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1 Introduction

This paper deals with the canonical framework of overlapping generations

model with productive capital. The Diamond [8] formulation is considered,

but augmented to include endogenous labor supply. We consider the general

formulation of preferences over the life cycle of each agent given by non sep-

arable utility functions. Our aim is to study the conditions of the possible

emergence of endogenous, deterministic or stochastic, fluctuations. We will

analyse the determinacy properties of equilibrium paths, as well as the po-

tential existence of local bifurcations. A given configuration will be refered

to as indeterminate as soon as there exists a multiplicity of distinct equilib-

rium paths starting from the same initial value for the capital stock. It is

well known that indeterminacy of perfect foresight equilibria is a sufficient

condition for the existence of sunspot equilibria and stochastic fluctuations

based upon extrinsic uncertainty.1 The analysis of endogenous fluctuations,

not only near an indeterminate steady state but also along local bifurcations,

will be conducted.

In the recent period, the Ramsey one-sector growth model augmented to

include endogenous labor supply has become a strandard framework for the

analysis of local indeterminacy and fluctuations based on the existence of

sunspot equilibria.2 It is proved indeed that locally indeterminate equilib-

ria may occur under increasing returns to scale based on capital and labor

externalities in the production technologies. A similar level of interest has

not been experienced by the overlapping generations model with endogenous

labor supply, despite the fact that Kehoe and Levine [15] exhibit some ro-

bust examples of pure exchange overlapping generations economies with a

continuum of equilibria.3

1See Cass and Shell [2] and Woodford [24].
2See the initial contribution of Benhabib and Farmer [3] and their recent survey [4] for

additional references.
3See also Geanakoplos and Polemarchakis [11, 12]. Note that Muller and Woodford

[20] extend this result to production multisector economies in which the labor supply is
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Most of the earlier papers dealing with an overlapping generations model

with production and endogenous labor supply are based on particular as-

sumptions which either restrict preferences to be additively separable or to

exclude first period consumption, or restrict technologies to Leontief or Cobb-

Douglas formulations.4 Moreover the demands for consumption and leisure

are generally assumed to satisfy the gross substitute axiom. A related litera-

ture based on the Woodford [25] model, in which two classes of representative

gents, namely “workers” and “capitalists”, coexist, considers a similar for-

mulation.5 Our goal is on the contrary to consider a general overlapping

generations model and to provide an analysis of the dynamic properties of

equilibrium paths which is a counterpart to the results on the two-sector

overlapping generations model with inelastic labor supplied by Galor [9].

In a one dimensional standard Diamond model, local indeterminacy of

the steady state is not possible. However, as shown in Galor and Ryder [10],

when gross substitutability between consumptions is not assumed, global

indeterminacy of perfect foresight equilibria may emerge. In a two-sector

formulation with inelastic labor, Galor [9] shows on the contrary that local

indeterminacy may appear even under the gross subsitute axiom. It is now

well-known since Reichlin [22] that a similar result holds in a one-sector OLG

model with endogenous labor supply. However, the specific assumptions on

preferences and technology used in this contribution and in related papers

prevent to obtain a general picture of the dynamic properties of equilibrium

paths.

Cazzavillan and Pintus [6] consider an OLG model with endogenous la-

bor supply under assumptions of additively separable preferences and gross

substitutability of consumptions and leisure. These restrictions allow the au-

thors to perform the dynamical analysis using a simple geometrical method

assumed to be inelastic.
4See Azariadis [1], Cazzavillan and Pintus [6], Grandmont [13], Lloyd-Braga [17, 18],

Medio and Negroni [19], Reichlin [22] and de Vilder [23].
5See Grandmont, Pintus and de Vilder [14], Cazzavillan, Lloyd-Braga and Pintus [5].
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recently developed by Grandmont, Pintus and de Vilder [14]. Such a method-

ology is well adapted to models in which the steady state only depends on

the properties of technology, as for instance in the Woodford [25] model in

which it is given by the modified golden rule. This property however does

not hold in an OLG model where the steady state is defined from both pref-

erences and the technology. Restricting the utility function to a formulation

in which the Arrow-Pratt index for consumptions and leisure are defined

independently, Cazzavillan and Pintus [6] have been able to adapt the geo-

metrical method. On the contrary, with general non separable preferences,

this methogology cannot in general be performed. One additional difficulty

comes from the fact that we will define the dynamical system from the saving

and labor supply functions which are endogenous. We will however consider

a CES economy to illustrate our general results which will be analysed with

the simple geometrical method.

Our main result is that we completely characterize the local dynamics of

the model and establish, thereby, the necessary and sufficient conditions for

the existence of indeterminate equilibria, as well as endogenous fluctuations.

We prove that the condition for the existence of a unique equilibrium path

converging to a given steady state in the standard Diamond model can be

generalized in the model augmented to consider endogenous labor supply.

We consider alternatively that the elasticity of the labor supply with respect

to the interest factor is positive or negative. In each case, we provide the

necessary and sufficient conditions for the steady state to be a saddle-point

stable, locally indeterminate or locally unstable. These results allow to con-

clude that some Hopf and Flip bifurcations could appear when the inputs

elasticity of substitution is modified.

The paper is organized as follows. In the next section we shall present the

model. In section 3, we focus on the steady state and establish an existence

result. In section 4, we analyse the local dynamics and derive our main

results. Section 5 provides a detailled analysis of a CES economy. Section 6

gives some concluding comments. All the proofs are gathered in section 7.
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2 The model with endogenous labor supply

Consider a perfectly competitive world where economic activity is performed

over infinite discrete time in which there are identical non altruistic agents.

Each agent lives for two periods: he works during the first, supplying elasti-

cally a portion l of one unit of labor: 0 ≤ l ≤ 1. He has preferences for his

consumption (c, when he is young, and d, when he is old), and for his leisure

(L = 1 − l) which are summarized by the utility functions u(c,L, d).

Assumption 1 . u(c,L, d) is strictly increasing with respect to each argu-

ment (u1(c,L, d) > 0, u2(c,L, d) > 0 and u3(c,L, d) > 0), C2, with nega-

tive definite Hessian matrix, over the interior of the set R+ × [0, 1] × R+.

Moreover, for all consumption and leisure levels c,L, d > 0, u1(0,L, d) =

u2(c, 0, d) = u3(c,L, 0) = ∞.

Each agent is assumed to have 1 + n children, with n ≥ 0, and the

number of individuals born in period t is denoted Nt. Considering the wage

rate wt and the expected interest factor Re
t+1 as given, he maximizes his

utility function over his life-cycle as follows:

max
ct,Lt,dt+1

u(ct,Lt, dt+1)

s.t. wt(1 − Lt) = ct + st

Re
t+1st = dt+1

0 ≤ Lt ≤ 1

(1)

Agents expect perfectly the interest factor Re
t+1 = Rt+1. Assumption 1 im-

plies the existence and uniqueness of interior solutions for optimal saving and

labor supply (st, lt).
6 The first order conditions:

{
−u1(wtlt − st, 1 − lt, stRt+1) + Rt+1u3(wtl − st, 1 − lt, stRt+1) = 0

wtu1(wtl − st, 1 − lt, stRt+1) − u2(wtl − st, 1 − lt, stRt+1) = 0
(2)

6A solution lt = 0, i.e. Lt = 1, cannot hold since it would imply from the assumptions

on the technology that yt = kt+1 = 0 and that second period consumption is equal to

zero. But this is excluded by Assumptions 1.
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give the saving and labor supply of each agent as functions:

st = s(wt,Rt+1) (3)

lt = l(wt, Rt+1) (4)

In Nourry [21] it is proved that under Assumption 1, the saving function s(., .)

and the labor supply function l(., .) are differentiable for (w, R) ∈ R++×R++,

with values respectively in R+ and (0, 1). To derive more information on these

functions we introduce the following property.

