setting

λ1 = (T −t0)y′(R0)

−δ′N

(
∂sR(T )

∂R

)
R=R0

+(δ′−δ)Nz′(R0)
≥ 0, and λ2 =

(T −t0)y′(R)

−δ′N

(
∂sR(T )

∂R

)
R=R

+(δ′−δ)Nz′

+(R)
≥ 0

and λ3 =
(T −t0)y′(R)

−δN

(
∂sR(T )

∂R

)
R=R

≥ 0, with 0 < λ1 < λ2 < λ3, we have:

(i) If λ ∈ [0; λ1], R
opt
h is equal to R0.

(ii) If λ ∈ [λ1; λ2], R
opt
h is a decreasing function of λ.

(iii) If λ ∈ [λ2; λ3], R
opt
h = R is a constant function of λ and a decreasing function
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of t0.

(iv) If λ ∈ [λ3; +∞), R
opt
h is a decreasing function of λ.

Proof. See Appendix A.5.

0

Figure 5: Variations of R
opt
h with respect to λ. The case of hospital capacity constraint.

Proposition 5 contrasts with Proposition 3. The impact of λ on the optimal choice of

the policy reproduction number is more complex due to the existence of ICU saturation.

The striking result of this proposition is that there is an intermediate range of “values

of life” weight λ for which the optimal lockdown policy consists in exactly saturating

the hospital ICU capacity. This comes from the discontinuity in the infection fatality

rate linked to the ICU capacity.

For λ higher than λ3, the standard trade-off applies and there is a decreasing rela-

tionship between R
opt
h and λ. λ3 is the “value of live” weight for which the ICU capacity

is met but does not constrain the lockdown decision.

For λ lower than λ3, the ICU capacity binds and affects this decision. For these

values, the policymaker is confronted to the dilemma of avoiding or not the extra

mortality associated with δ′ when the health system is oversaturated and thus beyond

24



the ICU capacity. For λ lower than λ3 but higher than λ2, she adopts the reproduction

number R. Decreasing λ below λ3 would lead to an increase in the chosen reproduction

number R. But for λ higher than λ2, the implied extra-mortality would augment the

health argument in the welfare function and generate higher health costs than the

economic gains associated with such an increase in R. Thus it is preferable to keep

the chosen R at R. For values lower than λ2, the policymaker prefers trespassing the

ICU capacity and having some infected people dying at a rate δ′ so as not to incur the

economic costs associated with strictly meeting the ICU limit. This amounts to choose

an optimal reproduction number higher than R.

Obviously the welfare level reached at the end of the policy period is higher in the

absence of hospital contraints (because for each value of R, the welfare is higher without

hospital constraints). In the same logic, this welfare level is an increasing function of i.

4 Farsighted lockdown policies.

We now investigate the pandemic and its relation wich lockdown policy in a long-term

perspective. Compared to a short-term perspective, three differences can be introduced.

The first one is that the delayed consequences of a lockdown policy are taken into

account: Given the dynamic nature of the problem, anything happening in a given time

interval impacts on the subsequent evolution of the pandemic. Secondly, we may relax

the assumption made before that solely one lockdown with one reproduction number

is fixed by the policymaker. Lastly, it may happen that the post-policy reproduction

number differs from the initial one: it is equal to R′
0 instead of R0. In the sequel,

we focus on the first difference: the policymaker deciding in t0 takes into account the

delayed impact after the end-of-policy instant T of her lockdown policy. Said in other

words, she may be qualified as “far-sighted”. We maintain the assumption that the

policymaker chooses a unique reproduction number15 and we assume that the post-

policy reproduction number is the “natural” one: R′
0 = R0.

15We will relax this assumption in Section 4.3.
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4.1 Long-term dynamics of the pandemic with lockdown pol-

icy.

We characterize the impact of a lockdown policy with a constant R over the duration

period: R =β
γ

on t ∈ [t0; T ]. For t < t0, the dynamics is given by eqs. (4)-(6). For

t ∈ [t0,T ], it is given by eqs. (11)-(13). For t > T , it is given by the following equations

r (t) = r (T ) +
1

R0

ln s (T ) −
1

R0

ln s (t) (20)

i (t) = i (T ) + s (T ) − s (t) +
1

R0

ln s (t) −
1

R0

ln s (T ) (21)

∫ s(T )

s(t)

1

β0s
[
i (T ) + s (T ) − s + 1

R0
ln s − 1

R0
ln s (T )

]ds = t − T. (22)

s (t), i (t), r (t) will be denoted by sR,T (t), iR,T (t), rR,T (t) for t > T when it will be

necessary to stress their dependency to R and T . Eqs. (20)-(22) are similar to (11)-(13)

with the crucial difference that the notations r (T ), i (T ) and s (T ) are introduced16.

(20)-(22) depend on s (T ) and i (T ), that is on the outcome of the policy fixing R over

the interval t ∈ [t0, T ]. This proves the delayed consequences of a lockdown policy after

it has stopped. In the two following propositions, we investigate the dynamics of the

pandemic after T .

After the end of a lockdown policy, either the proportion of infected pursues its

decline (at a different pace) or it reverts to increasing again. The latter case refers to

a “rebound” which is a very common feature in actual pandemics. For example, in

many countries the Covid-19 pandemic was characterized by several rebounds, not all

due to the advent of variants of the original virus. Thus it is important to understand

under which circumstances such a reversal happens in the absence of a renewed source

of infection such as a new virus or a variant of the current one. This is answered in the

following

16They replace r(t0), i (t0) and s(t0) respectively, and R is replaced by R0.
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Proposition 6.

(i) If s (T ) > 1
R0

, there is a rebound of the epidemic after T and i(t) is maximal on

t ≥ T when s(t) = 1
R0

.

If s (T ) ≤ 1
R0

, there is no rebound of the epidemic after T and i(t) is maximal on

t ≥ T when t = T .

(ii) There exists a value R̃t0 such that

1. For R > R̃t0, there is no rebound after T if T is sufficiently high.

2. For R ≤ R̃t0, there is necessarily a rebound after T for any value of T .

Proof. See Appendix A.6.

Figure 6 illustrates the case of dynamics including a rebound, Figure 7 the case

without a rebound.

1100

Figure 6: Rebound

(i) focuses on the impact of s (T ) = sR (T ) and therefore implicitly of R. It proves

that if the susceptible proportion s(T ) at the end of the lockdown is above the “natural”

peak of the pandemic, there will be a rebound when the reproduction number switches

back to R0. The pair (R, T ) is such that the control over the pandemic is not sufficient
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Figure 7: No rebound

to pass this peak. The pool of people susceptible to be infected after the lockdown

is too large and the contamination process starts increasing again after T : a rebound

occurs. Notice that the post-T function between s (t) and i (t) shares the same property

as in the case without lockdown: its peak is at 1
R0

. Therefore if s (T ) is higher than

1
R0

, it implies that the number of infected people increases after T when the susceptible

proportion pursues its decline. It is solely if s (T ) is smaller than 1
R0

that the two

numbers decline together: no rebound occurs.

(ii) focuses on the impact of R. If the reproduction number is higher than a critical

value denoted by R̃t0 , a rebound is avoided for T given and sufficiently high: both

parameters conjugate to avoid a rebound after the lockdown policy. However, if R

is too low, the control of the pandemic whatever the duration length is insufficient

and it rebounds. This is due to the fact that the end-of-policy susceptible proportion

(the pool of people available for infection) is high enough so as to let the natural

reproduction number have a huge impact on the number of infected and lead to a

rebound. This counter-intuitive result casts doubt on a policy whose severity is meant

to control efficiently the pandemic. This is true in the short-term but eventually it

will undo itself. This is particularly true to a “zero-Covid policy” which cannot last
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for ever given its economic costs. Sooner or later, an extremely severe lockdown policy

(implying a very low reproduction number) will stop before the complete eradication of

the virus (which can only happen at the end-of-time, that is, when t is arbitrarily large).

At the end of the severe lockdown period, the pool of susceptible will be close to s(t0),

and the dynamics of the pandemic governed by the natural reproduction number R0

and given by Proposition 1.17 On the whole, society suffers from a large economic cost

due to the severity of the lockdown policy without much impact on long-term mortality.

This is unknown (or neglected) by the short-sighted policymaker who solely looks at the

outcome at the end-of-policy instant T but this unpleasant conclusion appears clearly

when a long-term perspective is adopted.

Turning to the eventual impact of a lockdown policy on the end-of-pandemic sus-

ceptible proportion we offer the following

Proposition 7.

(i) At the end of the pandemic, we have (s, i, r) = (s∞ (R, T ) , 0, r∞ (R, T )), with

r∞ (R, T ) = 1 − s∞ (R, T ) and s∞ (R, T ) given by

R0 =
ln (s (T )) − ln (s∞ (R, T ))

i (T ) + s (T ) − s∞ (R, T )
, 0 < s∞ (R, T ) < 1. (23)

We have s∞ (R, T ) < 1
R0

, and s∞ (R, T ) is an increasing function of T and a decreasing

function of R0.

