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1 Introduction

The aim of this paper is to discuss the existence of endogenous fluctuations

in a two-sector optimal growth model with leisure-dependent utility function
(i.e. elastic labor supply). In particular we focus on the arbitrages between
preferences and technologies. We consider two alternative standard specifi-
cations for the utility function: an additive separable formulation in which
the stability properties of the optimal path will depend on the elasticities

of intertemporal substitution in consumption and labor, and an homothetic
formulation in which the dynamical system will depend instead on the shares
of consumption and leisure into total utility.

Our main results are the following: First, and as in the standard for-
mulation with inelastic labor supply, for any formulation for preferences,

saddle-point stability holds when the investment good is capital intensive.
Optimal oscillations then require a capital intensive consumption good.1

Second, when the utility function is additively separable, for some given
discount factor and under mild restrictions on the capital/labor ratio in the
consumption good sector, we provide some conditions on the elasticities of

intertemporal substitution for the existence of endogenous cycles. We show
that optimal oscillations require the elasticity of consumption to be high
enough while the elasticity of labor needs to be low enough. As a corollary
we then derive the surprising result that an infinite elasticity of substitution
in labor completely rules out the possibility of persistent cycles. Finally,

when the utility function is homothetic, we prove that the existence of peri-
odic cycles does not depend on the elasticitites of intertemporal susbtitution
but on the shares of consumption and labor into total utility: Namely a
high enough share of consumption is necessary. We show however that en-
dogenous fluctuations require even less restrictions on the capital intensity
difference accross sectors than in the additive separable case.

Since the seminal contribution of Benhabib and Nishimura [3], most of
the papers on endogenous fluctuations in multisector optimal growth models
deal with inelastic labor supply.2 They may be classified into two subsets.3

In a first one, we find the contributions in which a linear utility function
is considered and the existence of persistent cycles is discussed with re-

1See Benhabib and Nishimura [4].
2Endogenous fluctuations are also exhibited in overlapping generations models. See for

instance Grandmont [13] for a seminal contribution and Geanakoplos and Polemarchakis
[12] for a survey.

3Optimal growth models with recursive preferences are also considered in the literature.
See for instance Dana and Le Van [9].
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spect to the discount rate.4 Following the well-known Turnpike Theorem,
endogenous fluctuations require the discount factor to be far enough from
one, but arbitrarily small discounting may be compatible with optimal os-

cillations provided the technologies are adequately chosen.5 By focussing
only on the technological side, these analysis remain incomplete. The par-
ticular specification of the utility function prevents indeed to analyse the
role of preferences on the occurrence of endogenous fluctuations. The sec-
ond subset contains the contributions which deal with general reduced form

formulations of multisector optimal growth models. In such a framework,
endogenous cycles are obtained from a trade-off between the discount factor
and the curvature of the indirect utility function.6 As a consequence, it
remains difficult to obtain precise conditions on the fundamentals.

Among the few exceptions which introduce endogenous labor supply, two

papers desserve particular attention. Benhabib and Nishimura [5] consider a
stochastic two-sector optimal growth model with elastic labor supply. They
assume additively separable preferences which are also linear with respect
to consumption. Their concern is about stochastic perturbations of endoge-
nous cycles. The required conditions are still based on given technologies

characterized by a capital intensive consumption good and some restriction
of the discount factor. However, as we will show in the main text, the consid-
eration of a linear utility function with respect to consumption implies that
the elasticity of intertemporal substitution in labor does not influence the
dynamical properties of the optimal path. In such a particular framework,
Benhabib and Nishimura are actually not able to provide a clear picture of

the role of labor arbitrages on the occurrence of business cycles.
A second exception is the recent paper of Drugeon [11] in which he pro-

vides a general framework to analyse the dynamical properties of equilibrium
paths in two-sector growth models. Different specifications are considered
and among them we find the optimal growth model with elastic labor supply

and additively separable preferences.7 Under standard homogeneity assump-
tions on technologies, he characterizes the production possibility frontier in
terms of elasticities of factor substitution and shares of consumption, in-

4See for instance Baierl, Nishimura and Yano [1], Benhabib and Nishimura [3, 4],
Boldrin and Deneckere [7].

5See Benhabib and Rustichini [6] and Venditti [25].
6See for instance Montrucchio [21, 22]. More complex optimal solutions such that

chaotic paths are also exhibited from a similar trade-off (see Mitra and Sorger [20] as the
most recent contribution).

7Drugeon also considers standard optimal growth models with inelastic labor supply,
optimal growth models with two consumption goods, growth models with externalities,
and endogenous growth models with cyclical paths.
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vestment, wage and profits into national income. It follows that the local
stability properties of the steady state are functions of these parameters
together with the intertemporal elasticities of substitution in consumption

and leisure. However, no precise conditions on these parameters for the oc-
currence of endogenous cycles are given since Drugeon is more concerned
with methodological issues.

In the current paper, we use the methodology of Benhabib and Nishimura
[4] to provide a precise characterization of the production possibility frontier

in terms of the capital intensity difference between sectors, denoted b in
the following. We first prove existence and uniqueness of the steady state
for general standard preferences. Then we provide a complete analysis of
the optimal dynamics in terms of b and, depending on the formulation of
preferences, on the elasticities of intertemporal substitution in consumption

and labor, or on the shares of consumption and leisure into total utility. We
give precise conditions for the existence of optimal periodic cycles. As in
the standard framework with inelastic labor supply, endogenous fluctuations
require a capital intensive consumption good (i.e. b < 0). Considering then
b < 0, our strategy is the following: for a given discount factor β, which may

also be very close to one, we choose some technologies such that b satisfies
mild additional conditions and then we provide restrictions on preferences,
either on intertemporal substitution or on shares in total utility, such that
there exist endogenous fluctuations. Proceeding that way, we are able to
give a precise picture of the influence of the fundamentals on the dynamic
properties of the optimal path.

The rest of the paper is organised as follows: In Section 2 we set up the
basic model, we give necessary and sufficient conditions for the characteri-
zation of the optimal path, we prove existence and uniqueness of the steady
state, we provide a characterization of the transformation frontier in terms
of the technological parameters and we derive the characteristic polynomial.

Section 3 contains the main results. In Section 4, we compare our results
with related literature while concluding comments are given in Section 5.
All of the proofs are gathered in a final Appendix.

2 The model

2.1 The basic structure

The basic model is a two-sector optimal growth model augmented to in-
clude endogenous labor supply. We assume that there are two commodities
with one pure consumption good y0 and one capital good y. Each good is
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produced with a standard constant returns to scale technology:

y0 = f0(k0, l0), y = f1(k1, l1)

with k0 + k1 ≤ k, k being the total stock of capital, and l0 + l1 ≤ `, ` being
the amount of labor. We will assume that 0 ≤ ` ≤ ¯̀ with ¯̀ > 0 (possibly
infinite) the agent’s endowment of labor.

Assumption 1 . Each production function f i : R2
+ → R+, i = 0, 1, is C2,

increasing in each argument, concave, homogeneous of degree one and such
that for any x > 0, f i

1(0, x) = f i
2(x, 0) = +∞, f i

1(+∞, x) = f i
2(x,+∞) = 0.