Definition 1 . Strong normality

Consider the following maximisation program

max
c,L,d

u(c,L, d)

s.t. w = c + wL + d/R

0 ≤ L ≤ 1

and the corresponding optimal demand functions c(w, R), L(w, R) and

d(w, R). The consumptions c, d and leisure L will be called strongly normal

goods if (∂c/∂w) ≥ 0, (∂d/∂w) ≥ 0 and (∂L/∂w) ≥ 0.7

We will use throughout the paper the following restriction:

Assumption 2 . Consumptions c and d are strongly normal goods.

7The standard definition of normality is based on the following program

max
c,L,d

u(c,L, d)

s.t. Ω = c + wL + d/R

0 ≤ L ≤ 1

and implies that the demand functions satisfy (∂c/∂Ω) ≥ 0, (∂d/∂Ω) ≥ 0 and (∂L/∂Ω) ≥
0. Besides this standard income effect, our definition includes also a price effect which

corresponds to the wage rate interpreted as the price of leisure. Strong normality, corre-

sponding to the sum of these both effects which have opposite sign, implies therefore that

the income effect is greater than the price effect. Strong normality thus implies normality.
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Under Assumption 2, it is easy to prove that the saving function is increasing

with respect to the wage rate, i.e. sw(w, R) ≥ 0. Similarly, if leisure is a

strongly normal good, then Lw(w, R) ≥ 0 and the labour demand function

is decreasing with respect to the wage rate, i.e. lw(w, R) ≤ 0. We will not

however impose this restriction since we want to discuss the effects of the

labour demand function which will be successively considered as decreasing

or increasing with respect to the wage rate.

The production function of a representative firm, denoted F (K, L), de-

pends on the stock of capital K and labor L, and is assumed to be homoge-

neous of degree one with F (K, 0) = 0 for any K ≥ 0. Assuming also that

capital depreciation is complete in each period, and denoting, for any L 6= 0,

k = K/L the capital stock per labor unit, we may define the production

function in intensive form as f(k) = F (k, 1).

Assumption 3 . f (k) is positively valued, C2, strictly increasing, strictly

concave over R++, and satisfies f(0) = 0, lim
k→0

f ′(k) = ∞ and lim
k→∞

f ′(k) = 0.

The competitive equilibrium conditions imply that the interest factor Rt and

the wage rate wt satisfy:

Rt = f ′(kt) ≡ R(kt) (5)

wt = f(kt) − ktf
′(kt) ≡ w(kt) (6)

Thus, the capital accumulation equation simply states as:

Kt+1 = Nts(wt, Rt+1) (7)

Since each young agent supplies lt unit of labor, the total labor in the economy

during period t is:

Lt = Ntlt

and equation (7) becomes:

(1 + n)kt+1l
(
w(kt+1), R(kt+2)

)
= st

(
w(kt), R(kt+1)

)
(8)

This is a second order difference equation.
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3 Steady state

The capital accumulation equation (8), together with the factor market equi-

librium conditions (4), (5), (6) and the initial condition for the capital stock,

fully characterize the intertemporal equilibria with perfect foresight.

Definition 2 . A perfect foresight equilibrium is a sequence {kt}∞t=0 such

that

(1 + n)kt+1l
(
f(kt+1) − kt+1f

′(kt+1), f
′(kt+2)

)
= s

(
f(kt)− ktf

′(kt), f
′(kt+1)

)

(9)

where k0 is exogenously given.

Definition 3 . A steady state is a stationary capital-labor ratio, k̄, such

that

(1 + n)k̄l
(
f(k̄)− k̄f ′(k̄), f ′(k̄)

)
= s

(
f(k̄) − k̄f ′(k̄), f ′(k̄)

)
(10)

The second order difference equation (9) may be characterized by either the

non existence, uniqueness or multiplicity of non-trivial steady states.

Proposition 1 . Under Assumptions 1-3, there exists a trivial steady state

k̂ = 0.

As in the model with exogenous labor supply, the existence of an a non-trivial

steady state is not guaranted even with some strengthened Inada condition.8

Restrictions on the interactions between preferences and technology are re-

quired. Let us denote

φ(k) = (1 + n)k −
s (f(k)− kf ′(k), f ′(k))

l (f(k) − kf ′(k), f ′(k))
(11)

Proposition 2 . Under Assumptions 1-3,

i) if limk→0 φ′(k) < 0 then there exists a non-trivial steady state. Gener-

ically, the number of non-trivial steady states is odd;

ii) if limk→0 φ′(k) > 0 then the number of non-trivial steady states is

generically even, and can be zero.

8See Galor and Ryder [10].

7



We will analyse in the next section the local dynamics of equilibrium paths

around a non-trivial steady state.

4 Analysis of the local dynamics

Consider εl,w, εl,R, εs,w, εs,R the elasticities of the labor supply, l(w, R), and

saving, s(w, R), functions with respect to w and R evaluated at a non-trivial

steady state k̄. We have, for example, εl,w = (w̄/l̄)(∂l(w̄, R̄)/∂w̄), where w̄

and l̄ are the values of the wage rate and the labor supply at the steady state.

We also consider the share of capital in total income εf = k̄f ′(k̄)/f (k̄) and the

index Af = −k̄f ′′(k̄)/f ′(k̄). Denoting ς the inputs elasticity of substitution

in the production function, it is easy to show that ς = (1 − εf )/Af .

We will assume that the labor supply is a non constant function of the

interest factor, i.e. εl,R 6= 0.9 To study the local stability properties of the

steady state k̄, we linearize the dynamical equation (9) in the neighbour-

hood of this equilibrium. Some straightforward algebra allows to write the

corresponding characteristic polynomial in terms of elasticities:

P(λ) = λ2 − λ
ς + εf εl,w + (1 − εf )εs,R

(1 − εf )εl,R
+

εf εs,w

(1 − εf )εl,R
(12)

Definition 4 . Let {kt}∞t=0 denote an equilibrium for an economy with initial

condition k0. We say that it is a locally indeterminate equilibrium if for every

ε > 0 there exists another sequence {k′
t}

∞
t=0, with 0 < |k′

1−k1| < ε and k′
0 = k0,

which is also an equilibrium.

If an equilibrium is not indeterminate, then we call it determinate. The

dimension of local indeterminacy cannot be greater than one. Actually, the

steady state k̄ is locally indeterminate if and only if the local stable manifold

is two-dimensional. We introduce the following definition:

9If εl,R = 0, then it is easy to show that one root of the characteristic polynomial is

always equal to zero and the dynamical system becomes one-dimensional. The stability

analysis is thus the same as in the Diamond model. This configuration appears for instance

when the utility function is Cobb-Douglas.

8



Definition 5 . A steady state k̄ of the second order difference equation (9)

is saddle-point stable if and only if the dimension of the local stable manifold

is equal to 1.

We will discuss the dynamic properties of the equilibrium depending on the

sign of the elasticity of labor supply with respect to the interest factor, εl,R.

Standard assumptions of gross substitutability for consumptions in both peri-

ods and labor imply that the saving and labor supply functions are increasing

with respect to the interest factor R. However, we do not want to impose

such a strong restriction and we will study both configurations in which εl,R

is successively assumed to be positive and negative.

4.1 The case εl,R > 0.

In the standard Diamond model, under the assumption εs,R ≥ 0, the following

condition ensures the local stability of equilibrium paths:

ΛD ≡ ς + (1 − εf)εs,R − εfεs,w > 0 (13)

We may derive some conditions in the model with endogenous labor which

can be interpreted as extensions of the above inequality. We obtain indeed

the following local characterization of the steady state k̄:

Proposition 3 . Let ΛL = ΛD + εf εl,w − (1 − εf )εl,R. Under Assumptions

1-3 and εl,R > 0, the following cases hold:

(1) If ΛL + εf εs,w + (1 − εf )εl,R > 0, the steady state k̄ is

i) saddle-point stable if and only if ΛL > 0;

ii) locally indeterminate if and only if ΛL < 0 and εf εs,w < (1−εf )εl,R;

iii) locally unstable if and only if ΛL < 0 and εfεs,w > (1 − εf )εl,R.