(ii) The end-of-pandemic susceptible proportion s∞ (R, T ) is always higher than

s∞ (R0). If T is sufficiently large, s∞ (R, T ) is a non-monotonic function of R, it is

increasing on R < R̃t0, and decreasing on R > R̃t0.

Proof. See Appendix A.7.

(i) makes clear that a lockdown policy always has an impact on herd immunity, that

is, the end-of-pandemic susceptible proportion. It suffices to compare (23) with (7): in

17The case of Australia which pursued a zero-Covid strategy against Covid-19 is exemplary. Its
prime minister Scott Morrison has declared on August 23rd 2021: “This is not a sustainable way to live
in this country”. See https://www.economist.com/asia/2021/08/28/australia-is-ending-its-zero-covid-
strategy?utm campaign=coronavirus-special-edition&utm medium=newsletter&utm source=salesforce-
marketing-cloud&utm term=2021-08-28&utm content=article-link-1&etear=nl special 1
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the former equation i (T ) = iR(T ) and s (T ) = sR(T ) which depend on the policy

stance (R, T ) now appear. The longer lasts the lockdown policy, the better it is in

terms of herd immunity, which is consistent with intuition. This is due to the fact that

both i (T ) and s (T ) decline with T , when T is large enough. It is logically a decreasing

function of R0 as this number governs the post-policy dynamics: a higher reproduction

number applying after T leads to a worsening of the pandemic in the post-lockdown

period and eventually a higher fatality record.

(ii) proves that any lockdown policy, however light (a high R) and/or short (a small

T ), leads to an improvement in the eventual mortality record due to the pandemic.

There is never a perverse long-term effect of an active policy. Yet it does not mean that

the terminal susceptible proportion is a monotone function of R. Actually this is due

to the possible presence of rebounds. As we have seen above, a tight lockdown policy

(R low) may lead to a large rebound whereas a not so tight policy leads to a small

rebound. The ending of the large rebound may thus be at the left of the ending of the

small rebound. Actually the relationship of s∞ (R, T ) is a non-monotone function of

R peaking at R̃t0 if T is large. In the absence of rebound (R > R̃t0), the relationship

is decreasing: a stricter lockdown policy improves the terminal susceptible proportion.

With rebound (R < R̃t0), the relationship is increasing: a stricter lockdown generates

a higher rebound.

Notice that these two propositions can easily be adapted for the case R′
0 Ó= R0.

4.2 Farsighted optimal lockdown policy without hospital con-

straints.

Given the delayed consequences of a policy stance (R, T ), a far-sighted policymaker

(adopting a long-term perspective on the pandemic) takes them into account. The

total economic cost of a lockdown policy (R, T ) is equal to (T − t0) (y (R0) − y (R)) .

This impact is subject to two opposite forces: a longer duration increases economic

losses whereas a higher reproduction number R decreases them. After T , since the

reproduction number returns to R0 and no lagged economic effect of a policy fixed
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lockdown is assumed, there is no economic loss due to lockdowns. On the contrary,

the health impact of the pandemic still goes on, based on s (T ) and R0, as shown in

(20)-(22).

Extending (17), the decision-maker’s objective is now to minimize losses over the

entire future (for T given):

L∞ (R) = (T − t0) (y (R0) − y (R)) + λM∞ (R) (24)

with M∞ (R) = Nδr∞ (R) = Nδ (1 − s∞ (R, T )). The properties of the optimal deci-

sion of a farsighted policymaker are given in

Proposition 8.

Let Ropt
∞ be the value of R minimizing the long-term loss L∞ (R) on 0 ≤ R ≤ R0 (for

T given). Then setting λ′
0 = (T −t0)y′(R0)

−δNs′
∞(R0)

≥ 0 we have:

(i) Ropt
∞ is equal to R0 for λ ∈ [0; λ′

0] and Ropt
∞ is a decreasing function of λ for

λ ∈ [λ′
0; ∞). Moreover Ropt

∞ ≥ R̃t0 if T is sufficiently high.

(ii) When (15) applies, for λ ≥ λ′
0, Ropt

∞ is always an increasing function of A and

an increasing function of α on 1 + α ln (Ropt
∞ ) > 0, i.e. on Ropt

∞ > e−1/α.

(iii) For T and λ high enough, Ropt
∞ ≥ R̃t0 > Ropt.

Proof. See Appendix A.8.

(i) and (ii) generalize the first and fourth points in proposition 3 and are similarly

explained. The impact of t0 and T on Ropt
∞ are similar to the ones obtained in proposition

318 and are not repeated here. Yet there is a crucial difference about the impact of

the value of life parameter λ. Assuming T sufficiently high, the long-term optimal

reproduction number is above a positive value R̃t0 for any value of λ and thus does

not tend to 0 when λ tends to infinity, unlike the short-term optimal number (See

Proposition 3). This results from the desire of the farsighted policymaker to avoid a

rebound after T , an event which is not anticipated by a shortsighted policymaker. A

rebound leads to an increase in mortality and a lower herd immunity level. Avoiding

18with s∞ replacing s(T )
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a rebound makes sense especially when the life argument in the loss function is given

a higher weight. According to Proposition 6 (ii), if T is sufficiently high, then there

is a rebound if R ≤ R̃t0 , and there is no rebound if R > R̃t0 . This implies that the

far-sighted policymaker will choose a reproduction number Ropt
∞ higher than R̃t0 . In

other words, an optimal lockdown policy is such that it rules out rebounds.

(iii) directly derives from Proposition 6. The comparison between Ropt and Ropt
∞

leads to a counter-intuitive result: A far-sighted policymaker may adopt a more lenient

lockdown policy than a short-sighted one. This is due to the presence of rebounds.

For λ high, for a given T (sufficiently large), a short-term perspective leads to a low

reproduction number such that there is a rebound (sRopt (T ) > 1/R0) whereas Ropt
∞

generates no rebound (s
R

opt
∞

(T ) < 1/R0). This implies that Ropt
∞ > Ropt. If the far-

sighted policymaker adopts a relatively lenient lockdown policy such that s
R

opt
∞

(T ) <

1/R0, it suffers from lower economic losses during the policy period and does not witness

a rebound. She may reach a higher end-of-time mortality rate s∞ (Ropt
∞ ) than the short-

sighted policymaker: s∞ (Ropt
∞ ) > s∞ (Ropt). On the whole, despite the more lenient

long-term choice compared to the short-term choice, economic costs and the mortality

record are lower. Again, this is in line with the result that a too strict lockdown policy

may be harmful in the long-term.

4.3 Farsighted optimal lockdown policy with hospital capacity

constraints.

We now introduce hospital capacity constraints as in section 3.2.2. In particular we

make the same assumptions. But we relax the assumption (which defined the short-

sighted perspective) that there is a unique lockdown, with a unique policy-chosen re-

production number and we may allow the policymaker to choose instead a sequence of

lockdowns, with different reproduction numbers. We assume that δ′ and λ are so high

that the policymaker never wants to trespass the ICU limit i. Either the jump in the

fatality rate (from δ to δ′) is very large or the political cost of a jump in mortality is

such that the relative value of life is high. During the Covid-19 pandemic, clearly many
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Figure 8: Variations of Ropt
∞ with respect to λ.

policymakers designed their policy with this objective in mind. The issue is how to

reach it. We answer this question in the following

Proposition 9.

Assume that at each date t with i(t) = i(t0) a new lockdown begins such that during this

lockdown max i = i. Then

If i is sufficiently high, one lockdown is sufficient to achieve herd immunity.

If i is sufficiently low, several successive lockdowns are necessary to achieve herd

immunity. We obtain a sequence of lockdowns R1, R2, ..., Rn such that R1 < R2 <

... < Rn, i.e. they are less and less severe.

Proof. See Appendix A.9.

Clearly if i is sufficiently high, a unique policy is sufficient. Suppose that it is

arbitrarily high, it is then never binding for any value of the reproduction number,

including the natural number. By continuity, there is a unique policy pair when it is

lower but close to the value of i where the hospital capacity constraint binds for a given

reproduction number. If i is low enough, the optimal rate chosen in the absence of ICU
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Figure 9: Lockdowns consistent with ICU.

saturation cannot be implemented as it would generate excess mortality. Therefore it

is necessary to reduce the policy reproduction number and choose in t0 a lower value

R1 such that i = i when s(t) = 1/R1. Given the stronger social distancing, once the

contamination peak is passed, the infection ratio decreases and the level i (t0) is met

in t1. If this lockdown is stopped (at t1 or after t1), there will be a rebound since herd

immunity is not achieved. Thus it is necessary to adopt a new lockdown to avoid ICU

saturation. But given that s (t1) is lower than s (t0), to reach a peak corresponding

to i during this new lockdown necessitates a higher reproduction number. The second

lockdown is less severe than the first one. Choosing a reproduction number R2 higher

than R1 will allow to get closer to herd immunity. Repeating the argument until the last

chosen reproduction number Rn generates the series of inequalities given in Proposition

9. This is consistent with the evidence that the successive lockdowns imposed during

the Covid-19 pandemic were of decreasing severity in advanced countries at least.
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5 Extensions.