For any given (k, y, `), we define a temporary equilibrium by solving the
following problem of optimal allocation of factors between the two sectors:

max
k0,k1,l0,l1

f0(k0, l0)

s.t. y ≤ f1(k1, l1)

k0 + k1 ≤ k

l0 + l1 ≤ `

k0, k1, l0, l1 ≥ 0

(1)

The associated Lagrangian is

L = f0(k0, l0) + p[f1(k1, l1) − y] + r[k − k0 − k1] + w[` − l0 − l1]

with p the price of the investment good, r the rental rate of capital and w
the wage rate, all in terms of the price of the consumption good. Solving
the associated first order conditions give optimal demand functions for cap-
ital and labor, namely k0(k, y, `), l0(k, y, `), k1(k, y, `) and l1(k, y, `). The

resulting value function

T (k, y, `) = f0(k0(k, y, `), l0(k, y, `))

is called the social production function and describes the frontier of the

production possibility set. The constant returns to scale of technologies
imply that T (k, y, `) is concave non-strictly. We will assume in the following
that T (k, y, `) is at least C2.

We also get from the first order conditions

r(k, y, `) = f0
1 (k0(k, y, `), l0(k, y, `)) = pf1

1 (k1(k, y, `), l1(k, y, `))

w(k, y, `) = f0
2 (k0(k, y, `), l0(k, y, `)) = pf1

2 (k1(k, y, `), l1(k, y, `))

p(k, y, `) =
f0
1 (k0(k, y, `), l0(k, y, `))

f1
1 (k1(k, y, `), l1(k, y, `))

=
f0
2 (k0(k, y, `), l0(k, y, `))

f1
2 (k1(k, y, `), l1(k, y, `))

(2)

4



and it is easy to show that the rental rate of capital, the price of investment
good and the wage rate satisfy

T1(k, y, `) = r(k, y, `), T2(k, y, `) = −p(k, y, `), T3(k, y, `) = w(k, y, `) (3)

Notice also that

w(k, y, `)` = T (k, y, `) − r(k, y, `)k + p(k, y, `)y (4)

which implies the linear homogeneity of T (k, y, `).

The economy is populated by a large number of identical infinitely-lived
agents. We will assume without loss of generality that the total population
is constant. The per-period utility function depends on consumption c and
leisure L = ¯̀− ` and satisfies the following basic restrictions:

Assumption 2 . u(c,L) is C2, increasing in each argument, concave and
satisfies for any x > 0 the boundary conditions limc→0 u1(c, x)/u2(c, x) =
+∞, limL→0 u1(x,L)/u2(x,L) = 0.8

We also introduce a standard normality assumption between consumption
and leisure

Assumption 3 . Consumption c and leisure L are normal goods.

Notice that T (k, y, `) gives the maximum production level of the consump-
tion good which will be entirely consumed by the representative agent, i.e.
ct = T (kt, yt, `t).

The capital accumulation equation is

kt+1 = yt + (1− δ)kt (5)

with δ ∈ [0, 1] the rate of depreciation of capital. The intertemporal max-
imisation program of the representative agent is thus as follows

max
{yt,`t,kt+1}+∞

t=0

+∞∑

t=0

βtu(T (kt, yt, `t), ¯̀− `t)

s.t. kt+1 = yt + (1− δ)kt

k0 given

(6)

where β ∈ (0, 1] denotes the discount factor.9 Following Michel [18], we
introduce the generalised Lagrangian at time t ≥ 0

Lt = u(T (kt, yt, `t), ¯̀− `t) + βλt+1

[
yt + (1− δ)kt

]
− λtkt

8These boundary conditions imply the Inada conditions.
9In the case β = 1, the infinite sum into the optimization program (6) may not converge.

However, following Ramsey [23], we may consider the state of bliss as defined by
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with λt the shadow price of capital kt. Taking into account equations (3),
the following first order conditions together with the transversality condition
provide necessary and sufficient conditions for an optimal path

u1(ct, ¯̀− `t)wt = u2(ct, ¯̀− `t) (7)

u1(ct, ¯̀− `t)rt + βλt+1(1 − δ) = λt (8)

u1(ct, ¯̀− `t)pt = βλt+1 (9)

lim
t→+∞

βtu1(ct, ¯̀− `t)ptkt+1 = 0 (10)

By manipulating equations (7)-(9), we easily obtain the following system of
Euler equations

−u1(ct, ¯̀− `t)pt + βu1(ct+1, ¯̀− `t+1)[rt+1 + (1− δ)pt+1] = 0 (11)

u1(ct, ¯̀− `t)wt − u2(ct, ¯̀− `t) = 0 (12)

It is then easy to conclude that this is an implicit system of two difference
equations of order 1 in the capital stock k and the labor supply `.

2.2 Steady state

A steady state is defined as kt = k∗, `t = `∗, yt = y∗ = δk∗, ct = c∗ =
T (k∗, δk∗, `∗), pt = p∗ = −T2(k

∗, δk∗, `∗), rt = r∗ = T1(k
∗, δk∗, `∗) and

wt = w∗ = T3(k
∗, δk∗, `∗) for all t. Recall now that T (k, y, `) is a linear

homogeneous function. This property is based on the fact that the capital
and labor demand functions k0(k, y, `), l0(k, y, `), k1(k, y, `) and l1(k, y, `) are
homogeneous of degree 0. Then denoting κ = k/`, a steady state (k∗, `∗)
may be also defined as a pair (κ∗, `∗) solution of the following equations

−T1(κ, δκ, 1)

T2(κ, δκ, 1)
= f1

1 (k1(κ, δκ, 1), l1(κ, δκ, 1)) = β−1 − (1 − δ) (13)

u1(`T (κ, δκ, 1), ¯̀− `)T3(κ, δκ, 1) = u2(`T (κ, δκ, 1), ¯̀− `) (14)

As in the standard two-sector model with inelastic labor, we get the following
result:

ū = max
c,`

u(c, ¯̀− `)

s.t. c + pδk = rk + w`

so that the infinite sum transformed as follows

max

+∞∑

t=0

βt[u(ct, ¯̀− `t) − ū]

will either converge toward a finite value when evaluated along the optimal path, or
converge toward −∞.
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Proposition 1 . Under Assumptions 1-3, there exists a unique steady state
(κ∗, `∗) solution of equations (13) − (14).10

A pair (k∗, `∗) will be called the Modified Golden Rule. The stationary

consumption is obtained from c∗ = T (k∗, δk∗, `∗).