(2) If ΛL + εf εs,w + (1 − εf )εl,R < 0, the steady state k̄ is

i) saddle-point stable if and only if ΛL + 2[εf εs,w + (1 − εf)εl,R] < 0;

ii) locally indeterminate if and only if ΛL +2[εfεs,w + (1− εf)εl,R] > 0

and εf εs,w < (1 − εf )εl,R;

9



iii) locally unstable if and only if ΛL + 2[εfεs,w + (1 − εf )εl,R] > 0 and

εf εs,w > (1 − εf )εl,R.

Note that in case (1) we provide some conditions which appear to be sim-

ple extensions of the standard Diamond condition. ΛD is indeed augmented

by additive terms related to the elasticities of the labor supply. In partic-

ular the condition for saddle-point stability is very similar to the stability

condition of the Diamond model.

Assume that there exist n non-trivial steady states, n ∈ N∗
+ and that the

steady states are ordered as k1 > k2 > ... > kn. We provide the following

characterization:10

Proposition 4 . Under Assumptions 1-3, let εl,R > 0. Then all the steady

states with an odd index are saddle-point stable, whereas the steady states

with an even index are locally indeterminate or locally unstable. Moreover,

the trivial steady state k̂ = 0 is saddle-point stable if limk→0 φ′(k) > 0, and

locally indeterminate or locally unstable if limk→0 φ′(k) < 0.

Corollary 1 . Under Assumptions 1-3, let εl,R > 0. If there exists a unique

steady state k̄ > 0, then it is saddle-point stable while the trivial steady state

k̂ = 0 is locally indeterminate or locally unstable.

Let us now consider that the inputs elasticity of substitution, ς , is con-

stant. This property is in particular satisfied when we consider a C.E.S.

production function. The variations from the elasticity of the production

function εf could allow the appearance of bifurcations. Denoting the sum of

eigenvalues as T (εf ), and the product as D(εf ), we have:

T (εf) =
ς + εfεl,w + (1 − εf )εs,R

(1 − εf )εl,R
, D(εf ) =

εf εs,w

(1 − εf )εl,R

We also introduce the following notations which will be convenient to state

the results:

10Assuming that ΛL + εf εs,w + (1 − εf )εl,R > 0, Nourry [21] obtains a similar result.
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N (εf ) = ς + εf εl,w + (1 − εf )εs,R

denotes the numerator of the trace,

P1(εf ) = (1 − εf )εl,R + εf εs,w −N (εf )

denotes the numerator of the characteristic polynomial when λ = 1, and

P−1(εf ) = (1 − εf )εl,R + εf εs,w + N (εf )

denotes the numerator of the characteristic polynomial when λ = −1. The

local stability properties of a non-trivial steady state k̄ > 0 are summarized

as follows:

Proposition 5 . Under Assumptions 1-3, let εl,R > 0 and the technology

have a constant given elasticity of substitution ς ≥ 0. Then the following

cases hold

i) If N (εf ) > 0 for any εf ∈ (0, 1), limεf→0 P1(εf ) = εl,R − (ς + εs,R) < 0

and limεf→1 P1(εf) = εs,w − (ς + εl,w) > 0, there exists εT
f ∈ (0, 1) such that

the steady state is saddle-point stable for any εf ∈ (0, εT
f ) and locally indeter-

minate when εf belongs to a right neighbourhood of εT
f . An eigenvalue goes

through one as εf crosses εT
f .11

ii) If N (εf ) > 0 and P1(εf ) > 0 for any εf ∈ (0, 1), limεf→0 D(εf) = 0

and limεf→1 D(εf ) = +∞, there exists εH
f ∈ (0,1) such that the steady state

is locally indeterminate for any εf ∈ (0, εH
f ) and locally unstable when εf be-

longs to a right neighbourhood of εH
f . A Hopf bifurcation occurs at εH

f .

iii) If N (εf ) < 0 for any εf ∈ (0, 1), limεf→0 P−1(εf ) = ς + εl,R + εs,R < 0

and limεf→1 P−1(εf ) = ς + εs,w + εl,w > 0, there exists εF
f ∈ (0, 1) such that

the steady state is saddle-point stable for any εf ∈ (0, εF
f ) and locally inde-

terminate when εf belongs to a right neighbourhood of εF
f . A Flip bifurcation

11We cannot a prori distinguish between the transcritical, pitchfork or saddle-node bi-

furcations from the linearized difference equation. The consideration of non-linear terms

is necessary. A discussion of this point will be made for a CES economy in Section 5 and

will exhibit a transcritical bifurcation.
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occurs at εF
f .

iv) If N (εf ) < 0 and P−1(εf ) > 0 for any εf ∈ (0, 1), limεf→0 D(εf ) = 0

and limεf→1 D(εf ) = +∞, there exists εH
f ∈ (0,1) such that the steady state

is locally indeterminate for any εf ∈ (0, εH
f ) and locally unstable when εf

belongs to a right neighbourhood of εH
f . A Hopf bifurcation occurs at εH

f .

These results show that even if we impose a gross substitutability as-

sumption, i.e. if the elasticities εl,w, εl,R, εs,w and εs,R are positive, local

indeterminacy of an interior steady state is not ruled out. However, this

result crucially depends on the existence of at least two non-trivial steady

states. If uniqueness holds, gross substitutability implies local determinacy.

4.2 The case εl,R < 0.

Assume now that the labor supply is a decreasing function of the interest

factor. Under Assumption 2, P(0) < 0 and the eigenvalues are real with

opposite sign. We obtain:

Proposition 6 . Under Assumptions 1-3 and εl,R < 0, the steady state k̄ is

i) saddle-point stable if and only if ΛL{ΛL + 2[εf εs,w + (1 − εf )εl,R]} > 0;

ii) locally indeterminate if and only if ΛL > 0 > ΛL+2[εf εs,w+(1−εf )εl,R];

iii) locally unstable if and only if ΛL + 2[εf εs,w + (1 − εf )εl,R] > 0 > ΛL.

As in the previous subsection, if there exist n steady states which are ordered

as k1 > k2 > ... > kn, then the following characterization holds:

Proposition 7 . Under Assumptions 1-3, let εl,R < 0. Then the following

cases hold:

i) If ΛL + εf εs,w + (1 − εf )εl,R > 0, all the steady states with an even

index are locally unstable, whereas the steady states with an odd index are

saddle-point stable or locally indeterminate. Moreover, the trivial steady state

k̂ = 0 is locally unstable if limk→0 φ′(k) < 0, and saddle-point stable or locally

indeterminate if limk→0 φ′(k) > 0.
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ii) If ΛL + εf εs,w + (1 − εf )εl,R < 0, all the steady states with an odd

index are locally indeterminate, while the steady states with an even index

are saddle-point stable or locally unstable. Moreover, the trivial steady state

k̂ = 0 is locally indeterminate if limk→0 φ′(k) > 0, and saddle-point stable or

locally unstable if limk→0 φ′(k) < 0.

Corollary 2 . Under Assumptions 1-3, let εl,R < 0. If there exits a unique

non-trivial steady state k̄ > 0, it is saddle-point stable or locally indetermi-

nate while the trivial steady state k̂ = 0 is locally unstable.

When the labor supply is a decreasing function of the interest factor,

if there exits a unique non-trivial steady state, indeterminacy is not ruled

out. When compared to Proposition 4 and its Corollary, these results show

that the gross substitutability axiom may preclude indeterminacy only when

uniqueness of the steady state holds.