Choosing a lockdown policy consists in choosing a value R ∈ (0, R0) and a value T ∈

]t0, ∞[. Up to now, we considered the policy duration T − t0 as given. It is interesting

to relax this assumption as interrogations about the duration of lockdowns were rife

during the Covid-19 pandemic. Lastly, introducing the case of a gradual vaccination

policy starting at a given date (T for simplicity), we investigate the consequences of

the rate of vaccination over the dynamics of the pandemic.

5.1 On policy duration

To shed some light on the role of policy duration, we consider the following problem.

Supposing the policymaker wishes to attain collective immunity consistent with a given

mortality M∞, i.e. equivalently with a certain final susceptible proportion s∞ = 1
R0

−ε,

which pair (R, T ) does she choose? By considering an objective in terms of reaching

a given collective immunity ratio we do not oppose here the health objective to the

economic one. Instead we focus on a possible trade-off between the duration of a

lockdown policy and its stringency. It may be argued that the collective immunity

level should be reached in the minimal time through a “tough” lockdown policy, given

the impatience of the people to get rid of the pandemic as soon as possible, rather

than applying a more lenient lockdown policy (a higher R) on a longer period. Is it

true? Is the shortest duration policy optimal? We answer this problem in the following

proposition. We denote by (Cε) the curve in the plane (s, i) representing the end of

lockdowns (sR(T ), iR(T )) which lead after release of lockdown to s∞ (R, T ) = 1
R0

− ε.

Proposition 10. Let ε ∈
(
0; 1

R0

)
be given.

(i) There exist an infinity of couples (R, T ) such that s∞ (R, T ) = 1
R0

− ε. More

precisely, there exist R1 and R2, R2 > R1 and a function Tε such that

s∞ (R, T ) =
1

R0

− ε ⇔ R ∈ (R1, R2) and T = Tε (R) .

Moreover, limR→R1+ Tε (R) = limR→R2− Tε (R) = +∞.
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(ii) We denote by
(
R̂ε, T̂ε

)
the policy pair which generates the minimal economic

cost and by
(
R

◦

ε, T
◦

ε

)
the policy which allows to reach s∞ = 1

R0
−ε in the minimal time.

Then R̂ε > R
◦

ε and T̂ε > T
◦

ε .

Proof. See Appendix A.10.
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Figure 10: Minimal economic cost to reach s∞ = 1
R0

− ε

(i) states that the objective can be attained by an infinite number of combinations of

duration and reproduction number (but not all reproduction numbers R are admissible).

This is due to the adverse consequences of lengthening the policy interval (increasing T )

and lightening the lockdown intensity (increasing R). These different lockdown policies

cannot be determined according to health considerations only, since they do not have

the same economic impact. This raises the question of which policy is best from an

economic point of view. (ii) shows that the shortest lockdown policy consistent with

a health objective generates a higher economic cost than is necessary as it is linked

to a relatively severe lockdown policy, i.e. a small reproduction number. Despite the

fact that this one does not last long it harms too much economic activity. The cost-

minimizing policy implies a higher reproduction number imposed over a longer duration:
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patience is rewarding. The conclusion is that living with Covid-19 consists in balancing

policy duration and severity of a lockdown policy.

Figure 10 illustrates this proposition. The two dotted curves represent the curves

associated with R1 and R2. The lower curve reaching 1
R0

− ε represents (Cε). Any

trajectory corresponding to a lockdown policy with s∞ (R, T ) = 1
R0

− ε must terminate

on (Cε) at the end of the lockdown. Afterwards, the pandemic is governed by R0 and

follows (Cε). The dashed curve corresponds to the time-minimizing trajectory and the

continuous curve to the cost minimizing one. Since it is above the dashed curve, it

corresponds to a higher reproduction number (from Proposition 2(iii)). It reaches the

same mortality record, but it lasts longer.

Proposition 10 tells us that indeed there is an optimal policy stance to reach a given

collective immunity level. We can use this result to prove the following

Proposition 11. There is an optimal policy stance (R∗, T ∗) such that L∞ (R, T ) is

minimized.

Proof. See Appendix A.11.

Proposition 11 claims that the policymaker, acting at t0, is able to play on both

parameters of the policy stance so as to minimize the long-term consequences of the

pandemic. Characterizing more precisely this optimal pair is mathematically overly

complex and unlikely to convey much information. Addressing the optimal lockdown

problem with two instruments in a non-linear system such as the SIR model, while not

impossible, is quite complex and likely to obscure the picture for very little analytical

gains. It is reasonable to reason with T given and focus on the lockdown policy rate

which attracts the most attention and is critical in the dynamics of the pandemic as

proven above.

5.2 Vaccination.

We now turn to the issue of vaccination which has proven crucial to stem the dynamics

of the Covid-19 pandemic. We assume that vaccination begins at date T , i.e. just at

the end of the lockdown period. We denote by v (t) the proportion of vaccinated people
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at date t, with t ≥ T . We assume moreover that the rate of vaccination is constant, i.e.

there exists ρ > 0 such that dv
dt

= ρs (t). The dynamics for t ≥ T becomes

ds

dt
= −β0i (t) s (t) − ρs(t) (25)

dv

dt
= ρs (t) (26)

di

dt
= β0i (t) s (t) − γi (t) (27)

dr

dt
= γi (t) (28)

with s (t) + v (t) + i (t) + r (t) = 1, for all t ≥ T . We denote by Iρ (s) the proportion of

infected people when the proportion of susceptible is s and the rate of vaccination is ρ.

The impact of this vaccination policy is given in the following

Proposition 12. With a constant rate of vaccination ρ, the dynamics of i (t) with

respect to s (t) is given for t ≥ T by:

Hρ (s (t) , i (t)) = Hρ (s (T ) , i (T ))

where Hρ is defined by Hρ (s, i) = i + s + ρ
β0

ln (i) − 1
R0

ln (s).

If s (T ) > 1
R0

, there is a rebound after T , even with vaccination. The higher the rate

of vaccination ρ, the lower the rebound.

If t → +∞, then (s (t) , v (t) , i (t) , r (t)) tends to (s∞, v∞, i∞, r∞) = (0, v∞, 0, r∞).

The proportion of susceptible vanishes when t → +∞.

The final proportion of vaccinated people is v∞ given by

v∞ =
∫ s(T )

0

ds

1 + β0

ρ
Iρ (s)

where the function Iρ is defined by: i = Iρ (s) ⇔ H (s, i) = H (s (T ) , i (T )). The

end-of-time number of deaths M∞ = δNr∞ = δN (1 − v∞) is decreasing in the rate of

vaccination ρ.

Proof. See Appendix A.12.
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Figure 11: The impact of vaccination

The existence of a rebound depends on the final number of susceptible at the end-

of-policy instant T therefore before the vaccination policy starts. However its severity

depends on the rate of vaccination ρ. A higher rate limits the extent of the rebound

because it depresses more the pool of susceptible after T . Since the vaccination process

extends to the end-of-time, agents get vaccinated as long as the pool of susceptible is

not null and tends to exhaust this pool. Thus the end-of-time proportion of susceptible

tends to zero (see Figure 1119). Given that the number of vaccinated is ultimately

increasing in the vaccination rate, the end-of-time number of recovered (and thus the

number of deaths) is decreasing in this rate. A vaccination policy is fruitful, insofar as

the vaccine is efficient.

6 Conclusion.

This paper offers a theoretical analysis of the optimal decision in social distancing

taken by a policymaker confronted with a pandemic and facing a dilemma between

reducing the economic costs of lockdown and minimizing the mortality rate through

social distancing.

19The thick line corresponds to the post T dynamics of the vaccination.
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Using the workhorse model of epidemiology, namely a deterministic version of the

SIR model, we first look at the dynamics of the pandemic in the absence of any policy

action aiming at controlling the pandemic. We obtain a non-monotone relation between

the infected proportion and the susceptible proportion which peaks at a susceptible

proportion equal to the inverse of the reproduction number. This very simple expression

plays a critical role in the understanding of the pandemic dynamics when a lockdown

policy is put in place.

A lockdown policy is defined by three parameters: the instant of decision, the extent

of lockdown which affects the reproduction number and the duration of the lockdown.

We show that the dynamics of the pandemic is strongly affected by these variables.

Such a policy is designed so as to trade off the health benefits and the economic losses

due to a longer and a more stringent lockdown policy. Solving this trade-off amounts

to search for the optimal lockdown policy to be followed. This issue is the core of

this paper. We distinguish between a short-term perspective, when the policymaker is

short-sighted and limits her time horizon to the ending of the lockdown, and a long-term

perspective, when she is far-sighted and takes into account the posterior consequences

on the dynamics of the pandemic after this ending, up to infinity. We focus the analysis

on the reproduction number (inversely related to the extent of social distancing) which

is the policy instrument.