2.3 The characteristic polynomial

In order to derive a tractable formulation for the degree 2 characteristic

polynomial associated with the Euler equation, we need to compute the
second derivatives of T (k, y, `). As already mentioned above, we know that
T (k, y, `) is a concave function. It follows that:

T11(k, y, `) =
∂r

∂k
≤ 0, T22(k, y, `) = −

∂p

∂y
≤ 0, T33(k, y, `) =

∂w

∂`
≤ 0

However the sign of the following cross derivatives is not obvious:

T12(k, y, `) =
∂r

∂y
= T21(k, y, `) = −∂p

∂k

T13(k, y, `) =
∂r

∂`
= T31(k, y, `) =

∂w

∂k

T23(k, y, `) = −
∂p

∂`
= T32(k, y, `) =

∂w

∂y
To study these derivatives we start from the homogeneity property of the
production functions. We have:

y0 = k0f
0
1 + l0f

0
2

y = k1f
1
1 + l1f

1
2

⇔
1 =

k0

y0
r +

l0
y0

w

1 =
k1

y

r

p
+

l1
y

w

p

We finally obtain:

( w r )

(
a00 a01

a10 a11

)
= ( 1 p ) (15)

with

a00 = l0/y0, a10 = k0/y0, a01 = l1/y, a11 = k1/y

the capital and labor coefficients in each sector. Equation (15) gives the
factor-price frontier and corresponds to the equality between price and cost.
Differentiating this equation gives:

10Under the normality Assumption 3, uniqueness also holds in the one-sector optimal
growth model with endogenous labor. In equation (13) the marginal productivity of capital
is thus obtained from the aggregate technology and the proof of Proposition 1 applies. This
result contrasts with the conclusions obtained by De Hek [10] in which multiple steady
states are exhibited when normality between consumption and leisure is not considered.
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( dw dr )

(
a00 a01

a10 a11

)
+ ( w r )

(
da00 da01

da10 da11

)
= ( 0 dp )

It can be easily shown that the envelope theorem implies

( w r )

(
da00 da01

da10 da11

)
= 0

so that

( dw dr )

(
a00 a01

a10 a11

)
= ( 0 dp )

Eliminating dw we can solve this system to get

dp

dr
= a01

(
a11

a01
− a10

a00

)
≡ b (16)

b is a relative capital intensity difference. The sign of b is thus positive if
and only if the investment good is capital intensive. We can also solve the

above system by eliminating dr and get

dw

dp
= −a10

a00
b−1 ≡ ab−1 (17)

with a = a10/a00 = k0/l0 > 0 the capital-labor ratio in the consumption
good sector. Now consider the cross derivatives. We can write:

T12 = −
∂p

∂r

∂r

∂k
= −T11b (18)

T31 =
∂w

∂p

∂p

∂k
= −∂w

∂p
T12 = −T11a ≥ 0 (19)

T32 =
∂w

∂p

∂p

∂y
=

∂w

∂p

∂p

∂r

∂r

∂y
= −

∂w

∂p
bT12 = T11ab (20)

As already shown by Benhabib and Nishimura [4], the sign of T12(k, y, `) is
given by the sign of the relative capital intensity difference betwen the two
sectors b. Notice also that T22(k, y, `) and T33(k, y, `) may be written as

T22 = −∂p

∂r

∂r

∂y
= T11b

2 (21)

T33 =
∂w

∂p

∂p

∂`
= −

∂w

∂p

∂w

∂y
= T11a

2 (22)

As shown in the previous subsection, the steady state (k∗, `∗) is charac-
terized by equations (13)-(14) which may be written as follows

−T ∗
2 β−1 = T ∗

1 − (1 − δ)T ∗
2 (23)

u∗
1T

∗
3 = u∗

2 (24)
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with T ∗
i = Ti(k

∗, δk∗, `∗) and u∗
i = ui(c

∗, ¯̀− `∗). In the following we will
also consider a second formulation for equation (23)

−T ∗
2 = βθT ∗

1 (25)

with θ = [1− β(1− δ)]−1. The second derivatives of the functions T (k, y, `)
and u(c, ¯̀− `) will be evaluated at (k∗, `∗) using the following notation:
T ∗

ij = Tij(k
∗, δk∗, `∗) and u∗

ij = uij(c
∗, ¯̀− `∗). Notice that the capital input

coefficients when evaluated at the steady state are functions of the discount

factor β and the rate of depreciation of capital δ. It follows that the capital
intensity difference satisfies b = b(β, δ). We finally introduce the elasticities
of substitution of consumption and leisure evaluated at the steady state11

εcc = −ξ−1
cc = − (u∗

11c
∗/u∗

1)
−1 > 0, εLc = −ξ−1

Lc = − (u∗
21c

∗/u∗
2)

−1 (26)

εLL = −ξ−1
LL = − (u∗

22L∗/u∗
2)

−1 > 0, εcL = −ξ−1
cL = − (u∗

12L∗/u∗
1)

−1 (27)

and the following elasticities of the consumption good’s output and the rental
rate with respect to the capital stock, all evaluated at the steady state

εck = T ∗
1 k∗/T ∗ > 0, εrk = T ∗

11k
∗/T ∗

1 < 0 (28)

Using equations (18)-(28), total differenciation of the Euler equations (11)-
(12) gives after tedious but straightforward computations:

−A1dkt + A2d`t + A3dkt+1 + βA4d`t+1 − βA1dkt+2 = 0 (29)

A4dkt +A5d`t + A2dkt+1 = 0 (30)

with

A1 = εrk
εck

b[1 + (1− δ)b] + βθ2ξcc

A2 = εrk
εck

ab− βθ
T ∗
3

T ∗
1
(ξcc − ξLc)

A3 = εrk
εck

[
b2 + β[1 + (1 − δ)b]2

]
+ β(1 + β)θ2ξcc < 0

A4 = θ
T∗
3

T∗
1
(ξcc − ξLc) − εrk

εck
a[1 + (1− δ)b]

A5 = εrk
εck

a2 +
(

T∗
3

T∗
1

)2
(ξcc − ξLc) +

T∗
3

(T∗
1 )2

c∗

L∗ (ξLL − ξcL) < 0

Solving equation (29) with respect to dkt+2 and substituting the result into
equation (30) gives the following linear system

[
βA1A4 +A2A3 β(A1A5 + A2A4)

A2 0

][
dkt+1

d`t+1

]
=

[
A1A2 −A2

2

−A4 −A5

] [
dkt

d`t

]

Assuming that the matrix on the left-hand-side is non singular, the following
Lemma provides a nice formulation for the characteristic polynomial

11Notice that the normality Assumption 3 implies ξcc − ξLc < 0 and ξLL − ξcL < 0.
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Lemma 1 . Under Assumptions 1-3, let A2(A1A5 + A2A4) 6= 0. The
characteristic polynomial is

P(λ) = λ2 − λT + D (31)
with

D = β−1 and T =
A3A5 −A2

2 − βA2
4

β(A1A5 + A2A4)

3 Main results

As in the standard two-sector model with inelastic labor, we first prove that

the saddle-point property holds when the representative consumer does not
discount the future, i.e. β = 1. Notice however that we need to introduce
an additional assumption concerning the curvature of the utility function
around the steady state.12

Proposition 2 . Under Assumptions 1-3, let β = 1 and the Hessian matrix
of the utility function u(c,L) be non singular when evaluated at the modified
golden rule (k∗, `∗). Then (k∗, `∗) is saddle-point stable.

Remark : We also show in Appendix 5.3 that under Assumptions 1-2,
the characteristic roots are real for any β ∈ (0, 1].

When β ∈ (0, 1), we have to discuss the local stability properties of the
modified golden rule depending on the sign of the capital intensity difference
between the two sectors b, i.e. depending on whether the investment good

is capital (b > 0) or labor (b < 0) intensive at the steady state. We first
start with the case b > 0.

Proposition 3 . Under Assumptions 1-3, if the investment good is cap-
ital intensive at the modified golden rule, the optimal path monotonically
converges to the modified golden rule (k∗, `∗).