If we consider again that the inputs elasticity of substitution ς is con-

stant, the local stability properties of a non-trivial steady state k̄ > 0 are

summarized in the following:

Proposition 8 . Under Assumptions 1-3, let εl,R < 0 and the technology

have a constant given elasticity of substitution ς ≥ 0. Then the following

cases hold

i) If P−1(εf) < 0 for any εf ∈ (0, 1), limεf→0 P1(εf ) = εl,R − (ς + εs,R) < 0

and limεf→1 P1(εf) = εs,w − (ς + εl,w) > 0, there exists εT
f ∈ (0, 1) such that

the steady state is locally indeterminate for any εf ∈ (0, εT
f ) and saddle-point

stable when εf belongs to a right neighbourhood of εT
f . An eigenvalue goes

through one as εf crosses εT
f .

ii) If P1(εf) < 0 for any εf ∈ (0, 1), limεf→0 P−1(εf ) = ς + εl,R + εs,R < 0

and limεf→1 P−1(εf ) = ς + εs,w + εl,w > 0, there exists εF
f ∈ (0, 1) such that

the steady state is locally indeterminate for any εf ∈ (0, εF
f ) and saddle-point

stable when εf belongs to a right neighbourhood of εF
f . A Flip bifurcation

occurs at εT
f .
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5 A CES economy

We will consider in this section an economy characterized by CES utility

and production functions such that:12

u(c,L, d) = (B/α) [σc−ρ + δL−ρ + βd−ρ]
−α/ρ

f(k) = A [θk−γ + 1 − θ]
−α/γ

with σ ≥ 0, δ, β > 0, θ ∈ (0, 1), α ≤ 1, ρ, γ > −1 and A, B > 0.13 The

intertemporal elasticity of substitution of the utility function is given by

η = 1/(1 + ρ) while the factors elacticity of substitution is ς = 1/(1 + γ).

The share of capital in the total income is εf = θ[θ + (1 − θ)kγ]−1. The

degree of homogeneity α may be such that α = −ρ and the utility function

is additively separable. However, and contrary to the formulation used by

Cazzavillan and Pintus [6], the Arrow-Pratt index for consumptions and

labor are not independent. The case σ = 0 will correspond to the Reichlin’s

model [22] in which the representative agent does not consume during his

first period of life.

Taking into account the budget constraints of a representative consumer,

the maximisation of his utility function with respect to consumptions and

leisure gives the following saving and labor supply functions:

s(w, R) =
w

1
1+ρ (βR)

1
1+ρ

δ
1

1+ρ R + w
−ρ
1+ρ

[
σ

1
1+ρ R + (βR)

1
1+ρ

]

l(w, R) =
σ

1
1+ρ R + (βR)

1
1+ρ

w
ρ

1+ρ δ
1

1+ρ R +
[
σ

1
1+ρ R + (βR)

1
1+ρ

]

12CES functions do not satisfy the Inada conditions in Assumptions 1 and 3 but the

optimization program (1) provides interior solutions for consumptions, saving and labor

supply as illustrated in this example.
13We can chose B = (σ + δ + β)ρ/α so that σ, δ and β may be interpreted as weighting

parameters.
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with

w = w(k) = A(1 − θ)
[
θk−γ + 1 − θ

]−(1+γ)/γ
(14)

R = R(k) = Aθk−1−γ
[
θk−γ + 1 − θ

]−(1+γ)/γ
(15)

We will study the dynamic behaviour of this economy using the geometric

approach developped by Grandmont, Pintus and de Vilder [14] and used

by Cazzavillan, Lloyd-Braga and Pintus [5] and Cazzavillan and Pintus [6].

We will consider the characteristic polynomial given with the elasticities of

saving and labor supply, the share of capital in total income and the factors

elasticity of substitution. We will use the normalisation procedure associated

with the geometrical method which consists in finding some conditions on

the parameters A, δ and β such that one steady state k̄ is always equal to

one. The objective is to study geometrically the stability properties of this

steady state in a simple (Trace,Determinant) plan by varying the share of

capital in total income and the factors elasticity of substitution.

Assuming for the moment that k̄ = 1 is a steady state, let us first find

some values for δ and β such that the elasticities of the saving and labor

supply functions when evaluated at k̄ = 1 are not affected when the share

of capital in total income and the factors elasticity of substitution are mod-

ified. Considering that w(1) = A(1 − θ) and R(1) = Aθ, some tedious but

straightforward computations show that if δ = [A(1 − θ)]−ρ and β = (Aθ)ρ,

the elasticities of the saving and labor supply functions when k̄ = 1 are as

follows:
εl,w = −

ρ

(1 + ρ)(2 + σ
1

1+ρ )

εl,R =
εl,w

1 + σ
1

1+ρ

εs,R = εl,w(1 + σ
1

1+ρ )

εs,w = −
εl,w

ρ
[1 + (1 + ρ)(1 + σ

1
1+ρ )] > 0

Based on these results, we may now study the existence and uniqueness of a

15



stationary equilibrium. Equation (11) from Section 3 becomes

φ(k) = (1 + n)k −
w
R(βR)

1
1+ρ

σ
1

1+ρ + β
1

1+ρ R
−ρ
1+ρ

Considering the values of the wage rate and the interest factor given in (14)

and (15), we have w/R = (1−θ)k1+γ/θ and a steady state is finally a solution

of the following equation

φA(k) = k

{
1 + n −

(1−θ)kγ

θ

[
βAθ[θ + (1 − θ)kγ]−(1+γ)/γ

]1/(1+ρ)

σ
1

1+ρ + β
1

1+ρ (Aθ)−ρ/(1+ρ)[θ + (1 − θ)kγ]ρ(1+γ)/γ(1+ρ)

}
= 0

Using β = (Aθ)ρ it is finally easy to show that k̄ = 1 is always a steady state,

i.e. φA(1) = 0, if and only if

A = A∗ = (1 + n)
1 + σ

1
1+ρ

1 − θ
(16)

After substitution of A∗ into φA(k) we obtain:

φA∗(k) = (1 + n)k

{
1 −

kγ(1 + σ
1

1+ρ )

σ
1

1+ρ [θ + (1 − θ)kγ]
1+γ

γ(1+ρ) + [θ + (1 − θ)kγ]
1+γ

γ

}
= 0

≡ (1 + n)k[1 − ϕ(k)]

so that the existence of other non-trivial steady states may be analysed from

the following equation

ψ (k) ≡ 1 − ϕ(k) = 0

By definition we have ψ (1) = 0. Depending on the value of γ the properties

of the function ψ (k) are the following:

i) If γ ≤ 0 then limk→0 ψ (k) = −∞, limk→+∞ ψ (k) = 1 and ψ ′(k) > 0 for

any k > 0.

ii) If γ > 0 then ψ (0) = 1, limk→+∞ ψ (k) = 1 and there exists k̃ > 0 such

that ψ ′(k) S 0 if and only if k S k̃. Note that k̃ may be less or greater than

1. Moreover depending on the value of ρ + θ and σ, we have the following
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configurations:

a) If ρ+θ < 0 and σ ≥ [−θ(1+ρ)/(ρ+θ)]1+ρ, ψ ′(1) > 0 for any γ > 0;

b) If ρ + θ < 0 and σ < [−θ(1 + ρ)/(ρ + θ)]1+ρ, or ρ + θ ≥ 0, there

exists γ∗(θ) > 0 such that ψ ′(1) T 0 if and only if γ S γ∗.14

In case i) the function ψ (k) is monotone increasing so that k̄ = 1 is the

unique non-trivial steady state. In case ii), since k̄ = 1 is always a steady

state and ψ (0) = limk→+∞ ψ (k) = 1, there generically exists a second non-

trivial steady state as shown in the following Figure. Note also that in both

cases φA∗(0) = 0 so that the trivial steady state k̂ = 0 also exists.15

Figure 1: Multiple steady states when γ > 0.