We show that there can be rebounds in the pandemic happening either when the pol-

icy duration is too short and/or when the lockdown policy reproduction number is too

low. A far-sighted policy takes into account these rebounds. The existence of rebounds

explains why a “zero-Covid” policy, however its duration, is unsustainable as it leads

eventually to huge rebounds with a very low terminal susceptible proportion as well

as huge economic costs. Yet, even with rebounds, any policy stance leads to a higher

collective immunity relative to a non-interventionist position and a weak improvement.

The policymaker may choose not to intervene by means of imposing some social dis-

tancing measure if the relative value of life is sufficiently low. When the parameter

capturing this relative value in the welfare function characterizing the policymaker is

above a certain threshold, the magnitude of the lockdown depends positively on this
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parameter: the chosen reproduction number is a decreasing function of this parameter.

This is true in both perspectives. The optimal long-term optimal reproduction number

taking into account the possibility of rebounds mitigates the strictness of lockdown

in order to avoid these rebounds or limit their amplitude. If the duration period is

sufficiently long, the optimal reproduction number is large enough so as to avoid re-

bounds. It may therefore be that the long-term optimal lockdown is more lenient than

the short-term optimal one, for a given lockdown duration.

In the same vein, it is not true that the shortest duration combined with a strict

lockdown measure consistent with reaching a given collective immunity target is op-

timal. A more lenient policy (a chosen higher reproduction number) enforced over a

longer duration period dominates such a policy as it rules out rebounds and thus lowers

the final mortality record and generates a lower total economic cost. Living with the

pandemic may mean enduring a milder lockdown over a longer period. There exists an

optimal pair of reproduction number and duration.

Taking into account hospital constraints turns out to be critical. Both in a short-

term and a long-term perspectives, this considerably affects the optimal policy stance

and its sensitivity to structural parameters such as the relative value of life. When

it is supposed that the costs of trespassing these constraints are arbitrarily large, the

optimal policy consists in generating a series of lockdown decisions which are less and

less stringent. Addressing the vaccination process, we prove that a constant rate of

vaccination beginning at the end of the lockdown cannot prevent a rebound but can limit

its amplitude. In the very long-term, there are no more susceptible people: everyone

is vaccinated or ”removed” (i.e. recovered or dead). Contrarily to what is observed

in a standard policy decision setting, the optimal solution depends on the complex

interplay between the economic and sanitary efficiency of a lockdown decision when

plausible constraints such as hospital capacity constraints and availability of a vaccine

are taken into account. This comes from the non-linear characteristics of the dynamics

of a pandemic as formalized by the SIR model.

The policy instrument in this model is referred to as the “lockdown instrument”.

Actually there exist many different instruments to tackle an expanding pandemic, in
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particular tracking, testing, appropriate individual equipements as masks and finally,

isolation. A mix of measures is likely to be what defines an adequate policy toward the

control of a pandemic. Any such measures are likely to have opposite health (positive)

and economic (negative, if only because of direct costs) impacts and therefore meet our

assumptions. Our policy instrument can thus be understood as a “composite” public

health instrument (a combination of measures) for tackling a pandemic.

The model assumes that there is a single policy instrument and the population

is homogeneous. It does not take into account the reaction of the population to the

lockdown decision and assumes a simple framing of economic and sanitary losses. As

it is, it proves an adequate basis for understanding the basic policy issues related to

the control of a pandemic, in particular in relation with economic consequences of a

lockdown policy when stylized laws of the dissemination of a pandemic are explicitly

taken into accunt. The model can be complexified so as to take into consideration

different assumptions. Relaxing these assumptions as well as analyzing lockdown policy

in variants of the SIR model which have been offered in the epidemiology literature is

left for further research.20

Finally, the model rules out uncertainty. Epidemiologists have developed a stochas-

tic approach to capture the randomness in the matching process between infected and

susceptible people. This is when the number of infected is very low and the law of large

numbers does not apply (see Britton (2010)). We do not claim that the results obtained

here (in particular the self-defeating nature of a zero-Covid policy) are transferable to

a stochastic approach. The strength of a deterministic approach is to obtain analytical

results without recouring to simulation techniques which clarify the impact of a lock-

down policy. In particular it appears that these results are useful to understand the

pitfalls of a lockdown policy, in particular the adverse consequence of a short-sighted

lockdown policy.

20On the need to combine epidemiology and economics, Murray (2020, p.106) writes: “As an epi-
demiologist, I ask economists interested in Covid-19 to build on their expertise and ours. Indeed, the
efforts of economists in tackling the economic sequelae of this pandemic are vitally needed, as are the
development of tools for tracking, predicting, and preventing future pandemics based on understanding
the flow of people, goods, and other economic activity around the globe.”
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A Appendix

A.1 Proof of Proposition 1

We know that:

dr
ds

= γi
−β0is

= − 1
R0s

, i.e., ds
R0s

= −dr

∀t ∈ R,
∫ s(t)

s(−∞)
ds

R0s
= −

∫ r(t)
r(−∞) dr, thus 1

R0
(ln s(t) − ln s(−∞)) = − (r(t) − r(−∞))

i.e., ∀t ∈ R, 1
R0

ln s(t) + r(t) = 1
R0

ln s(−∞) + r(−∞).

The boundary conditions s(−∞) = 1, r(−∞) = 0 give 1
R0

ln s(t) + r(t) = 0, ∀t ∈ R,

which gives (4).

Similarly, we know that

di
ds

= β0is−γi
−β0is

= −1 + 1
R0s

, i.e., di =
(
−1 + 1

R0s

)
ds

∀t ∈ R,
∫ i(t)

i(−∞) di =
∫ s(t)

s(−∞)

(
−1 + 1

R0s

)
ds, thus i(t) − i(−∞) = s(−∞) − s(t) +

1
R0

(ln s(t) − ln s(−∞)), i.e., i(t) + s(t) − 1
R0

ln s(t) = i(−∞) + s(−∞) − 1
R0

ln s(−∞).

The boundary conditions s(−∞) = 1, i(−∞) = 0 give i(t) + s(t) − 1
R0

ln s(t) = 1,

∀t ∈ R, which gives (5).

ds
dt

= −β0i(t)s(t) = −β0s(t)
[
1 − s(t) + 1

R0
ln s(t)

]

thus ds

−β0s

[
1−s+ 1

R0
ln s

] = dt

i.e., t =
∫ s(t)

s(0)
ds

−β0s

[
1−s+ 1

R0
ln s

] =
∫ s(0)

s(t)
ds

β0s

[
1−s+ 1

R0
ln s

] .

t Ô→ s(t) is a decreasing function since ds
dt

= −β0is < 0

t Ô→ r(t) is an increasing function since dr
dt

= γi > 0, so we have proven (i) of

Proposition 1.

From i(t) = 1 − s(t) + 1
R0

ln(s(t)), we get:

i′(t) = −s′(t) + s′(t)
s(t)R0

= −s′(t)
[
1 − 1

s(t)R0

]
which is of the sign of 1 − 1

s(t)R0
since

s′(t) < 0. Thus i(t) is maximal when s(t) = 1
R0

, which gives

imax = 1 − 1
R0

+ 1
R0

ln( 1
R0

) = 1 − 1
R0

[1 + ln(R0)], which proves (ii).

At the end of the epidemic, i = 0 thus 1 − s + 1
R0

ln s = 0, i.e., ln(s)
R0

= s − 1 then

R0 = ln(s)
s−1

. �
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A.2 Proof of Proposition 2

Proposition 1 gives the dynamics for t < t0.

For t ∈ [t0, T ],

dr
ds

= γi
−βis

= − 1
Rs

, i.e., ds
Rs

= −dr

∀t ∈ [t0, T ],
∫ s(t)

s(t0)
ds
Rs

= −
∫ r(t)

r(t0) dr, i.e., 1
R

(ln s(t) − ln s(t0)) = r(t0) − r(t)

di
ds

= βis−γi
−βis

= −1 + 1
Rs

, i.e., di =
(
−1 + 1

Rs

)
ds

∀t ∈ [t0, T ],
∫ i(t)

i(t0) di =
∫ s(t)

s(t0)

(
−1 + 1

Rs

)
ds

thus i(t) − i(t0) = − (s(t) − s(t0)) + 1
R

(ln(s(t) − ln(s(t0))).

ds
dt

= −βi(t)s(t) = −βs(t)
[
i(t0) − (s(t) − s(t0)) + 1

R
(ln s(t) − ln s(t0))

]

thus ds

−βs[i(t0)−(s−s(t0))+ 1
R

(ln s−ln s(t0))]
= dt

i.e.,
∫ s(t)

s(t0)
ds

−βs[i(t0)−(s−s(t0))+ 1
R

(ln s−ln s(t0))]
= t − t0

To sum up, for t ∈ [t0, T ]:

r(t) = r(t0) + 1
R

ln s(t0) − 1
R

ln s(t)

i(t) = −s(t) + 1
R

ln s(t) + i(t0) + s(t0) − 1
R

ln s(t0)
∫ s(t0)

s(t)
ds

βs[i(t0)+s(t0)− 1
R

ln s(t0)−s+ 1
R

ln s]
= t − t0

which gives the second part of Proposition 2 (i).