Remark : In a standard one-sector optimal growth model with endoge-
nous labor, b = 0 and the proof of Proposition 3 also applies: under As-
sumption 3 the saddle-point property always holds. When normality be-
tween consumption and leisure is not considered, De Hek [10] shows on the

contrary that the steady-state may become unstable and endogenous fluctu-
ations may occur. Such a result requires however non-standard preferences.

12A similar result is mentioned as a remark in Benhabib and Nishimura [4] but no formal
proof is available. Notice also that the authors only mention the case of an additively
separable utility function which is linear with respect to consumption.
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As in the two-sector model with inelastic labor, Proposition 3 shows
that when the investment good is capital intensive the optimal path mono-
tonically converges to the modified golden rule. The same result has been

obtained independently by Drugeon [11]. The existence of endogenous fluc-
tuations thus requires a capital intensive consumption good. The intuition
for this result, which is found in Benhabib and Nishimura [4], comes from
the Rybczinsky and Stolper-Samuelson effects. It may be summarised as
follows. Consider an instantaneous increase in the capital stock kt. This

results in two opposing forces:
- Since the consumption good is more capital intensive than the in-

vestment good, the trade-off in production becomes more favorable to the
consumption good. Moreover, the Rybczinsky theorem implies a decrease
of the output of the capital good yt. This tends to lower the investment and

the capital stock in the next period kt+1.
- In the next period the decrease of kt+1 implies again through the Ry-

bczinsky effect an increase of the output of the capital good yt+1. This
mechanism is explained by the fact that the decrease of kt+1 improves the
trade-off in production in favor of the investment good which is relatively

less intensive in capital. Therefore this tends to increase the investment and
the capital stock in period t + 2, kt+2. Notice also that the rise of yt+1 im-
plies a decrease of the rental rate wt+1 and through the Stolper-Samuelson
effect an increase of the price pt+1.

So far the discussion concerns the existence of oscillations but saddle-
point stability may still hold. Persistent cycles require more conditions.

For cycles to be sustained, the oscillations in relative prices must not in-
deed present intertemporal arbitrage opportunities. For instance, possible
gains from postponing consumption from periods when the marginal rate
of transformation between consumption and investment is high to periods
when it is low must not be worth it. We need therefore to introduce in the

discussion the properties of preferences. In order to simplify the analysis,
we will respectively consider in the following two standard formulations: an
additively separable utility function and an homogeneous utility function.

Considering equations (13)-(14), and as shown in the proof of Proposi-
tion 1, the steady-state (κ∗, `∗) is defined as follows: the capital/labor ratio

κ∗ = k∗/`∗ is only determined by the technological characteristics, the dis-
count factor β and the rate of depreciation of capital δ. The properties of
preferences only influence the stationary value of labor `∗. Then for some
given technologies and a given pair (β, δ), the value of κ∗ is fixed and it is
easy to consider variations of preferences in order to study the occurrence

of bifurcations. This will be our strategy of proof in the sequel of the paper.
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3.1 The case of additively separable preferences

The assumption of an additively separable utility function is used for in-

stance in a stochastic version of this model by Benhabib and Nishimura [5].
They also assume that the utility function is linear with respect to consump-
tion. We will consider in the following a general formulation for the utility
function and prove that in this case the elasticity of intertemporal substi-
tution in labor/leisure has a great influence on the local stability properties

of the steady state. Recall from equations (26)-(27) that the elasticities of
intertemporal subsitution in consumption and leisure are

εcc = −ξ−1
cc ∈ [0,+∞], εLL = −ξ−1

LL ∈ [0,+∞]

We introduce the following critical value for the elasticity of intertemporal

substitution in consumption that will be useful to prove the existence of
endogenous fluctuations:

ε̄cc ≡
εck2β(1 + β)θ2

εrk[1 + (2− δ)b][b + β[1 + (1 − δ)b]]
(32)

Proposition 4 . Under Assumptions 1-3, let u(c,L) be additively separa-
ble, β ∈ (0, 1) and the consumption good be capital intensive at the modified
golden rule (k∗, `∗). The following cases hold:

i) When b ∈ (−∞,−1/[2− δ])∪ (−β/[1+β(1− δ)], 0), (k∗, `∗) is saddle-

point-stable for all εcc, εLL > 0.
ii) When b ∈ (−1/[2 − δ],−β/[1 + β(1 − δ)]), for any given εcc ≤ ε̄cc,

(k∗, `∗) is saddle-point-stable for all εLL > 0.
iii) When b ∈ (−1/[2 − δ],−β/[1 + β(1 − δ)]), for any given εcc > ε̄cc,

there exists ε̄LL ∈ (0, +∞) such that (k∗, `∗) is saddle-point-stable if and only

if εLL ∈ (ε̄LL, +∞). Moreover, when εLL crosses ε̄LL from above, (k∗, `∗)
undergoes a flip bifurcation.

Proposition 4 shows that the existence of endogenous fluctuations is
based on some restrictions on the values of the elasticities of intertemporal
substitution in consumption and leisure. Considering cases ii) and iii) shows
that the elasticity of consumption needs to be high enough while the elas-

ticity of labor needs to be low enough. This confirms the standard intuition
in optimal growth models that the concavity of the utility function restricts
the possibility of cycles.13 However our results show that this intuition only
applies to the concavity with respect to consumption. Endogenous fluctua-
tions indeed require some concavity of preferences with respect to labor. It

13See for instance Magill [21] and Rockafellar [24].
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is indeed possible to derive from this the surprising strong result that saddle-
point stability is obtained without additional restriction when the elasticity
of intertemporal substitution in leisure is close to infinity, i.e. when the

utility function is nearly linear in leisure.

Corollary 1 . Under Assumptions 1-3, let u(c,L) be additively separable
and linear with respect to leisure. Assume also that the consumption good is
capital intensive at the modified golden rule (k∗, `∗). Then (k∗, `∗) is saddle-
point stable for all εcc ∈ (0, +∞).

This Corollary confirms a result that is already suggested in Proposition 4:
when the consumption good is capital intensive, the capital/labor alloca-

tions between sectors generate some oscillations in relative prices that will
present intertemporal arbitrages opportunities. The presence of a strong
intertemporal elasticity of substitution in labor allows the representative
agent to obtain some gains from postponing leisure from periods when the
productivity of labor is high to periods when it is low. This optimal policy

smooths the intertemporal allocations of leisure and consumption and thus
prevents the existence of persistent cycles.14 Notice that this result does
not directly depend on the value of the discount factor, i.e. on the degree
of myopia of the representative agent. Everything happens as if leisure is
definitively more important than consumption.

If we assume as in Benhabib and Nishimura [5] that the utility function
is additively separable and linear with respect to consumption, leisure arbi-
trages no longer influence the local stability properties of the steady state.15

Moreover the existence of endogenous fluctuations requires stronger restric-
tions on the discount factor.

Corollary 2 . Under Assumptions 1-3, let u(c,L) be additively separable

and linear with respect to consumption. Assume also that the consumption
good is capital intensive at the modified golden rule (k∗, `∗). The following
results hold:

i) (k∗, `∗) is saddle-point stable if and only if b(β, δ) ∈ (−∞,−1/[2 −
δ]) ∪ (−β/[1 + β(1− δ)], 0).

ii) If there is some β∗ ∈ (0, 1) such that b(β∗, δ) ∈ (−1/[2− δ],−β∗/[1 +

14In a simple one-sector stochastic growth model with shocks to technology, Hansen
[14] considers a similar linear formulation of preferences with respect to leisure through
the assumption of indivisible labor. In such a framework business cycles fluctuations are
based on technological disturbances.