14The exact value of γ∗(θ) is

γ∗(θ) =
(1 − θ)

[
1 + σ1/(1+ρ) + ρ

]

σ1/(1+ρ)(ρ + θ) + θ(1 + ρ)

15It can be shown that limk→0 φA∗(k) = 0 when γ ≤ 0.
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We may thus summarize the results into the following proposition

Proposition 9 . Consider the CES economy with δ = [A∗(1 − θ)]−ρ, β =

(A∗θ)ρ and A∗ as defined in (16). There exists one trivial steady state k̂ = 0

and the following cases hold:

i) If γ ≤ 0, i.e. ς ≥ 1, k̄ = 1 is the unique non-trivial steady state.

ii) If γ > 0, i.e. ς < 1, there exist two distinct non-trivial steady states,

k̄ = 1 and k∗ > 0. Moreover:

a) if ρ + θ < 0 and σ ≥ [−θ(1 + ρ)/(ρ + θ)]1+ρ, then k∗ ∈ (0, 1) for

any γ > 0;

b) if ρ + θ < 0 and σ < [−θ(1 + ρ)/(ρ + θ)]1+ρ, or ρ + θ ≥ 0, then

k∗ ∈ (0, 1) when γ < γ∗(θ) and k∗ > 1 when γ > γ∗(θ). k̄ = 1 and k∗ > 0

coincide when γ = γ∗(θ).

In case ii)b), for any given γ > 0, i.e. ς < 1, if solving the equation γ = γ∗(θ)

with respect to θ gives a value θT ∈ (0, 1), then the corresponding share of

capital in total income evaluated at k̄ = 1, εT
f = θT , is a transcritical bifurca-

tion value which involves an exchange of stability between the two stationary

equilibria. The existence of an upper bound for the “weight” of the first pe-

riod consumption suggests that the existence of a transcritical bifurcation

depends on the parameter σ. A precise analysis of these phenomena will be

conducted below.

We will now study the stability properties of the steady state k̄ = 1. Let

us introduce the following notations for the trace T and the determinant D:

T (σ, εf , ς) =
ς + εf εl,w + (1 − εf )εs,R

(1 − εf)εl,R

D(σ, εf) =
εf εs,w

(1 − εf)εl,R

It is important to point out that the local stability properties of the steady

state will not depend on the degree of homegeneity α of the utility func-

tion. This means in particular that our results will also cover the case of an

additively separable function, i.e. α = −ρ. This result is easily explained
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by the fact that in an overlapping generations model, utility is ordinal and

preferences are described up to a monotone increasing transformation.

Note that the following ratio of derivatives

∂D(σ, εf )/∂εf

∂T (σ, εf , ς)/∂εf
≡ p(σ, ς) =

εs,w

εl,w + ς

does not depend on εf . It follows that p(σ, ς) corresponds to the slope of

a line ∆ in the (Trace,Determinant) plan which gives a linear relationship

between T and D. Substituting the expressions of the saving and labor

supply elasticities into the trace, the determinant and the slope of ∆ gives

T (σ, εf , ς) =
ς(1 + σ

1
1+ρ ) + εl,w(1 + σ

1
1+ρ )[εf + (1 − εf )(1 + σ

1
1+ρ )]

(1 − εf )εl,w

D(σ, εf ) = − εf

ρ(1 − εf )
(1 + σ

1
1+ρ )[1 + (1 + ρ)(1 + σ

1
1+ρ )]

p(σ, ς) = −εl,w[1 + (1 + ρ)(1 + σ
1

1+ρ )]

ρ(εl,w + ς)

Note that D(σ, 0) = 0, T (σ, 0, ς) = (1+σ
1

1+ρ )[ς+εl,w(1+σ
1

1+ρ )]/εl,w. Moreover

limεf→1 D(σ, εf ) = ±∞ if and only if ρ ≶ 0 and limεf→1 T (σ, εf , ς) = ±∞
depending on the sign of ρ and the value of ς . Therefore varying the share of

capital in total income εf from 0 to 1 describes a half-line ∆ that starts on

the axis D = 0 and whose limit also depends on the sign of ρ and the value

of ς . The half-line ∆ is defined by the equation

D = p(σ, ς)T − p(σ, ς)T (σ, 0, ς)

⇔

D = [1 + (1 + ρ)(1 + σ
1

1+ρ )]

{
− εl,w

ρ(εl,w + ς)
T + (1 + σ

1
1+ρ )

ς + εl,w(1 + σ
1

1+ρ )

ρ(εl,w + ς)

}

We will divide the discussion into two subcases depending on the sign of the

parameter ρ, i.e. on the value of the intertemporal elasticity of substitution

η.16 Since the sign of the elasticity of the labor supply with respect to the

16When ρ = 0, i.e. η = 1, the utility function is Cobb-Douglas and it is easy to show
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interest factor εl,R is determined by the sign of ρ, this distinction will echoe

the one considered in the general analysis of Section 4.

5.1 The case η > 1.

When ρ ∈ (−1, 0), the saving is increasing with respect to the interest factor

and εl,w, εl,R, εs,R > 0. We also have the following results:

- p(σ, ς) > 0 for any (σ, ς) ∈ R2
+ with p(σ, 0) > 1, and limς→+∞ p(σ, ς) = 0.

- T (σ, 0, 0) = (1 + σ
1

1+ρ )2, limς→+∞T (σ, 0, ς) = +∞ = limεf→1T (σ, εf , ς)

for any (σ, ς) ∈ R2
+.

- D(σ, 0) = 0 and limεf→1D(σ, εf ) + ∞ for any σ ≥ 0.

Note that T (0, 0, 0) = 1. In the (T, D) plan, since the slope is always positive,

a necessary condition for the existence of local indeterminacy of the steady

state is T (σ, 0, 0) < 2, i.e. σ < σ̄(ρ) ≡ (
√

2− 1)1+ρ < 1, with limρ→−1 σ̄(ρ) =

1. We may however find a more accurate upper bound for σ. Since the slope

is maximal when ς = 0, the upper bound is defined as the solution of the

following system:

T (σ, εf , 0) = 2

D(σ, εf ) = 1

From the second equation we derive

εH
f =

−ρ

(1 + σ
1

1+ρ )[1 + (1 + ρ)(1 + σ
1

1+ρ )] − ρ
(17)

After substitution into the first equation and denoting x = 1 + σ
1

1+ρ , we find

that the upper bound for σ is obtained from the following degree 3 polynomial

h(x) = (1 + ρ)x3 + x2 − 2(1 + ρ)x − 2 − ρ = 0 (18)

Since we have h(0) < 0 and h(
√

2) > 0, we have proved that there exists

σ∗(ρ) ∈ (0, σ̄(ρ)) which satisfies h(σ∗(ρ)) = 0 and such that the steady state

cannot be locally indeterminate as soon as σ ≥ σ∗(ρ).

that the labor supply is constant for any wage rate and interest factor. The dynamical

system becomes one-dimensional and the stability analysis is the same as in the standard

Diamond model.
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Considering the value εH
f such that D(σ, εH

f ) = 1 defined above, we may

now find for any given ρ ∈ (−1, 0) and σ ∈ [0, σ∗(ρ)), the value of ς , denoted

ς̄ , such that T (σ, εH
f , ς) = 2, i.e such that the steady state cannot be locally

indeterminate for any ς ≥ ς̄ . Some simple computations give17

ς̄ = εl,w
[1 + (1 + ρ)(1 + σ

1
1+ρ )][2 − (1 + σ

1
1+ρ )2] + ρ

(1 + σ
1

1+ρ )[1 + (1 + ρ)(1 + σ
1

1+ρ )] − ρ
> 0 (19)

For any given σ ∈ [0, σ∗(ρ)) we may finally find the value of ς , denoted ς1,

such that p(σ, ς) = 1. We easily obtain

ς1 = 1

Since ς̄ is close to zero when σ is close to σ∗(ρ), and ς̄ = −ρ/2 < 1 when

σ = 0, we thus conclude that for any σ ∈ [0, σ∗(ρ)), ς̄ < ς1 = 1. We may

summarize all the results by the following figures before stating a proposition.

Figure 2: Existence of the upper bound σ∗.

17The numerator of ς̄ is equal to the polynomial h(1 + σ
1

1+ρ ) so that ς̄ = 0 when

σ = σ∗(ρ).

21



Figure 3: Local indeterminacy and bifurcations when σ = 0.

Figure 4: Local indeterminacy and bifurcations when σ ∈ (0, σ∗).
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Figure 5: Saddle-point stability and bifurcations when σ ≥ σ∗.