It is assumed that s(t0) > 1
R0

, thus the maximum of i(t) for t ∈] − ∞; t0] is attained at

t0, thus maxt∈]−∞;T ] i(t) = maxt∈[t0,T ] i(t).

Moreover, on t ∈ [t0, T ], i′(t) = −s′(t) + s′(t)
Rs(t)

= −s′(t)
[
1 − 1

Rs(t)

]
with s′(t) < 0, thus

the maximum of i(t) for t ∈ [t0, T ] is attained at t such that s(t) = 1
R

if s(t0) ≥ 1
R

, and

is attained at t = t0 if s(t0) < 1
R

. This gives Proposition 2 (ii).

Now, we prove that if R′ > R, the curve (sR′ (t) , iR′ (t)) t≥t0 is strictly above (sR (t) , iR (t)) t≥t0

in the plane (s, i), except a unique common point at (s (t0) , i (t0)).

We need to study i as a function of s. Since

iR(t) = i(t0) + s(t0) − s(t) + 1
R

ln (s(t)/s(t0)) according to Eq. (12).
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We set:

IR(s) = i(t0) + s(t0) − s +
1

R
ln (s/s(t0)) . (29)

It is clear that s = sR (t) ⇒ IR(s) = iR(t). It means that in the plane (s, i), the curve

(sR (t) , iR (t)) t≥t0 is the curve (s, IR(s))s≤s(t0).

We need to prove that (s, IR′(s))s≤s(t0) is strictly above (s, IR(s))s≤s(t0) if R′ > R,

except at s = s(t0).

IR′(s)−IR(s) = [i(t0)+s(t0)−s+ 1
R′ ln (s/s(t0))]− [i(t0)+s(t0)−s+ 1

R
ln (s/s(t0))]

= 1
R′ ln (s/s(t0)) − 1

R
ln (s/s(t0)) = ( 1

R
− 1

R′ ) ln(s(t0)/s) > 0 if s < s(t0), since

1
R

> 1
R′ .

Now we prove that sR′ (t) < sR (t) if R′ > R.

According to Eq. (13), γ(t − t0) =
∫ s(t0)

sR(t)
ds

RsIR(s)
and γ(t − t0) =

∫ s(t0)
s

R′ (t)
ds

R′sI
R′ (s)

∀s, IR′(s) ≥ IR(s), thus ∀s, R′IR′(s) > RIR(s),

∀s, 1
R′I

R′ (s)
< 1

RIR(s)
with

∫ s(t0)
sR(t)

ds
RsIR(s)

=
∫ s(t0)

s
R′ (t)

ds
R′sI

R′ (s)

thus the interval [sR′ (t) , s(t0)] must be larger than [sR (t) , s(t0)], i.e. sR′ (t) < sR (t).

This gives Proposition 2 (iii). �

A.3 Proof of Proposition 3

VT is assumed to be concave, with VT (R) = (T −t0)y(R)−λNδ(1−sR(T )) and V ′
T (R) =

(T − t0)y
′(R) + λNδ ∂sR(T )

∂R
(where y′ > 0 and ∂sR(T )

∂R
< 0 according to Proposition 2

(iii)).

We can distinguish 3 cases:

- First corner solution: Ropt = 0 if V ′
T (0) ≤ 0. But V ′

T (0) ≤ 0 is not possible since

we have assumed that y′(0) = +∞. Thus V ′
T (0) > 0 in the sequel.

- Second corner solution: Ropt = R0 if V ′
T (R0) ≥ 0, i.e., if (T − t0)y

′(R0) ≥

−λδN
(

∂sR(T )
∂R

)
R=R0

, i.e. if λ ≤ λ0, setting λ0 = (T −t0)y′(R0)

−δN

(
∂sR(T )

∂R

)
R=R0

≥ 0.

- Interior solution: 0 < Ropt < R0 if V ′
T (R0) < 0 < V ′

T (0), which is true if λ > λ0.

Here Ropt satisfies V ′
T (Ropt) = 0.

In this last case, applying the implicit function theorem:

dRopt

dλ
= −

∂V ′

T
∂λ

∂V ′

T
∂R

= −
δN

∂sR(T )

∂R

VT ”(R)
< 0 since VT ” < 0 and ∂sR(T )

∂R
< 0. This gives Prop 3
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(i), except limλ→+∞ Ropt = 0 proven below.

dRopt

dt0
= −

∂V ′

T
∂t0
∂V ′

T
∂R

=
−y′(Ropt)+λδN ∂

∂t0

(
∂sR(T )

∂R
(Ropt)

)

−VT ”(R)
where −VT ” > 0. This gives Prop 3

(ii).

dRopt

dT
= −

∂V ′

T
∂T

∂V ′

T
∂R

=
y′(Ropt)+λδN ∂

∂T

(
∂sR(T )

∂R
(Ropt)

)

−VT ”(R)
. This gives Prop 3 (iii).

If y(R) = ARα, then y′ (R) = αARα−1, and on λ ≥ λ0:

dRopt

dA
=

∂V ′

T
∂A

−VT ”
= (T −t0)αRα−1

−VT ”(R)
> 0

dRopt

dα
=

∂V ′

T
∂α

−VT ”
=

(T −t0)A[Rα−1+α ln(R)Rα−1]
−VT ”(R)

which is positive if and only if 1+α ln(R) >

0.

Now let us prove that limλ→+∞ Ropt = 0.

According to Eq. (13), γ(T − t0) =
∫ s(t0)

sR(T )
ds

RsIR(s)
=

∫ s(t0)
s

R′ (T )
ds

R′sI
R′ (s)

if R < R′.

If R < R′, sR′ (T ) < sR (T ) and IR′(s) ≥ IR(s)
∫ sR(T )

s
R′ (T )

ds
R′sIR(s)

+
∫ s(t0)

sR(T )
ds

R′sIR(s)
=

∫ s(t0)
s

R′ (T )
ds

R′sIR(s)
≥

∫ s(t0)
s

R′ (T )
ds

R′sI
R′ (s)

= γ(T − t0)

thus
∫ sR(T )

s
R′ (T )

ds
R′sIR(s)

≥ γ(T − t0) −
∫ s(t0)

sR(T )
ds

R′sIR(s)
= γ(T − t0) − R

R′

∫ s(t0)
sR(T )

ds
RsIR(s)

= γ(T − t0) − R

R′ γ(T − t0)

i.e.

1
R′

∫ sR(T )
s

R′ (T )
ds

sIR(s)
≥ γ(T − t0)

[
1 − R

R′

]

∫ sR(T )
s

R′ (T )
ds

sIR(s)
≥ γ(T − t0)(R

′ − R)

1
(R′−R)

∫ sR(T )
s

R′ (T )
ds

sIR(s)
≥ γ(T − t0)

with R′ → R, we have

limR′→R+
1

(R′−R)

∫ sR(T )
s

R′ (T )
ds

sIR(s)
= 1

sR(T )IR(sR(T ))
× limR′→R+

sR(T )−s
R′ (T )

(R′−R)

= 1
sR(T )iR(T )

×
−∂sR(T )

∂R

thus
−∂sR (T )

∂R
≥ γ(T − t0)sR (T ) iR (T ) . (30)

Now we go back to the proof of limλ→+∞ Ropt = 0.

In the case of an interior solution V ′
T (Ropt) = 0, i.e.

(T − t0)y
′(Ropt) + λNδ ∂sR(T )

∂R
= 0

(T − t0)y
′(Ropt) = −λNδ ∂sR(T )

∂R
≥ λNδγ(T − t0)sR (T ) iR (T ) according to (30).
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y′(Ropt) ≥ λNδγsR (T ) iR (T )

Since T < +∞, there exists η > 0 such that:

sR (T ) iR (T ) ≥ η > 0 for all R (T given).

y′(Ropt) ≥ λNδγη

When λ → +∞, then y′(Ropt) → +∞, i.e. Ropt → 0. �

A.4 Proof of Proposition 4

dr
dt

= γi(t) thus without hospital contraints: m∞ = δr∞ = δ
∫ +∞

−∞ dr = δ
∫ +∞

−∞ γi(t)dt.

With hospital constraints, we get:

m∞ = δ
∫ +∞

−∞ γi(t)dt + (δ′ − δ)
∫

i(t)>i γ
(
i(t) − i

)
dt.

The surmortality due to hospital constraints is (δ′ − δ)z(R, i) where:

z(R, i) =
∫

i(t)>i γ
(
i(t) − i

)
dt =

∫
i(t)>i γi(t)dt −

∫
i(t)>i γidt.

[T1, T2] denoting the period during which i(t) ≥ i, with t0 < T1 < T2 < T by assumption,

we have:

z(R, i) =
∫ rT2

rT1
dr − γi

∫ T2
T1

dt = r(T2) − r(T1) − γi(T2 − T1).

- Let us show that z(R, i) is an increasing function of R.

i(T1) + s(T1) + r(T1) = i(T2) + s(T2) + r(T2) = 1 where i(T1) = i(T2) = i

thus z(R, i) = s(T1) − s(T2) − γi(T2 − T1).