15This result has already been pointed out by Drugeon [11] though his concern was
more methodological.
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β∗(1 − δ)]), then there exists β̄ ∈ (0, 1) such that, when β crosses β̄ from
above, (k∗, `∗) undergoes a flip bifurcation.

When the intertemporal elasticity of substitution in consumption is infi-

nite, we find the same intuition as in the standard two-sector optimal growth
model with inelastic labor considered by Benhabib and Nishimura [4]: for
cycles to be sustained, the oscillations in relative prices must not present
intertemporal arbitrages opportunities. This implies the existence of a min-
imum degree of myopia for the representative agent.

3.2 The case of homogeneous preferences

When the utility function is linear homogeneous, it is useful to define the

shares of consumption and leisure into total utility at the steady state as
follows

σc = u∗
1c

∗/u∗ > 0, and σL = u∗
2L∗/u∗ > 0

Linear homogeneity of u(c,L) then implies σc + σL = 1.
In the following Proposition we will consider variations of the share of

consumption into total utility. Before stating the Proposition, we introduce
the following critical values for σc:

σc ≡ 1 +
1 − s

2sβθ

b + β[1 + (1− δ)b]

1 − δb
(33)

σ̄c ≡ 1 +
1 − s

s(1 + β)θ

1 + (2 − δ)b

1 − δb
(34)

Proposition 5 . Under Assumptions 1-3, let u(c,L) be homogeneous of

degree one, β ∈ (0, 1) and the consumption good be capital intensive at the
modified golden rule (k∗, `∗). The following cases hold:

i) When b ∈ (−β/[1 + β(1− δ)], 0), (k∗, `∗) is saddle-point stable;
ii) When b ∈ (−1/[2−δ],−β/[1+β(1−δ)]), (k∗, `∗) is saddle-point stable

if and only if σc ∈ (0, σc). Moreover, when σc crosses σc from below, (k∗, `∗)

undergoes a flip bifurcation;
iii) When b < −1/[2 − δ], (k∗, `∗) is saddle-point stable if and only if

σc ∈ (0, σc)∪(σ̄c, 1). Moreover, when σc crosses σc from below, or σc crosses
σ̄c from above, (k∗, `∗) undergoes a flip bifurcation.

Remark : Notice that the local stability properties of the steady-state
and thus the possible existence of endogenous fluctuations do not depend
on the elasticities of substitution in consumption and leisure.

As in the additive separable case, Proposition 5 exhibits a kind of sub-

stitutability between consumption and leisure concerning the existence of
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endogenous fluctuations. Notice also that the interval of values for the
capital intensity difference which are compatible with endogenous fluctu-
ations is much more important than in the additive separable case. Propo-

sition shows indeed that cycles may exist even if b < −1/[2 − δ]. From
this point of view, it also appears that depending on the values of b, the
kind of substitutability between consumption and leisure is different. If
b ∈ (−1/[2 − δ],−β/[1 + β(1 − δ)]), endogenous fluctuations require a high
relative share of consumption into total utility and thus a low relative share

of leisure. This reinforces the conclusions derived in the additive separable
case in which persistent cycles require strong substitution of consumption
and low substitution of leisure. On the contrary, if b < −1/[2 − δ], endoge-
nous fluctuations are ruled out when the relative share of consumption is
too high or too low. Intermediary values for σc are indeed required.

To find an intuition for this result we need to study carefully the prop-
erties of the homogeneous utility function. Notice that the marginal utility
of leisure is an inceasing function of consumption, i.e. u12 > 0. It follows
that from the point of view of marginal utility, consumption and leisure are
substitute: an increase of consumption implies an increase of the marginal

utility of leisure, so that for a given level of utility, the representative agent
will decrease his leisure and thus increase his labor supply. Then the os-
cillations of the consumption good output that come from the Rybczinsky
theorem affect more the labor supply than in the case of separable prefer-
ences.16 Notice also that a rise of the total labor supply implies, all other
things equal, an increase of the labor allocation in the investment good sec-

tor which is more labor intensive. This decreases the labor supply in the
consumption good sector so that the capital intensity difference between the
two sectors is increased. The oscillations of the consumption good output
then become more important. As a result, the conjunction of these two
effects provide more opportunities for persistent oscillations.

3.3 Comparison with related literature

The main comparison has to be made with the paper by Benhabib and
Nishimura [4] in which a two-sector optimal growth model with inelastic
labor is considered. In such a formulation, u(c,L) = U(c) and the necessary

16A mechanism based on similar properties of preferences is provided by Michel and
Venditti [19]. They consider a one-sector overlapping generations model with an altruistic
representative agent having non-separable preferences over his life-cycle. They prove that
contrary to the separable case, when the utility function is characterized by a positive
cross derivative (u12 > 0), endogenous cycles are compatible with operative bequests.
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condition for an optimal path is given by the Euler equation (11) with `t = ¯̀

for all t ≥ 0. Proposition 1 still applies for the existence of a unique steady
state. The linearised Euler equation (29) is then considered with A2 = A4 =

0 and it is easy to derive the following:

P(0) = εrk
εck

b[1 + (1 − δ)b] − 1
εcc

βθ2

P(1) = − εrk
εck

(1 − δb)(β − θ−1b) > 0

P(−1) = εrk
εck

[1 + (2− δ)b]
[
b + β[1 + (1 − δ)b]

]
− 2

εcc
β(1 + β)θ2

In order to discuss the existence of endogenous cycles we will assume that
the consumption good is capital intensive at the modified golden rule (k∗, ¯̀),

i.e. b < 0. Following the same arguments as in the proof of Proposition 4,
it is then easy to prove:

Result 1 : When b ∈ (−∞,−1/[2− δ]) ∪ (−β/[1 + β(1− δ)], 0), (k∗, ¯̀) is
saddle-point stable.

Result 2 : When b ∈ (−1/[2−δ],−β/[1+β(1−δ)]), (k∗, ¯̀) is saddle-point
stable if and only if εcc ∈ (0, ε̄cc) with ε̄cc as defined by equation (32). More-
over, when εcc crosses ε̄cc from below, (k∗, ¯̀) undergoes a flip bifurcation.

Result 3 : When U(c) = c, (k∗, ¯̀) is saddle-point stable if and only if
b(β, δ) ∈ (−∞,−1/[2 − δ]) ∪ (−β/[1 + β(1 − δ)], 0). Moreover, if there is
some β∗ ∈ (0, 1) such that b(β∗, δ) ∈ (−1/[2− δ],−β∗/[1 + β∗(1− δ)]), then
there exists β̄ ∈ (0, 1) such that, when β crosses β̄ from above, (k∗, ¯̀) un-
dergoes a flip bifurcation.

Notice that while Benhabib and Nishimura [4] consider a general reduced
form model with one state variable, specific results concerning two-sector
optimal growth models are given only under the assumption of a linear
utility function. This is precisely Result 3. Even if the intuition that the
concavity of preferences decreases the possibility of endogenous fluctuations

was suggested by the indirect utility formulation of Benhabib and Nishimura
[4], Results 1 and 2 as stated above were not previously available in the
literature.

