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1 Introduction

Vector error correction models (V ECM) have now become an essential

part of time series econometricians’ toolkit since they are based on the desire

to develop a macro-econometric model which has transparent theoretical foun-

dations, providing insights into the behavioral relationships which underlie the

functioning of macro-economy, and which has flexible dynamics that fit the his-

torical time series data well. As it is now well established two different families

of approaches can be distinguished within this framework :

- the full system modelling approach is based on complete V ECM in which

a set on interesting statistically and economically meaningful hypotheses can be

raised (cf. Johansen and Juselius, 1992). The optimality of this approach has

been pointed out for instance by Phillips (1991),

- the partial system modelling approach which rests upon the estimation of

conditional ECMs in which the generating process of some variables is not mod-

elled (the marginal model). Conditional ECMs are very popular empirically (cf.

Davidson, Hendry, Srba and Yeo, 1978; Hendry and Ericsson, 1991; Ericsson and

Iron, 1994; Urbain, 1995; Rault et al., 2003), since they have same optimality

properties than complete V ECM when exogeneity conditions are satisfied (cf.

Johansen, 1995). It means in other terms that if exogeneity is valid, neglecting

the marginal model is without loss of information and conditional ECMs are

invariably much simpler to model than the whole system.

This practical appealing aspect might explain why considerable theoretical

interest has been devoted this last decade to the analysis of the exogeneity con-

cept in linear V ECM with variables at most integrated of order 1 (see e.g.

Giannini and Mosconi, 1992; Hendry and Mizon, 1993; Johansen, 1992a, 1992b,

1995; Urbain, 1992, 2001; Ericsson et al., 1998). Our analysis in this paper is

based on two observations on recent theoretical works in V ECM .

- The first one is that the usual exogeneity conditions which can be expressed

in term of coefficient nullities are only sufficient conditions. They are easily

testable but sometimes imply “overly strong” restrictions. The conditions of
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Johansen (1992a) and Urbain (1992) for instance, which are widely used in ap-

plied works, forbid the existence of long run relationships in the equations of

the marginal model. These equations are thus a VAR model in first differences.

This implies that under these conditions the cointegration properties of the

full V ECM are determined solely by the conditional model. Besides Johansen

makes the assumption that macro-economists have a potential economic interest

in all cointegrating relations existing between the variables being investigated.

But it is actually far from being always the case and a typical difficulty some-

times arises when cointegration tests suggest the existence of r cointegrating

vectors, whereas according to economic theory there should only exist m, with

m < r. Already in his careful discussion of Boswijk’s paper (1995) on structural

ECMs, Ericsson (1995) had noted that this was an “overly strong hypothesis”,

since according to him, “any individual empirical investigation might reasonably

restrict its focus to only a subset of the cointegrating vectors in the economy”.

- The second observation is that the necessary and sufficient Granger non-

causality condition of Toda and Phillips (1991) which implies non-linear re-

strictions on long-run parameters appears difficult to test in applied studies.

Indeed, as it is now well-known test statistics have only an asymptotic chi-

squared distribution under some regularity conditions which turn out in general

hard to establish empirically. That’s why another set of conditions have been

proposed by Giannini and Mosconi (1992). However, these authors don’t clearly

distinguish in their theorems the arbitrary part (namely the nullity of some pa-

rameter blocks) one can always achieve without any loss of generality, of the

nullity of the parameter blocks resulting from the non causality property.

Therefore given these observations, we propose in this paper some extensions

of the existing exogeneity conditions, which are based on two canonical decom-

positions of the long-run matrix Π according to the property one is interested

in testing (non-causality or strong exogeneity1). These canonical representa-

tions exploit the fact that the β cointegrating and α loading factor matrices

1 In this paper, we shall confine ourselves to the concepts of weak and strong exogeneity
proposed by Richard (1980) and Engle et al. (1983).
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are not unique in the extent where Π = αβ
0
=
¡
αΨ−1

¢ ³
Ψβ

0´
for any r × r

non singular matrix Ψ. An interesting feature of our conditions is that they

are necessary and sufficient. An appealing aspect of these conditions for the

practitioner is that they can be tested using asymptotically chi-squared dis-

tributed test statistics which can easily be computed in a user friendly menu

driven environment with most statistical computer packages as CATS in Rats

or MALCOLM 2.4 (Mosconi, 1998) for instance, so that our approach is fully

operational empirically. One key concept of our analysis in the purely exogenous

long-run path, that is to say, a cointegrating relationship which only involves

“exogenous” variables. Note that we do not address in this paper the identifi-

cation problem of cointegrating vectors nor the issue of testing over-identifying

restrictions on long-run parameters even if these issues are of course crucial in

any dynamic structural econometric modelling, since our primary aim here is to

give intrinsic exogeneity conditions.