1
i
z(R, i) = s(T1)−s(T2)

i
−

∫ s(T1)
s(T2)

ds
RsIR(s)

according to Eq. (13), and setting IR(s) =

i(t0) + s(t0) − s + 1
R

ln(s) − 1
R

ln(s(t0)) as in Eq. (29), we write

1
i
z(R, i) =

∫ s(T1)
s(T2)

[
1
i

− 1
RsIR(s)

]
ds. Here s(T1) = sR(T1) is an increasing function of

R, s(T2) = sR(T2) is a decreasing function of R, and
[

1
i

− 1
RsIR(s)

]
is an increasing

function of R. Thus z(R, i) is an increasing function of R, with z(R, i) = 0 since

T1 = T2 and s(T1) = s(T2) if R = R, and

z(R, i) > 0 if R > R.

- Let us show that z(R, i) is a decreasing function of i.

z(R, i) =
∫ s(T1)

s(T2)

[
1 − i

RsIR(s)

]
ds where

[
1 − i

RsIR(s)

]
is a decreasing function of i,

s(T1) is a decreasing function of i, s(T2) is an increasing function of i. Thus z(R, i) is

a decreasing function of i. �

47



A.5 Proof of Proposition 5

Let V ∗
T = max0≤R≤R0 VT (R) = max (V ∗

1 , V ∗
2 ), where:

V ∗
1 = max0≤R≤R VT (R) = max0≤R≤R [(T − t0)y(R) − λδN(1 − sR(T ))].

V ∗
2 = maxR≤R≤R0

VT (R)

= maxR≤R≤R0
[(T − t0)y(R) − λδN(1 − sR(T )) − λ(δ′ − δ)Nz(R)].

VT (R) is assumed to be concave on 0 ≤ R ≤ R0.

We denote by V ′
T −(R) the left-hand derivative of VT at R, and by V ′

T +(R) the right-hand

derivative of VT at R.

V ′
T −(R) = (T − t0)y

′(R) + λδN
(

∂sR(T )
∂R

)
R=R

V ′
T +(R) = (T − t0)y

′(R) + λδN
(

∂sR(T )
∂R

)
R=R

− λ(δ′ − δ)Nz′
+(R).

Since y′(0) = +∞ thus V ′
T (0) > 0, two cases are possible on 0 ≤ R ≤ R :

- If V ′
T −(R) ≥ 0 by concavity of VT , we have V ∗

1 = VT (R), where V ′
T −(R) ≥ 0 is

equivalent to λ ≤
(T −t0)y′(R)

−δN

(
∂sR(T )

∂R

)
R=R

:= λ3.

- If V ′
T −(R) < 0 then V ∗

1 = VT (R∗) where R∗ ∈ (0; R), and R∗ satisfies the first

order condition (T − t0)y
′(R) + λδN ∂sR(T )

∂R
= 0.

Note that V ′
T −(R) < 0 is equivalent to λ > λ3.

Three cases on R ≤ R ≤ R0 :

- If V ′
T +(R) ≤ 0 then V ∗

2 = VT (R), where V ′
T +(R) ≤ 0 is equivalent to λ ≥

(T −t0)y′(R)

−δN

(
∂sR(T )

∂R

)
R=R

+(δ′−δ)Nz′

+(R)
:= λ2.

- If V ′
T (R0) ≥ 0 then V ∗

2 = VT (R0).

But V ′
T (R0) ≥ 0 means that λ ≤

(T −t0)y′(R0)

−δN

(
∂sR(T )

∂R

)
R=R0

+(δ′−δ)Nz′(R0)
:= λ1.

- If V ′
T (R0) < 0 < V ′

T +(R) then V ∗
2 = VT (R∗∗) where R∗∗ ∈ (R; R0), and R∗∗

satisfies the first order condition (T − t0)y
′(R) + λδN ∂sR(T )

∂R
− λ(δ′ − δ)Nz′(R) = 0.

Note that V ′
T (R0) < 0 < V ′

T +(R) is equivalent to λ1 < λ < λ2.

Since VT is concave, we have V ′
T −

(
R

)
> V ′

T +(R) > V ′(R0), which implies that
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λ3 > λ2 > λ1 > 0.

Now we study V ∗
T .

1. If λ ≤ λ1, then V ∗
1 = VT (R) and V ∗

2 = VT (R0), thus V ∗
T = VT (R0). Thus here

R
opt
h = R0, which gives Prop 5(i).

2. If λ1 < λ < λ2 then V ∗
1 = VT (R), V ∗

2 = VT (R∗∗) and V ∗
T = VT (R∗∗), where

R∗∗ ∈ (R; R0), and R∗∗ satisfies the first order condition V ′
T (R) = (T − t0)y

′(R) +

λδN ∂sR(T )
∂R

− λ(δ′ − δ)Nz′(R) = 0.

Thus here R
opt
h = R∗∗, and applying the implicit function theorem, we get

dR
opt
h

dλ
= dR∗∗

dλ
= −

d
dλ

(
(T −t0)y′(R)+λδN

∂sR(T )

∂R
−λ(δ′−δ)Nz′(R)

)

V ′′

T
(R)

=
δN

∂sR(T )

∂R
−(δ′−δ)Nz′(R)

−VT ”(R)
< 0,

since V ′′
T < 0, ∂sR(T )

∂R
< 0 and z′ > 0, which gives Prop 5(ii).

3. If λ2 ≤ λ ≤ λ3 then V ∗
1 = VT (R), V ∗

2 = VT (R) and V ∗
T = VT (R). Thus here

R
opt
h = R which does not depend on λ.

imax(R) = i(t0) + s(t0) − 1
R

−
ln(R)

R
−

ln(s(t0))

R
with imax(R) = i

dR

dt0
= −

∂
∂t0

imax(R)

∂

∂R
imax(R)

= −

(
di

dt0
(t0)+ ds

dt0
(t0)− 1

Rs(t0)

ds
dt0

(t0)

)
(

1

R
2 −

(1−ln(R)

R
2 + 1

R
2 ln(s(t0))

) = −

(
β0i(t0)s(t0)−γi(t0)−β0i(t0)s(t0)+

β0i(t0)

R

)
(

ln(R)+ln(s(t0))

R
2

)

= −
i(t0)

(
β0
R

−γ

)
(

ln(Rs(t0))

R
2

) = −
γi(t0)

(
R0
R

−1

)
(

ln(Rs(t0))

R
2

) < 0, since R0 > R and s(t0) > 1
R

.

Thus R is a decreasing function of t0 , which gives Prop 5(iii).

4. If λ > λ3 then V ∗
1 = VT (R∗), V ∗

2 = VT (R) and V ∗
T = VT (R∗) where R∗ ∈ (0; R; ),

and R∗ satisfies the first order condition (T − t0)y
′(R) + λδN ∂sR(T )

∂R
= 0.

Thus here R
opt
h = R∗, and:

dR
opt
h

dλ
= dR∗

dλ
= −

d
dλ

(
(T −t0)y′(R∗)+λδN

(
∂sR(T )

∂R

)
R=R∗

)

V ′′

T
(R∗)

=
δN

(
∂sR

∂R
(T )

)
R=R∗

−VT ”(R∗)
< 0

since V ′′
T < 0 and ∂s

∂R
< 0. This gives Prop 5(iv). �

A.6 Proof of Proposition 6

(i) According to (21), for t ≥ T , we have

i(t) = i(T ) + s(T ) − s(t) + 1
R0

ln(s(t)) − 1
R0

ln(s(T ))

thus i′(t) = −s′(t) + s′(t)
R0s(t)

= −s′(t)
[
1 − 1

R0s(t)

]
, since s′(t) < 0, thus i′(t) is of the sign

of 1 − 1
R0s(t)

.
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There is a rebound after T if and only if i′(T ) > 0, i.e. if 1 > 1
R0s(T )

, which means that

there is a rebound after T if and only if s(T ) > 1
R0

.

If there is a rebound, i(t) is maximal on t ≥ T when i′(t) = 0, i.e. for s(t) = 1
R0

.

If there is no rebound, i(t) is a decreasing function on t ≥ T , thus i(t) is maximal on

t ≥ T when t = T .

(ii) There is a rebound after T ⇐⇒ s(T ) > 1
R0

.

We must study under what conditions on R and T do we have s(T ) > 1
R0

.

s(T ) is a decreasing function of T ; we set s̃∞ = limT →+∞ s(T ), where s̃∞ is the value

of s(t) such that i(t) = 0 in (12).

Thus i (t0) + s (t0) − s̃∞ + 1
R

ln (s̃∞) − 1
R

ln(s(t0)) = 0 and

R = ln(s(t0))−ln(s̃∞)

i(t0)+s(t0)−s̃∞

.

We claim that s̃∞ is a decreasing function of R.