Result 2 may be directly compared with Proposition 4. It corresponds
to the particular case of an elasticity of intertemporal substitution in labor

equal to zero. Endogenous fluctuations then require enough intertemporal
substitution in consumption. Result 3 is similar to Corollary 2. It con-
firms the conclusion that when the utility function is linear with respect to
consumption, leisure/labor arbitrages do not play any role on the stabil-
ity properties of the optimal path. The specification used by Benhabib and

Nishimura [5] does not provide therefore an accurate framework to study the
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effects of labor arbitrages on the distributions of the capital stock, invest-
ment, consumption and employment. Finally, Proposition 4 and Corollary
1 show that the standard two-sector optimal growth model with inelastic

labor supply is actually a very particular case. As soon as the elasticity of
intertemporal substitution in labor is high enough, endogenous cycles are
ruled out and saddle-point stability holds.

When compared with the contributions which deal with general reduced
from optimal growth models,17 our results provide a very clear picture of

the role of preferences. As it was shown by Venditti [26], curvatures of the
indirect utility function may be easily linked with some characteristics of
technologies such that the returns to scale. However, up to our knowledge,
there is no result available in the literature which provides links between
these curvatures and some characteristics of preferences.

We may finally compare our conclusions with the contribution of Ben-
habib and Rustichini [6]. They show that small discounting is compatible
with endogenous cycles provided the coefficients of the Cobb-Douglas tech-
nologies are adequately chosen.18 Their linear specification for the utility
function prevents to characterize the effects of preferences. Our results show

that periodic cycles are also compatible with small discounting when the
technologies and the characteristics of preferences (either the elasticities of
intertemporal substitution or the shares of consumption and leisure into to-
tal utility) are adequately chosen. We thus consider additional degrees of
freedom to improve the plausibility of endogenous fluctuations.

4 Conclusion

In this paper we consider a two-sector optimal growth model with elastic la-
bor supply. Contrary to most of the contributions available in the literature,

we assume a general utility function for the representative agent. The tech-
nological side of the model described by the production possibility frontier
is completely characterized in terms of the capital intensity difference ac-
cross sectors, b, and the elasticity of the rental rate, εrk. We prove existence
and uniqueness of the steady state. Then we provide a dynamical analysis

based on the fundamentals. We first show that when the investment good is
capital intensive, i.e. b ≥ 0, the steady state is always saddle-point stable.
When the consumption good is capital intensive, i.e. b < 0, we consider
two standard specifications for preferences. Considering an additive sepa-

17See for instance Montrucchio [21, 22].
18See also Venditti [25] for similar conclusions in a more general framework.
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rable utility function, we show that the local dynamic properties depend
on the elasticities of intertemporal substitution in consumption and labor.
We then prove that, provided the parameter b satisfies mild restrictions,

the occurrence of two-period cycles through a flip bifurcation requires the
elasticity of intertemporal substitution in consumption to be high enough
while the elasticity of labor needs to be low enough. As a corollary, we then
obtain the surprising strong result that when the elasticity of intertemporal
substitution in labor is infinite, endogenous fluctuations are ruled out.

When an homothetic utility function is considered, we first show that
the local dynamic properties depend instead on the shares of consumption
and leisure into total utility. Then we prove that conditions on these shares
similar to the one exhibited with the elasticities of intertemporal susbtitution
explains the existence of periodic cycles. Namely, the share of consumption

needs to be high enough. We show however that endogenous fluctuations are
compatible with a wider set of values for the parameter b than in the case
of separable preferences. All there results therefore give a precise picture of
the role of preferences on the occurrence of business cycles.

5 Appendix

5.1 Proof of Proposition 1

Consider in first step equation (13). Notice that the steady state value for
κ only depends on the characteristics of the technologies and is independent
from the per-period utility function. Moreover, equation (13) is equivalent

to the equation which defines the stationary capital stock of a two-sector
optimal growth model with inelastic labor.19 The proof of Theorem 3.1 in
Becker and Tsyganov [2] restricted to the case of one homogeneous agent
applies so that there exists one unique κ∗ solution of (13).

Consider now equation (14) evaluated at κ∗. We get:

T3(κ
∗, δκ∗, 1) =

u2(`T (κ∗, δκ∗, 1), ¯̀− `)

u1(`T (κ∗, δκ∗, 1), ¯̀− `)
≡ h(`)

The function h(`) is defined over (0, ¯̀) and satisfies

h′(`) = −
T (u11w − u12) + u22 − u21w

u1

The normality Assumption 3 implies that for any (c,L) > 0, when consider-
ing the equilibrium wage rate w = T3(k, y, `), u(c,L) satisfies u11(c,L)w −

19See for instance Bosi, Magris and Venditti [8].
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u12(c,L) < 0 and u22(c,L)− u21(c,L)w < 0. It follows that h′(`) > 0. This
monotonicity property together with the boundary conditions in Assump-
tion 2 finally garantee the existence and uniqueness of a solution `∗ ∈ (0, ¯̀)

of equation (14).

5.2 Proof of Lemma 1

The determinant of the matrix on the left-hand-side of the linearized dy-
namical system is equal to −βA2(A1A5 +A2A4) and is assumed to be non

zero. The linearized dynamical system then becomes
[

dkt+1

d`t+1

]
=

[
−A4

A2
−A5

A2
A1A2

2+A4(βA1A4+A2A3)
βA2(A1A5+A2A4) −A3

2−A5(βA1A4+A2A3)
βA2(A1A5+A2A4)

][
dkt

d`t

]

Straightforward computations give the result.

5.3 Proof of Proposition 2

The intertemporal maximisation program of the representative agent (6)

may be considered as two distinct optimization programs: a static one and
a dynamic one. Consider the following static problem:

U (kt, yt) = max
`t

u(T (kt, yt, `t), ¯̀− `t)

s.t. T (kt, yt, `t) + ptyt = rtkt + wt`t

Denoting µ ≥ 0 the Lagrange multiplier, the first order condition is

u1(ct, ¯̀− `t)T3(kt, yt, `t)− u2(ct, ¯̀− `t) + µ[wt − T3(kt, yt, `t)] = 0

Since T3(kt, yt, `t) = wt we find the same necessary condition for an optimal

leisure choice as equation (12). Under Assumptions (1)-(2), this optimiza-
tion program is concave and it follows from Theorem 19.2, p. 282, in Madden
[16] that the value function U (kt, yt) is concave. We may then define the
indirect utility function as V (kt, kt+1) = U (kt, kt+1 − (1 − δ)kt) and the
dynamic optimization program becomes:

max
{kt}+∞

t=0

+∞∑

t=0

βtV (kt, kt+1)

s.t. (kt, kt+1) ∈ D
k0 given

with

D =
{

(kt, kt+1) ∈ R2
+/(1 − δ)kt ≤ kt+1 ≤ f1(kt, ¯̀) + (1 − δ)kt

}
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The Euler equation for an interior optimal path is then given by the following
difference equation of order two

V2(kt, kt+1) + βV1(kt+1, kt+2) = 0

This equation is equivalent to the system (11)-(12). The steady state k∗ is
thus given by Proposition 1. The characteristic polynomial is then

P (λ) = λ2βV ∗
12 + λ(βV ∗

11 + V ∗
22) + V ∗

12 = 0

with V ∗
ij = Vij(k

∗, k∗). It is easy to show that the discriminant is

∆ = (βV ∗
11 + V ∗

22 + 2
√

βV ∗
12)(βV ∗

11 + V ∗
22 − 2

√
βV ∗

12)

Under Assumptions 1-2, the Hessian matrix of V (kt, kt+1) is negative semi-
definite so that ∆ ≥ 0 and the characteristic roots are real. Following
Levhari and Liviatan [15], when β = 1, it is easy to show as in the standard

two-sector optimal growth model with inelastic labor that if the Hessian
matrix of V (kt, kt+1) is non-singular at the steady state, the characteristic
roots cannot be equal to 1 or −1. Moreover, since the product of the roots
is equal to 1, the steady state is necessarily saddle-point stable. The proof is
completed by the fact that the condition on the Hessian matrix of V (kt, kt+1)

holds if the Hessian matrix of u(c,L) is itself non singular at the steady state.