Proposition 10 . Consider the CES economy and the values of εH
f and

ς̄ respectively defined by equations (17) and (19). Assume that η > 1, i.e.

ρ ∈ (−1, 0). The following cases hold:

(1) Let σ = 0.

i) If ς = 0, the steady state is locally indeterminate for εf ∈ (0,−ρ/2)

and locally unstable for εf > −ρ/2. A Hopf bifurcation occurs at εH
f = −ρ/2.

ii) If ς ∈ (0,−ρ/2), there exists εT
f ∈ (0, 1) such that the steady

state is saddle-point stable when εf ∈ (0, εT
f ), locally indeterminate when

εf ∈ (εT
f ,−ρ/2) and locally unstable when εf > −ρ/2. A (reverse) transcrit-

ical bifurcation occurs at εT
f , a Hopf bifurcation at εH

f = −ρ/2.

iii) If ς = −ρ/2, the steady state is saddle-point stable when

εf ∈ (0,−ρ/2) and locally unstable when εf > −ρ/2. A transcritical-Hopf

bifurcation occurs at εH
f = −ρ/2.

iv) If ς ∈ (ς̄ , 1), there exists εT
f ∈ (0, 1) such that the steady state

is saddle-point stable for εf ∈ (0, εT
f ) and locally unstable for εf > εT

f . A

23



transcritical bifurcation occurs at εT
f .

v) If ς ≥ 1, the steady state is saddle-point stable for all εf ∈ (0, 1).

(2) Let σ ∈ (0, σ∗(ρ)) with σ∗(ρ) defined by equation (18).

i) If ς ∈ [0, ς̄), there exists εT
f ∈ (0, 1) such that the steady state is

saddle-point stable when εf ∈ (0, εT
f ), locally indeterminate when εf ∈ (εT

f , εH
f )

and locally unstable when εf > εH
f . A (reverse) transcritical bifurcation

occurs at εT
f , a Hopf bifurcation at εH

f .

ii) If ς = ς̄, the steady state is saddle-point stable for εf ∈ (0, εH
f ) and

locally unstable for εf > εH
f . A transcritical-Hopf bifurcation occurs at εH

f .

iii) If ς ∈ (ς̄ , 1), there exists εT
f ∈ (0, 1) such that the steady state

is saddle-point stable when εf ∈ (0, εT
f ) and locally unstable for εf > εT

f . A

transcritical bifurcation occurs at εT
f .

iv) If ς ≥ 1, the steady state is saddle-point stable for all εf ∈ (0, 1).

(3) Let σ ≥ σ∗(ρ).18

i) If ς ∈ [0, 1), there exists εT
f ∈ (0, 1) such that the steady state is

saddle-point stable when εf ∈ (0, εT
f ) and locally unstable for εf > εT

f . A

transcritical bifurcation occurs at εT
f .

ii) If ς ≥ 1, the steady state is saddle-point stable for all εf ∈ (0,1).

This Proposition shows in particular how the Cobb-Douglas formulation for

the technology is a specific case since local indeterminacy and cycles cannot

occur when ς = 1. Note also that in cases (1)-iii) and (2)-ii), a co-dimension

2 Bogdanov-Takens bifurcation occurs.19

It is well-known from the earlier contribution by Reichlin [22] that un-

der the assumption of additive separability for the utility function, a Hopf

bifurcation is only possible if the inputs elasticity of substitution is lower

than the share of capital in total income. This result, initially obtained in a

18Note that if σ = σ∗(ρ) and ς = 0, then a transcritical-Hopf bifurcation occurs at εH
f

as in cases (1)-iii) and (2)-ii). However this parameter configuration is too specific to be

mentioned in Proposition 10.
19See Kuznetsov [16].
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model without consumption during the agent’s first period of life, has been

extended to models with consumptions in both periods and still additively

separable utility functions by Lloyd-Braga [17] and Cazzavillan and Pintus

[6].20 In our CES economy, we find a similar result since it is easy to show

that as soon as σ ∈ (0, σ∗(ρ)), the critical value for the inputs elasticity of

substitution above which local indeterminacy and Hopf bifurcation no longer

exist is less than the Hopf biurcation value for the share of capital in total

income, i.e. εH
f > ς̄ . Note however that when σ = 0 the Bogdanov-Takens

bifurcation appears for εH
f = ς̄ = −ρ/2.

Cazzavillan and Pintus [6] also provide some interesting conclusions con-

cerning the occurrence of local indeterminacy and endogenous fluctuations.

They first prove that the range of values of the elasticity of capital-labor sub-

stitution consistent with multiple equilibrium paths and cycles is narrowed

when the model is extended to include first period consumption. They also

prove that when preferences over consumption are identical, equilibria are

always locally unique.

Proposition 10 shows that their first conclusion is even more drastic in

a CES economy. Local indeterminacy and Hopf bifurcation do not occur

anymore as soon as the weight σ of first period consumption in the utility

function is higher than σ∗(ρ) with σ∗(ρ) < (
√

2 − 1)1+ρ < 1. Proposition 10

seems also to prove that their second conclusion actually heavily rely on the

“weight” of the first period consumption which they assume to be equal to

1. Denoting our utility function as

u(c,L, d) = (Bα) [σu1(c) + δu2(L) + βu3(d)]−α/ρ

and assuming additive separability, i.e. α = −ρ, we have ui(x) = x−ρ for all

i = 1, 2, 3 and local indeterminacy may still occur as soon as σ ∈ [0, σ∗(ρ)).

20Lloyd-Braga [17] however proves that a Hopf bifurcation will occur with some in-

puts elasticity of substitution higher than the capital share of output when the model is

amended to include imperfect competition and increasing retruns to scale internal to the

firm. The same result is proved to hold also when increasing returns to scale are generated

by external effects in production (See Cazzavillan and Pintus [6]).
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When dealing with the empirical plausibility of our results, we may cali-

brate the model so that the Hopf bifurcation value εH
f for the share of capital

in total output is equal to 1/3. Let also ρ = −0.74 so that the intertemporal

elasticity of the utility function is η ≈ 3.85. It follows that the corresponding

upper bound for σ is σ∗(−0.74) ≈ 0.66 and the value of σ derived from the

solving of εH
f = 1/3 is σ ≈ 0.6. The upper bound for the factors elasticity of

substitution above which local indeterminacy is precluded is finally ς̄ ≈ 0.24.

It follows that for any ς ∈ [0, 0.24) the steady state is locally indetermi-

nate when the share of capital εf is in a left neighbourhood of 1/3 and, if

the Hopf bifurcation is supercritical, an indeterminate quasi-periodic cycles

exists when εf is in a right neighbourhood of 1/3.

5.2 The case η < 1.

When ρ > 0, the saving is decreasing with respect to the interest factor and

εl,w, εl,R, εs,R < 0. We have the following results:

- For any given σ ≥ 0, there exists ς∞ = −εl,w = ρ/[(1+ρ)(2+σ1/(1+ρ)] < 1

such that p(σ, ς∞) = ∞. Therefore p(σ, ς) < 0 when ς ∈ [0, ς∞) and

p(σ, ς) > 0 when ς > ς∞. Moreover p(σ, 0) < −1 and limς→+∞ p(σ, ς) = 0 for

any σ ≥ 0.

- T (σ, 0, 0) = (1 + σ
1

1+ρ )2, T (σ, 0, ς∞) = σ
1

1+ρ (1 + σ
1

1+ρ ),21

limς→+∞T (σ, 0, ς) = −∞ and limσ→+∞T (σ, 0, ς) = +∞. Moreover,

limεf→1T (σ, εf , ς) = +∞ if ς ∈ [0, ς∞) and limεf→1T (σ, εf , ς) = −∞ if

ς > ς∞.

- D(σ, 0) = 0 and limεf→1D(σ, εf ) −∞ for any σ ≥ 0.