Indeed, dR

ds̃∞

=
− 1

s̃∞

(i(t0)+s(t0)−s̃∞)+(ln(s(t0))−ln(s̃∞))

(i(t0)+s(t0)−s̃∞)
2 =

(
R− 1

s̃∞

)
(i(t0)+s(t0)−s̃∞)

(i(t0)+s(t0)−s̃∞)
2 < 0, since

s̃∞ ≤ s(T ) < 1
R

.

We have: s (T ) > 1
R0

for all T ⇐⇒ s̃∞ ≥ 1
R0

,

i.e.

s(T ) > 1
R0

for all T ⇐⇒ R ≤ R̃t0 , setting R̃t0 =
ln(s(t0))−ln

(
1

R0

)

i(t0)+s(t0)− 1
R0

,

s(T ) ≤ 1
R0

for T sufficiently high ⇐⇒ R > R̃t0 .

A.7 Proof of Proposition 7

(i) s∞ is the value of s(t) such that i(t) = 0 in (21).

Thus i(T ) + s(T ) − s∞ + 1
R0

ln(s∞) − 1
R0

ln(s(T )) = 0

which gives R0 = ln(s(T ))−ln(s∞)
i(T )+s(T )−s∞

.

- Let us show that s∞(R) < 1
R0

.

If s(T ) ≤ 1
R0

, then s∞(R) < s(T ) ≤ 1
R0

.

If s(T ) > 1
R0

, there is a rebound after T with an epidemic peak when s(t) = 1
R0

,

thus s∞(R) < s(t) = 1
R0

.

In both cases we have s∞(R) < 1
R0

.
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- Let us show that s∞(R) is an increasing function of T (for a given R0).

As R0 = ln(s(T ))−ln(s∞)
i(T )+s(T )−s∞

= ln(s(T ))−ln(s∞)
1−r(T )−s∞

, we get: R0 (1 − r(T ) − s∞) = ln(s(T ))−ln(s∞).

Derivating with respect to T :

R0 (−ṙ(T ) − ṡ∞) = ṡ(T )
s(T )

− ṡ∞

s∞
.

As ṙ(T ) = dr
dt

(T ) = γi(T ) and ṡ(T ) = ds
dt

(T ) = −βi(T )s(T ), we get:

−R0 (γi(T ) + ṡ∞) = −βi(T ) − ṡ∞

s∞
.

As ṡ∞

(
1

s∞
− R0

)
= (β0 − β)i(T ), we write

ṡ∞ = (β0−β)i(T )
1

s∞
−R0

> 0 which is positive since the numerator and the denominator are

both positive.

- Let us show that s∞(R) is a decreasing function of R0 (for a given T ).

From (23) we get dR0

ds∞
=

− 1
s∞

(i(T )+s(T )−s∞)+ln(s(T ))−ln(s∞)

(i(T )+s(T )−s∞)2 =
(R0− 1

s∞
)(i(T )+s(T )−s∞)

(i(T )+s(T )−s∞)2 < 0

since s∞ < 1
R0

. This proves Prop 7(i).

(ii) The representative curve of the function s Ô→ IR0(s) is above the one representing

s Ô→ IR(s), thus s∞(R) ≥ s∞(R0).

- Let us show that s∞(R) is a non-monotonic function of R if T is high.

R0 = ln(s(T ))−ln(s∞)
i(T )+s(T )−s∞

, thus R0 (i(T ) + s(T ) − s∞) = ln(s(T )) − ln(s∞)

i.e., i(T ) + s(T ) − s∞ = 1
R0

ln(s(T )) − 1
R0

ln(s∞)

−s∞ + 1
R0

ln(s∞) = −i(T ) − s(T ) + 1
R0

ln(s(T ))

and since i(T ) + s(T ) = 1 − r(T ) :

1 − s∞ + 1
R0

ln(s∞) = r(T ) + 1
R0

ln(s(T )).

If T is sufficiently high, then s(T ) ≃ s̃∞ (since s̃∞ = limT →∞ s(T )), and r(T ) ≃ 1 − s̃∞.

This leads to:

1 − s∞ + 1
R0

ln(s∞) ≃ 1 − s̃∞ + 1
R0

ln(s̃∞)

i.e.

hR0(s∞) ≃ hR0(s̃∞)

where hR0 is defined by hR0(s) = 1 − s + 1
R0

ln(s).

According to the proof of Prop 6 (ii), s̃∞ is a decreasing function of R on R ∈ (0; R0],

with s̃∞ ≥ 1
R0

if R ≤ R̃t0 , and s̃∞ ≤ 1
R0

if R ≥ R̃t0 .

For a given s∞, the equation hR0(s∞) = hR0(s̃∞) of unknown s̃∞ has two different

roots: the first one is higher than 1
R0

, the second one is lower than 1
R0

.
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For R ∈ [R̃t0 , R0], we have s∞ = s̃∞ ≤ 1
R0

and s∞ is a decreasing function of R.

For R ∈ (0, R̃t0), we have s∞ ≤ 1
R0

< s̃∞ and s∞ is here an increasing function of R.

Summing up, for T high enough, s∞ is a non-monotonic function of R, it is first

increasing, then decreasing.

A.8 Proof of Proposition 8

(i) Ropt
∞ minimizes L∞(R) = (T − t0) [y(R0) − y(R)] + λM∞(R).

L∞ is assumed to be a convex function of R, since y is very concave (same argument

as for the concavity of VT (R)).

L′
∞(R) = −(T − t0)y

′(R) − λNδs′
∞(R) with y′ > 0.

We can distinguish 3 cases:

- First corner solution:

Ropt
∞ = 0 if L′

∞(0) ≥ 0. But L′
∞(0) ≥ 0 is not possible since y′(0) = +∞.

- Second corner solution:

Ropt
∞ = R0 if L′

∞(R0) ≤ 0, i.e., if −(T − t0)y
′(R0) − λδNs′

∞(R0) ≤ 0, i.e. if λ ≤ λ′
0,

setting λ′
0 = (T −t0)y′(R0)

−δNs′
∞(R0)

≥ 0.

- Interior solution: 0 < Ropt
∞ < R0 if L′

∞(R0) > 0 > L′
∞(0), which is true if λ > λ′

0.

Here Ropt
∞ satisfies L′

∞(Ropt
∞ ) = 0.

L′
∞(Ropt

∞ ) = 0 then λNδs′
∞(Ropt

∞ ) = −(T − t0)y
′(Ropt

∞ ) < 0. Thus s′
∞(Ropt

∞ ) < 0 and

then according to Proposition 7 (ii), we have Ropt
∞ > R̃t0 if T is sufficiently high.

If λ > λ′
0, applying the implicit function theorem:

dR
opt
∞

dλ
= −

∂L′
∞

∂λ
∂L′

∞

∂R

= δNs′
∞

L∞”
< 0 since L∞” > 0 and s′

∞(Ropt
∞ ) < 0.

This gives Prop 8 (i).

(ii) If y(R) = ARα, then y′(R) = αARα−1, and on λ ≥ λ′
0:

dRopt

dA
=

∂L′
∞

∂A

−L∞”
= (T −t0)αRα−1

L∞”
> 0

dRopt

dα
=

∂L′
∞

∂α

−L∞”
=

(T −t0)A[Rα−1+α ln(R)Rα−1]
L∞”

which is positive if and only if 1+α ln(R) >

0.

(iii) For T high enough, we have Ropt
∞ ≥ R̃t0 . But for λ high enough, Ropt is small,
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lower than R̃t0 . Thus for T and λ high enough, Ropt < R̃t0 ≤ Ropt
∞ . �

A.9 Proof of Proposition 9

First lockdown: R = R1, where imax(R1) = i(t0) + s(t0) − 1
R1

−
ln(R1)

R1
−

ln(s(t0))

R1
and

imax(R1) = i.

At the end of the lockdown according to (12), we have i(t1) = i(t0) + s(t0) − s(t1) +

ln(s(t1)−ln(s(t0))

R1
, where t1 is the date of end of the first lockdown.

We have i(t1) = i(t0) by assumption, thus −s(t1) + ln(s(t1)

R1
= −s(t0) + ln(s(t0)

R1
, i.e.

hR1
(s(t1)) = hR1

(s(t0)), where hR1
is defined by hR1

(s) = 1 − s + 1
R1

ln(s).

For a given s(t0), the equation hR1
(x) = hR1

(s(t0)) of unknown x has two different

roots: the first one is s(t0) and is higher than 1
R1

, the second one is s(t1) and is lower

than 1
R1

. We know that R1 is an increasing function of i, so that if i is sufficiently high,

s(t1) < 1
R0

and one lockdown is sufficient to achieve herd immunity.

If i is not sufficiently high, several lockdowns are neccesary to obtain herd immunity.

The kth lockdown is characterized by: R = Rk, where imax(Rk) = i(tk−1) + s(tk−1) −

1
Rk

−
ln(Rk)

Rk
−

ln(s(tk−1))

Rk
and imax(Rk) = i.

At the end of the lockdown, we have i(tk) = i(tk−1)+s(tk−1)−s(tk)+ ln(s(tk)−ln(s(tk−1))

Rk
,

where tk is the date of end of the kth lockdown.