5.4 Proof of Proposition 3

Consider the characteristic polynomial in Lemma 1 which may be rewritten
as follows:

P(λ) = λ2β[A1A5 + A2A4]− λ[A3A5 −A2
2 − βA2

4] + A1A5 + A2A4 (35)

When λ = 1 and λ = 0, we easily get:

P(1) = (A2 + βA4)(A2 + A4) + A5[(1 + β)A1 −A3]

P(0) = A1A5 + A2A4

Tedious but straightforward computations give

(A2 + βA4)(A2 + A4) +A5[(1 + β)A1 −A3] = − εrk
εck

(β − θ−1b)
T ∗
3

T ∗
1

×
{[

a(1− β)θ + (1− δb)
T ∗
3

T ∗
1

]
(ξcc − ξLc) + (1− δb) 1

T∗
1

c∗

L∗ (ξLL − ξcL)
}

and
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A1A5 + A2A4 = εrk
εck

b[1 + (1 − δ)b]
T∗
3

(T ∗
1 )2

{
T ∗

3 (ξcc − ξLc) + c∗

L∗ (ξLL − ξcL)
}

+ εrk
εck

a2βθ2ξcc + εrk
εck

aθ
T ∗
3

T ∗
1
(ξcc − ξLc)

[
b + β[1 + (1− δ)b]

]

+ βθ2 T∗
3

(T∗
1 )2

{
T ∗

3 ξLc(ξcc − ξLc) + c∗

L∗ ξcc(ξLL − ξcL)
}

Concavity of the utility function implies

T ∗
3 ξLc(ξcc − ξLc) +

c∗

L∗ ξcc(ξLL − ξcL) =
c∗2

u∗
1u

∗
2

[u∗
11u

∗
22 − u∗2

12] ≥ 0

Moreover the normality assumption together with ε∗rk/ε∗ck < 0 imply that if
the investment good is capital intensive (b > 0), P(0) is strictly positive.

From equation (15), we get wa01 + ra11 = p. When evaluated at the

steady state, the Euler equation (11) rewrites as p = βθr. We then obtain
after substitution in the previous equation

βr(θ − β−1a11) = wa01 > 0

Prices positivity implies θ − β−1a11 > 0. From equation (17), we observe
that

β − θ−1b =
a00(β − θ−1a11) + θ−1a10a01

a00
> 0

Then we have b < βθ, which entails b < 1/δ. Summing up, we obtain
β−θ−1b > 0, 1−δb > 0. Then from the normality assumption and ε∗rk/ε∗ck <

0, P(1) is strictly negative. We conclude that P(1)/P(0) < 0 and there exists
one characteristic root into (0, 1) while the other is greater than 1.

5.5 Proof of Proposition 4

Lemma 1 implies that the characteristic roots have the same sign. Moreover,
we know from the proof of Proposition 3 that P(1) < 0. Then the saddle-

point property will be obtained either with P(0) > 0, or with P(0) < 0 and
P(−1) > 0.

Consider equation (4) which can be written as follows

T (k, y, `) + p(k, y, `)y = r(k, y, `)k + w(k, y, `)`

We may then define the share of capital income in the gross national product
evaluated at the steady state as

s = r∗k∗/(T ∗ + p∗y∗)

and it follows easily that

1 − s

s
=

w∗`∗

r∗k∗ =
T ∗

3 `∗

T ∗
1 k∗
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From the homogeneity of the social production function and equations (18)-
(19) we get

0 = T ∗
11k

∗ + T ∗
12δk

∗ + T ∗
13`

∗

= T ∗
11k

∗[1 − δb + a`∗/k∗]

⇔ `∗/k∗ = (1− δb)/a

It follows finally
T ∗

3

T ∗
1

=
1 − s

s

a

1 − δb
(36)

Now consider the characteristic polynomial as given by equation (35). Using
the computations given in the proof of Proposition 3 and the above results

we get

P(0) = − εrk
εck

a2

εcc

[
1−s

s
b

1−δb + βθ
] [

θ + 1−s
s

1+(1−δ)b
1−δb

]

− T∗
3

(T ∗
1 )2

c∗

L∗
1

εLL

[
εrk
εck

b[1 + (1− δ)b]− 1
εcc

βθ2
]

P(−1) = − εrk
εck

a2

εcc

[
1−s

s
1+(2−δ)b

1−δb + (1 + β)θ
] [

1−s
s

b+β[1+(1−δ)b]
1−δb + 2βθ

]

− T∗
3

(T ∗
1 )2

c∗

L∗
1

εLL

{
εrk
εck

[1 + (2− δ)b]
[
b + β[1 + (1 − δ)b]

]
− 2

εcc
β(1 + β)θ2

}

Notice that from equation (25) we get (1 − s)/sβθ = w∗`∗/p∗k∗ and thus

1 − s

s

b

1 − δb
+ βθ = βθ

(
w∗b

p∗a
+ 1

)

From equation (15) we finally get

1 − s

s

b

1 − δb
+ βθ = βθ

a11

p∗a10
> 0 (37)

Notice also that

1 − s

s

1 + (1 − δ)b

1 − δb
+ θ ≥

1 − s

s

[
b

1 − δb
+ 1

]
+ βθ > 0

It follows that if b < −1/[1−δ], P(0) > 0 and the steady state is saddle-point
stable.

Consider now the case b ∈ (−1/[1−δ],−1/[2−δ])∪(−β/[1+β(1−δ)], 0).
Since b > −1/[1− δ], it is easy to show that

1−s
s

1+(2−δ)b
1−δb + (1 + β)θ > 1−s

s
b+β[1+(1−δ)b]

1−δb + 2βθ > 1−s
s

b
1−δb + βθ > 0

Then P(−1) > 0 and P(0) may be positive or negative depending on the
values of εcc and εLL. In both cases the steady state is saddle-point stable.

This proves case i).

22



Assume finally that b ∈ (−1/[2−δ],−β/[1+β(1−δ)]). The term between
brackets on the second line of the expression of P(0) is positive if and only
if εcc > εcc with

εcc ≡
εckβθ2

εrkb[1 + (1 − δ)b]
> 0 (38)

Consider now the term between brackets on the second line in the expression
of P(−1). It will be positive if and only if εcc > ε̄cc, with ε̄cc > 0 as defined
by equation (32), and P(−1) > 0 when ε̄cc ≥ εcc. It is easy to show that

ε̄cc > εcc. Then we have shown that if εcc ≤ εcc, P(0) > 0. Moreover, when
ε̄cc ≥ εcc > εcc, independently from the sign of P(0), we have P(−1) > 0
while P(1) < 0. It follows that when ε̄cc ≥ εcc, the steady state is saddle-
point stable for any εLL > 0 and case ii) is proved.