For any given σ ≥ 0, we may find the value of ς , denoted ς̂ , such that the line

Λ goes through the point (T,D) = (0,−1). We need to solve the following

system:

T (σ, εf , 0) = 0

D(σ, εf ) = −1

21Note that T (0, 0, ς∞) = 0.
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From the second equation we get

εF T
f =

ρ

(1 + σ
1

1+ρ )[1 + (1 + ρ)(1 + σ
1

1+ρ )] + ρ
(20)

After substitution into the first equation we find

ς̂ = −εl,w
(1 + σ

1
1+ρ )2[1 + (1 + ρ)(1 + σ

1
1+ρ )] + ρ

(1 + σ
1

1+ρ )[1 + (1 + ρ)(1 + σ
1

1+ρ )] + ρ
> 0 (21)

We may also compute the value of ς, denoted ςT , such that T (σ, 0, ς) = 1.

We derive:

ςT =
ρ

[
(1 + σ

1
1+ρ )2 − 1

]

(1 + ρ)
[
(1 + σ

1
1+ρ )(2 + σ

1
1+ρ )

] < 1 (22)

It is easy to show that ςT < ς̂ and ς∞ < ς̂, and the following geometrical

configuration holds. Local indeterminacy of the steady state k̄ = 1 cannot

therefore occur after a transcritical bifurcation.

Figure 6: A co-dimension 2 bifurcation when σ > 0.

We need finally to compute the value of ς , denoted ςF , such that

T (σ, 0, ς) = −1. We easily obtain:

ςF =
ρ

[
1 + (1 + σ

1
1+ρ )2

]

(1 + ρ)
[
1 + σ

1
1+ρ + (1 + σ

1
1+ρ )2

] < 1 (23)
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We may summarize all the results by the following figures before stating a

proposition.

Figure 7: Local indeterminacy and bifurcations when σ = 0.

Figure 8: Local indeterminacy and bifurcations when σ > 0 and ς∞ < ςT .
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Figure 9: Local indeterminacy and bifurcations when σ = 0 and ς∞ > ςT .

Proposition 11 . Consider the CES economy and the values of εFT
f , ς̂, ςT

and ςF respectively defined by equations (20), (21), (23) and (22). Assume

that η < 1, i.e. ρ > 0. The following cases hold:

(1) Let σ = 0.

i) If ς = 0, there exists εT
f ∈ (0, 1) such that the steady state is

saddle-point stable when εf ∈ (0, εT
f ) and locally unstable when εf > εT

f . A

transcritical bifurcation occurs at εT
f .

ii) If ς ∈ (0, ρ/[2(1 + ρ)]), there exist εT
f ∈ (0, 1) and εF

f ∈ (0, 1) such

that the steady state is locally indeterminate when εf ∈ (0, εT
f ), saddle-point

stable when εf ∈ (εT
f , εF

f ) and locally unstable when εf > εF
f . A transcritical

bifurcation occurs at εT
f , a Flip at εF

f .

iii) If ς = ρ/[2(1 + ρ)], the steady state is locally indeterminate

for εf ∈ (0, εFT
f ) and locally unstable for εf > εFT

f . A transcritical-Flip

bifurcation occurs at εFT
f .

iv) If ς ∈ (ρ/[2(1 + ρ)], ςF ), there exist εF
f ∈ (0, 1) and εT

f ∈ (0, 1) such

that the steady state is locally indeterminate when εf ∈ (0, εF
f ), saddle-point
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stable when εf ∈ (εF
f , εT

f ) and locally unstable when εf > εT
f . A Flip

bifurcation occurs at εF
f , a transcritical at εT

f .

v) If ς ∈ (ςF , 1), there exists εT
f ∈ (0, 1) such that the steady state is

saddle-point stable when εf ∈ (0, εT
f ) and locally unstable when εf > εT

f . A

transcritical bifurcation occurs at εT
f .

vi) If ς ≥ 1, the steady state is saddle-point stable for any εf ∈ (0, 1).

(2) Let σ > 0.

i) If ς ∈ [0, ςT ], there exists εF
f ∈ (0, 1) such that the steady state is

saddle-point stable when εf ∈ (0, εF
f ) and locally unstable when εf > εF

f . A

Flip bifurcation occurs at εF
f .

ii) If ς ∈ (ςT , ς̂), there exist εT
f ∈ (0, 1) and εF

f ∈ (0, 1) such that the

steady state is locally indeterminate when εf ∈ (0, εT
f ), saddle-point stable

when εf ∈ (εT
f , εF

f ) and locally unstable when εf > εF
f . A transcritical bifur-

cation occurs at εT
f , a Flip at εF

f .

iii) If ς = ς̂, the steady state is locally indeterminate for εf ∈ (0, εFT
f )

and locally unstable for εf > εF T
f . A transcritical-Flip bifurcation occurs at

εFT
f .

iv) If ς ∈ (ς̂ , ςF ), there exist εF
f ∈ (0, 1) and εT

f ∈ (0, 1) such that the

steady state is locally indeterminate when εf ∈ (0, εF
f ), saddle-point stable

when εf ∈ (εF
f , εT

f ) and locally unstable when εf > εT
f . A Flip bifurcation

occurs at εF
f , a transcritical at εT

f .

v) If ς ∈ [ςF , 1), there exists εT
f ∈ (0, 1) such that the steady state is

saddle-point stable when εf ∈ (0, εT
f ) and locally unstable when εf > εT

f . A

trnascritical bifurcation occurs at εT
f .

vi) If ς ≥ 1, the steady state is saddle-point stable for any εf ∈ (0, 1).

This Proposition confirms that the Cobb-Douglas formulation for the tech-

nology is a singular case since local indeterminacy and cycles cannot occur

when ς = 1. We have thus proved the following Corollary:

Corollary 3 . In a CES economy, as soon as the inputs elasticity of substi-

tution is greater than or equal to 1, the steady state is saddle-point stable.
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Note also that in cases (1)-iii) and (2)-iii) a co-dimension 2 bifurcation, which

has not yet been treated in the mathematical literature, occurs.22

6 Concluding comments

We have studied an overlapping generations model with production and en-

dogenous labor supply. We are able to fully characterize the local dynamics

generated by the model. We derive these results in the context of fairly broad

class of overlapping generations economies because we do not consider any

separability of the utility function. We also show that, when the production

function elasticity increases, and we consider a normalisation such that the

steady state remains unchanged, then some bifurcations are liable to occur.

7 Appendix

Proof of Proposition 1:

A steady state is a solution of (1 + n)k = s(w(k), R(k))/l(w(k), R(k)).

As agents cannot save more than their labor income w(k), for all k > 0

we have 0 < s(w(k), R(k))/l(w(k), R(k)) ≤ w(k). If w(0) = 0 then

limk→0 s(w(k), R(k))/l(w(k), R(k)) = 0 and k̂ = 0 is a steady state. Now

it is proved in de la Croix and Michel [7] that w(0) = f(0). The result there-

fore follows from Assumption 3.

Proof of Proposition 2:

A steady state k̄ satisfies φ(k̄) = 0. As agents cannot save more than their

labor income w(k), for all k > 0 we have φ(k) ≥ (1 + n)k − w(k). More-

over, limk→+∞ (1 + n)k −w(k) = limk→+∞ k
(
1 + n − w(k)

k

)
= +∞ since

limk→+∞
f(k)−kf ′(k)

k
= 0.23 It follows that limk→+∞ φ(k) = +∞.

22See Kuznetsov [16].
23Under assumption 3, this property is proved in de la Croix and Michel [7].
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i) As φ(k) is a C1 function for k > 0, then if limk→0 φ′(k) < 0, there exists

k̄ such that φ(k̄) = 0. If there exist k̄1, · · · , k̄n capital-labor ratio such that

φ(k̄i) = 0, i = 1, · · · , n, then n is an even number only if there is a value k̄j ,

j ∈ {1, n}, such that φ(k̄j) = 0 and φ′(k̄j) = 0. This situation is not robust

to any small change in the parameters, and we will thus refer to it as “non

generic”.

ii) If now limk→0 φ′(k) > 0, then, using the previous argument, the num-

ber n of steady states is generically even and may be 0.