We have i(tk) = i(tk−1) = i(t0) by assumption, thus −s(tk) + ln(s(tk)

Rk
= −s(tk−1) +

ln(s(tk−1)

Rk
, i.e. hRk

(s(tk)) = hRk
(s(tk−1)), where hRk

is defined by hRk
(s) = 1−s+ 1

Rk
ln(s)

then similarly s(tk) < 1
Rk

< s(tk−1).

We obtain n successive lockdowns, with:

s(t0) > 1
R1

> s(t1) > 1
R2

> s(t2) > ... > s(tn−1) > 1
Rn

> s(tn).

The lockdowns will be less and less strict, since 1
R1

> 1
R2

> ... > 1
Rn

implies R1 < R2 <

... < Rn.

The nth lockdown is the last one if s(tn) < 1
R0

< s(tn−1). �
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A.10 Proof of Proposition 10

(i) Let us denote by (Cε) the curve in the plane (s, i) representing the end of lockdowns

(sR(T ), iR(T )) which lead after release of lockdown to s∞ = s∞(R, T ) = 1
R0

− ε.

According to Eq. (21) with t → +∞, and i = i(T ), s = s(T ), since limt→∞ i(t) = 0

and limt→∞ s(t) = s∞, the equation of (Cε) in the plane (s, i) is 0 = i + s − s∞ +

1
R0

ln(s∞) − 1
R0

ln(s),

i.e.

i = s∞ − 1
R0

ln(s∞) − s + 1
R0

ln(s)

Under the assumption s∞ = 1
R0

− ε, with ε > 0, (Cε) meets the x-axis at two points:

s = s∞ and s = s̃∞, with s∞ < 1
R0

< s̃∞,

thus −s∞ + 1
R0

ln(s∞) = −s̃∞ + 1
R0

ln(s̃∞), i.e. hR0(s∞) = hR0(s̃∞).

Let R1 and R2 be defined by limT →∞ sR1(T ) = s̃∞ and limT →∞ sR2(T ) = s∞.

Then for R ≤ R1 or R ≥ R2, we have s∞(R) < 1
R0

− ε, i.e. s∞(R) = 1
R0

− ε is

impossible.

If R ∈ (R1, R2), there exists a value of T (denoted by Tε(R)), such that s∞(R) = 1
R0

−ε.

(ii) For a given mortality M∞(R, T ) = δNs∞(R, T ) = δN
(

1
R0

− ε
)
, the economic cost

of the lockdown is Cε(R) = (Tε(R) − t0) (y(R0) − y(R)).

R Ô→ Cε(R) is a continuous function on (R1, R2), with limR→R1 Cε(R) = limR→R2 Cε(R) =

+∞.

R Ô→ Cε(R) is continuous on any closed (compact) interval included in (R1, R2),

thus there exists a minimum in (R1, R2).

The first order equation is C ′
ε(R) = 0, with C ′

ε(R) = T ′
ε(R) (y(R0) − y(R))−(Tε(R) − t0) y′(R)

The minimal time is obtained with R = R
◦

ε satisfying T ′
ε(R) = 0.

The minimal economic cost is obtained with R = R̂ε satisfying C ′
ε(R) = 0.

Since T ′
ε(R) = 0 and C ′

ε(R) = 0 cannot be simultaneously obtained, thus R
◦

ε Ó= R̂ε.

If R
◦

ε > R̂ε, then R
◦

ε is not only the fastest, but also the less costly. It is impossible

since the less costly is R̂ε. Thus R
◦

ε < R̂ε.

We have T̂ε > T
◦

ε by definition. �
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A.11 Proof of Proposition 11

L∞ (R, T ) = (T − t0) (y (R0) − y (R))+λM∞ (R) is a continuous function on (R, T ) ∈

[0; R0] × [t0; +∞).

Let a = inf0≤R≤R0
T ≥t0

L∞ (R, T ). Is this infimum a minimum?

We can write a = inf0≤ε≤ 1
R0


inf{

(R,T ) with s∞= 1
R0

−ε

} L∞ (R, T )


 = inf0≤ε≤ 1

R0

a(ε),

where a(ε) = inf(R,T ) with s∞= 1
R0

−ε L∞ (R, T ) has been studied in Proposition 10.

a(0) = L∞

(
R̃t0 , +∞

)
= +∞, thus a = inf0<ε≤ 1

R0

a(ε) and for ε very close to 0,

a(ε) is arbitrarily high, thus if ε0 > 0 is sufficiently small, we have a = infε0≤ε≤ 1
R0

a(ε).

The function ε Ô→ a(ε) is continuous on the compact interval [ε0,
1

R0
], thus the

infimum is a minimum according to the extreme value theorem, i.e. there exists a

couple (R∗, T ∗) ∈ [0; R0] × [t0; +∞) such that a = L∞ (R∗, T ∗). �

A.12 Proof of Proposition 12

According to Equations (25) and (27), we have:

di

ds
=

β0si − γi

−β0si − ρs
=

β0i(s − 1
R0

)

−β0s(i + ρ
β0

)
=

−(1 − 1
sR0

)

(1 + ρ
β0i

)
(31)

i.e.,

(1 + ρ
β0i

)di = −(1 − 1
sR0

)ds.

Integrating between T and t we obtain for t ≥ T :

i(t) − i(T ) + ρ
β0

ln (i(t)) − ρ
β0

ln (i(T )) = −s(t) + s(T ) + 1
R0

ln (s(t)) − 1
R0

ln (s(T )).

Setting Hρ(s, i) = i + s + ρ
β0

ln (i) − 1
R0

ln (s),

we have Hρ(s(t), i(t)) = Hρ(s(T ), i(T )) for t ≥ T .

There is a rebound after T if i′(T ) > 0. According to (31), we have:

i′(t) = di
dt

= di
ds

ds
dt

= −

(
1− 1

R0s(t)

)
(

1+ ρ
β0i(t)

) s′(t),

i′(T ) = −s′(T )

(
1− 1

R0s(T )

)
(

1+ ρ
β0i(T )

) which is of the sign of
(
1 − 1

R0s(T )

)
since s′(T ) < 0.

Thus i′(T ) > 0 if s(T ) > 1
R0

, i.e., there is a rebound after T if s(T ) > 1
R0

.

The maximum of this rebound is attained at s = 1
R0

, with here imax satisfying:
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Hρ( 1
R0

, imax) = Hρ(s(T ), i(T )).

We set

A(ρ) = Hρ( 1
R0

, imax) − Hρ(s(T ), i(T ))

A(ρ) =
[
imax + 1

R0
+ ρ

β0
ln (imax) − 1

R0
ln

(
1

R0

)]
−

[
i(T ) + s(T ) + ρ

β0
ln (i(T )) − 1

R0
ln (s(T ))

]
.

We have

∂imax

∂ρ
= −

∂A
∂ρ
∂A

∂imax

= −

(
1

β0
ln(imax)− 1

β0
ln(i(T ))

)

1+ ρ
β0imax

< 0.

Thus imax is a decreasing function of ρ, which means that the higher is ρ, the lower the

rebound.

Now, we study (s∞, v∞, i∞, r∞) = limt→+∞ (s(t), v(t), i(t), r(t)).

Hρ(s(t), i(t)) = Hρ(s(T ), i(T )) for t ≥ T , thus limt→+∞ Hρ(s(t), i(t)) = Hρ(s(T ), i(T )),

i.e,

limt→+∞

[
i(t) + s(t) + ρ

β0
ln (i(t)) − 1

R0
ln (s(t))

]
= Hρ(s(T ), i(T )).

But we have of course i∞ = limt→+∞ i(t) = 0, thus we must have s∞ = limt→+∞ s(t) = 0

To find v∞, we note first that

ds

dv
=

−β0is − ρs

ρs
= −1 −

β0i

ρ

dv =
−ds

1 + β0

ρ
i
.

We are here on Hρ(s, i) = Hρ(s(T ), i(T )). Applying the implicit function theorem,

there exists a function Iρ such that: Hρ(s, i) = Hρ(s(T ), i(T )) ⇔ i = Iρ(s). This leads

to:

dv =
−ds

1 + β0

ρ
Iρ(s)

.

Integrating from T to +∞, we obtain:

v∞ − v(T ) =
∫ s∞

s(T )

−ds

1 + β0

ρ
Iρ(s)

=
∫ s(T )

s∞

ds

1 + β0

ρ
Iρ(s)
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with v(T ) = 0 and s∞ = 0 here, thus

v∞ =
∫ s(T )

0

ds

1 + β0

ρ
Iρ(s)

.

The final proportion of vaccinated people v∞ being an increasing function of the rate

of vaccination ρ, then the end-of-time number of deaths M∞ = δNr∞ = δN(1 − v∞) is

a decreasing function of ρ. �
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Schlickeiser, Reinhard, & Kröger, Martin. 2021. Analytical solution of the SIR-model

for the temporal evolution of epidemics: part B. Semi-time case. Journal of Physics

A: Mathematical and Theoretical, 54(17), 175601.

59