Consider finally case iii) with εcc > ε̄cc. We have limεLL→0 P(−1) = −∞
while limεLL→∞P(−1) > 0. Therefore, there exists ε̄LL ∈ (0, +∞) such that
P(−1) < 0 for any εLL ∈ (0, ε̄LL). Notice now that by definition

P(−1) = (1 + β)P (0)− εrk
εck

1
εcc

{
β

[
aθ +

T ∗
3

T ∗
1
[1 + (1− δ)b]

]2
+

[
βaθ +

T ∗
3

T ∗
1
b
]2

}

− T∗
3

(T ∗
1 )2

c∗

L∗
1

εLL

{
εrk
εck

[
b2 + β[1 + (1 − δ)b]2

]
− 1

εcc
β(1 + β)θ2

}

If εLL = ε̂LL, then P(0) = 0 and we get after simplifications P(−1) > 0.
It follows that ε̂LL > ε̄LL and we have P(−1) > 0 as soon as εLL > ε̄LL
while P(1) < 0. Combining these results we conclude that the saddle-point

property holds when εLL ∈ (ε̄LL,+∞). It is finally immediate to verify that
when εLL crosses ε̄LL from above, one characteristic root goes through −1
and the system undergoes a flip bifurcation.

5.6 Proof of Corollary 2

i) Using the computations given in the proof of Proposition 4 we get

P(−1)

P(0)
=

[1 + (2− δ)b][b + β[1 + (1− δ)b]]

b[1 + (1− δ)b]
< 0

if and only if b ∈ (−1/[1 − δ],−1/[2− δ]) ∪ (−β/[1 + β(1− δ)], 0).
ii) Assume that there is some β∗ ∈ (0, 1) such that b(β∗, δ) ∈ (−1/[2 −

δ],−β∗/[1 + β∗(1 − δ)]). Then from Proposition 2 and a continuity argu-

ment, there exists β̄ ∈ (0, 1) such that P(−1)/P(0) = 0 when β = β̄ and
P(−1)/P(0) > 0 when β is in a left neighbourhood of β̄. It follows that
when β = β̄, the system undergoes a flip bifurcation.
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5.7 Proof of Proposition 5

From equation (23) and the linear homogeneity of u(c,L) we get

u∗ = u∗
1(c

∗ +L∗T ∗
3 ), u∗

12 = −u∗
11(c

∗/L∗) = −u∗
22(L∗/c∗)

We easily derive from this

ξcc − ξLc = ξLL − ξcL = ξcc(1 − σc)
−1

Now consider the characteristic polynomial as given by equation (35) and
the expression (36) in the proof of Proposition 4. Using the computations

given in the proof of Proposition 3 and the above results we get

P(0) = εrk
εck

ξcca
2(1− σc)

−2
[

1−s
s

b
1−δb + (1 − σc)βθ

][
1−s

s
1+(1−δ)b

1−δb + (1 − σc)θ
]

P(−1) = εrk
εck

ξcca
2(1− σc)

−2
[

1−s
s

1+(2−δ)b
1−δb + (1− σc)(1 + β)θ

]

×
[

1−s
s

b+β[1+(1−δ)b]
1−δb + (1 − σc)2βθ

]

In order to study the local stability properties of the steady state we need
to check the sign of the expressions between brackets into P(0) and P(−1).
We have

1−s
s

b
1−δb + (1 − σc)βθ > 0 ⇔ 1 − σc > −1−s

sβθ
b

1−δb ≡ B1

1−s
s

1+(1−δ)b
1−δb + (1 − σc)θ > 0 ⇔ 1 − σc > −1−s

sθ
1+(1−δ)b

1−δb ≡ B2

1−s
s

1+(2−δ)b
1−δb + (1 − σc)(1 + β)θ > 0 ⇔ 1 − σc > − 1−s

s(1+β)θ
1+(2−δ)b

1−δb ≡ B3

1−s
s

b+β[1+(1−δ)b]
1−δb + (1 − σc)2βθ > 0 ⇔ 1 − σc > − 1−s

2sβθ
b+β[1+(1−δ)b]

1−δb ≡ B4

Some straightforward computations show that B1 > B4 > B3 > B2. From
equation (37) in the proof of Proposition 4 we get

1 − s

s

b

1 − δb
+ (1− σc)βθ = βθ

(
a11

p∗a10
− σc

)

Using again equation (15) it is then easy to show that since b < 0, we have
a11/p∗a10 < 1 so that the above expression may be positive or negative.

This implies also that B1 < 1 and thus 1 > B1 > B4 > B3 > B2.
We have now to discuss the local stability properties as a function of b.

Lemma 1 implies that the characteristic roots have the same sign. Moreover,
we know from the proof of Proposition 3 that P(1) < 0. Then the saddle-
point property will be obtained either with P(0) > 0, or with P(0) < 0 and

P(−1) > 0.
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Assume first that b ∈ (−β/[1 + β(1 − δ)], 0). Then 0 > B4 > B3 > B2

and P(−1) > 0 while P(0) may be positive or negative depending on the
value of σc. The steady state is then saddle-point stable.

If b ∈ (−1/[2 − δ],−β/[1 + β(1 − δ)]), we have 0 > B3 > B2. It follows
that P(−1) > 0 if and only if σc ∈ (0, σc) with σc as defined by (33), while
P(0) < 0 if and only if σc ∈ (σ̃c, 1) with

σ̃c ≡ 1 +
1 − s

sβθ

b

1 − δb
(39)

From B1 > B4 we derive σc > σ̃c and the steady state is saddle-point stable
if and only if σc ∈ (0, σc). It is finally immediate to verify that when σc

crosses σc from below, one characteristic root goes through −1 and the
system undergoes a flip bifurcation.

Assume now that b ∈ (−1/[1−δ],−1/[2−δ]). Then 0 > B2 and P(−1) >

0 if and only if σc ∈ (0, σc) ∪ (σ̄c, 1) with σ̄c as defined by equation (34),
while P(0) < 0 if and only if σc ∈ (σ̃c, 1). The steady state is thus saddle-
point stable if and only if σc ∈ (0, σc) ∪ (σ̄c, 1). It is finally immediate to
verify that when σc crosses σc from below, or σc crosses σ̄c from above,
one characteristic root goes through −1 and the system undergoes a flip

bifurcation.
Finally, when b < −1/[1 − δ], we have P(−1) > 0 if and only if σc ∈

(0, σc) ∪ (σ̄c, 1) while P(0) < 0 if and only if σc ∈ (σ̃c, σ̂c) with

σ̂c ≡ 1 +
1 − s

sθ

1 + (1− δ)b

1 − δb
> σ̄c (40)

The steady state is thus saddle-point stable if and only if σc ∈ (0, σc)∪(σ̄c, 1).
It is finally immediate to verify that when σc crosses σc from below, or σc

crosses σ̄c from above, one characteristic root goes through −1 and the
system undergoes a flip bifurcation.
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