Proof of Proposition 3:

Under Assumptions 1-3 and εl,R > 0, we have limλ→±∞ P(λ) = +∞ and

P(0) > 0. Denoting ΛL = ΛD + εf εl,w − (1 − εf )εl,R with ΛD given by

equation (13), we have:

P(λ) = λ2 − λ
ΛL + εfεs,w + (1 − εf )εl,R

(1 − εf )εl,R
+

εf εs,w

(1 − εf )

P(1) = − ΛL

(1 − εf)εl,R

P(−1) =
ΛL + 2[εf εs,w + (1 − εf)εl,R]

(1 − εf)εl,R

Assume first that ΛL + εf εs,w + (1 − εf )εl,R > 0. Then P(λ) > 0 for any

λ ≤ 0. The condition P (1) < 0, i.e. ΛL > 0, is thus a necessary and

sufficient condition for the steady state to be saddle-point stable. As soon as

P (1) > 0, i.e. ΛL < 0, the eigenvalues are real or complex. In this case, the

steady state is locally indeterminate if and only if the product of eigenvalues,

i.e. P (0) = εf εs,w/[(1 − εf )εl,R] is less than one, and locally unstable if and

only if the P (0) is greater than one.

Assume now that ΛL + εf εs,w + (1 − εf)εl,R < 0. Then P(λ) > 0 for any

λ ≥ 0. The condition P (−1) < 0, i.e. ΛL +2[εfεs,w +(1− εf )εl,R] < 0, is thus

a necessary and sufficient condition for the steady state to be saddle-point

stable. As soon as P (−1) > 0, i.e. ΛL + 2[εfεs,w + (1 − εf )εl,R] > 0, the

eigenvalues are real or complex. The local indeterminacy or local unstability
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of the steady state depends on whether P (0) ≶ 1.

Proof of Proposition 4.

Let εl,R > 0 and assume that the steady states are ordered as k1 > k2 >

... > kn. Since limk→+∞ φ(k) = +∞, we generically have φ′(k1) > 0. Then,

generically, the steady states k̄1, k̄3, k̄5, . . . are such that φ′(k̄) > 0, whereas

the steady states k̄2, k̄4, k̄6, . . . are such that φ′(k̄) < 0. Straightforward

computations give φ′(k) = ΛL. Since ΛL > 0 implies ΛL+εfεs,w+(1−εf )εl,R >

0, Proposition 3 shows that the steady states k̄1, k̄3, k̄5, . . . are saddle-point

stable. On the contrary the steady states k̄2, k̄4, k̄6, . . . are necessarily locally

indeterminate or locally unstable. Finally, the trivial steady state k̂ = 0

will have an odd index when limk→0 φ′(k) > 0 and the closest non-trivial

steady state will have an even index. k̂ = 0 is therefore necessarily saddle-

point stable. Similarly k̂ = 0 has an even index when limk→0 φ′(k) < 0 and

the closest non-trivial steady state has an odd index. k̂ = 0 is therefore

necessarily locally indeterminate or locally unstable.

Proof of Proposition 5:

The notations used in the Proposition are N (εf ) for the numerator of the

trace T (εf ), P1(εf ) for the numerator of P(1) and P−1(εf ) for the numerator

of P(−1). Since εl,R > 0, cases i) and ii) consider two positive eigenvalues

with P(λ) > 0 for any λ ≤ 0, while cases iii) and iv) consider negative

eigenvalues with P(λ) > 0 for any λ ≥ 0.

i) If limεf→0 P1(εf) = εl,R − (ς + εs,R) < 0 and limεf→1 P1(εf) = εs,w −
(ς + εl,w) > 0, there exists εT

f ∈ (0, 1) such that P(1) < 0 for any εf ∈ (0, εT
f )

and P(1) > 0 when εf > εT
f . The steady state is thus saddle-point stable

for εf ∈ (0, εT
f ), one eigenvalue goes through 1 when εf crosses εT

f , and it

becomes locally indeterminate when εf belongs to a tight neighbourhood of

εT
f . Note that by continuity when εf > εT

f but close enough to εT
f , D(εf ) < 1.

ii) If P1(εf ) > 0 for any εf ∈ (0, 1), the eigenvalues are either real or

complex with modulus less than 1, or complex with modulus greater than
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1. If moreover, limεf→0 D(εf ) = 0 and limεf→1 D(εf ) = +∞, there exists

a Hopf bifurcation value εH
f ∈ (0, 1) such that the steady state is locally

indeterminate when εf ∈ (0, εH
f ) and locally unstable when εf belongs to a

right neighbourhood of εH
f .

The proof for cases iii) and iv) is similar.

Proof of Proposition 6:

Under Assumptions 1-3 and εl,R < 0, we have limλ→±∞ P(λ) = +∞ and

P(0) < 0. Therefore, the steady state will be locally indeterminate if and

only if P(1) and P(−1) are positive, saddle-point stable if and only if the

product P(1)P(1) is negative and locally unstable if and only if P(1) and

P(−1) are negative. Using the notations of Proposition 3 the rest of the

proof is obvious.

Proof of Proposition 7.

Let εl,R > 0 and assume that the steady states are ordered as k1 > k2 >

... > kn. Since limk→+∞ φ(k) = +∞, we generically have φ′(k1) > 0. Then,

generically, the steady states k̄1, k̄3, k̄5, . . . are such that φ′(k̄) > 0, whereas

the steady states k̄2, k̄4, k̄6, . . . are such that φ′(k̄) < 0.

i) Assume first that ΛL + εf εs,w + (1 − εf)εl,R > 0. This implies that

P(1) > P(−1). Recalling that φ′(k) = ΛL, and from the notations of Propo-

sition 3, ΛL < 0 implies 0 > P(1) > P(−1) and Proposition 6 shows that the

steady states k̄2, k̄4, k̄6, . . . are locally unstable. On the contrary, if ΛL > 0,

the steady states k̄1, k̄3, k̄5, . . . are necessarily locally indeterminate or saddle-

point stable. Finally, the trivial steady state k̂ = 0 will have an even index

when limk→0 φ′(k) < 0 and the closest non-trivial steady state will have an

odd index. k̂ = 0 is therefore necessarily locally unstable. Similarly k̂ = 0

has an even index when limk→0 φ′(k) > 0 and the closest non-trivial steady

state has an odd index. k̂ = 0 is therefore necessarily saddle-point stable or

locally indeterminate.

ii) Assume now that ΛL + εfεs,w + (1 − εf )εl,R < 0. This implies that

P(1) < P(−1). Similarly, ΛL > 0 implies 0 < P(1) < P(−1) and Proposition
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6 shows that the steady states k̄1, k̄3, k̄5, . . . are locally indeterminate. There-

fore, when ΛL < 0, the steady states k̄2, k̄4, k̄6, . . . are necessarily saddle-point

stable or locally unstable. Finally, the trivial steady state k̂ = 0 will have

an odd index when limk→0 φ′(k) > 0 and the closest non-trivial steady state

will have an even index. k̂ = 0 is therefore necessarily locally indeterminate.

Similarly k̂ = 0 has an odd index when limk→0 φ′(k) > 0 and the closest

non-trivial steady state has an even index. k̂ = 0 is therefore necessarily

saddle-point stable or locally unstable.

Proof of Proposition 8:

Since εl,R < 0, the eigenvalues are real with opposite sign.

i) If P−1(εf) < 0 for any εf ∈ (0, 1), one eigenvalue is negative and greater

than -1 for any εf ∈ (0, 1). If moreover limεf→0 P1(εf ) = εl,R − (ς + εs,R) < 0

and limεf→1 P1(εf) = εs,w − (ς + εl,w) > 0, there exists εT
f ∈ (0, 1) such that

P(1) > 0 for any εf ∈ (0, εT
f ), P(1) = 0 when εf = εT

f and P(1) < 0 when εf

is in a right neighbourhood of εT
f .

ii) The proof is similar.
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