The rest of the paper is organized as follows. Section II sets out the general

V ECM framework. Section III introduces two canonical representations of the

long run matrix Π and proposes a new set of non-causality and strong exogeneity

conditions. Section IV deals with inference and testing which are conducted

within the setting proposed by Johansen. Section V reports some Monte Carlo

results and analyses the asymptotic and finite sample properties of the sequential

procedure developed in section IV. Finally, concluding remarks are presented in

section VI and specific recommendations are provided for applied researchers.

Proofs of important results are relegated to the appendix.

2 Cointegrated vector autoregressions

We begin by setting out the basic framework and thus consider an n-

dimensional V ECM(p) process {Xt}, generated by

∆Xt =
p−1P
i=1
Γi∆Xt−i + αβ

0
Xt−1 + εt, t = 1, ..., T, (1)

i.e. the system of reduced-rank dynamic equations which has been analyzed by

Johansen (1988, 1991). Γi,α,β are, respectively n × n, n × r, n × r, 0 < r < n
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matrices such that Π = αβ
0
; The r linear combinations of Xt, the cointegrating

vectors, β
0
Xt, are often interpreted as deviations from equilibrium and α is the

matrix of adjustment or feedback coefficients, which measure how strongly the

r stationary variables β
0
Xt−1 feedback onto the system. εt is an i.i.d normal

distributed vector of errors, with a zero mean and a positive definite covariance

matrix Σ; and p is a constant integer. To keep the notation as simple as possible

we omit deterministic components.

It is assumed in addition that (i)

¯̄̄̄
(In −

p−1P
i=1
Γiz

i)(1− z) + αβ
0
z

¯̄̄̄
= 0 implies

either |z| > 1 or z = 1, and that (ii) the matrix α0⊥(In −
pP
i=1
Γi)β⊥ is invertible,

where β⊥ and α⊥ are both full rank n × n − r matrices satisfying α0⊥α⊥ =

β
0
⊥β⊥ = 0, which rules out the possibility that one or more elements of Xt to be

I(2)2 . These two conditions ensure that {Xt} and
n
β
0
Xt

o
are respectively I(1)

and I(0) and that the conditions of the Granger theorem (1987) are satisfied.

Consider now the partition of the n dimensional cointegrated vector time

series Xt = (Y
0
t , Z

0
t)

0
generated by equation (1), where Yt and Zt are distinct

sub-vectors of dimension g × 1 and k × 1 respectively with g + k = n. In

this writing Yt and Zt denote respectively the dependent and explanatory vari-

ables. Equation (1) can then easily be rewritten without loss of generality as a

conditional model for Yt given Zt and a marginal model for Zt, that is :



conditional model

∆Yt =
p−1P
i=1
Γ+Y Y,i∆Yt−i +

p−1P
i=0
Γ+Y Z,i∆Zt−i + α+Y

h
β
0
Y β

0
Z

i ·Yt−1
Zt−1

¸
+ ηY,t

marginal model

∆Zt =
p−1P
i=1
ΓZY,i∆Yt−i +

p−1P
i=1
ΓZZ,i∆Zt−i + αZ

h
β
0
Y β

0
Z

i ·Yt−1
Zt−1

¸
+ εZ,t

(2)

2A review of the econometric analysis of I (2) variables is provided in Haldrup (1998).
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with



Γ+Y Y (L) = ΓY Y (L)− ΣY ZΣ−1ZZΓZY (L) = Ig −
p−1P
i=1
Γ+Y Y,iL

i

Γ+Y Z(L) = ΓY Z(L)− ΣY ZΣ−1ZZΓZZ(L) = −
p−1P
i=0
Γ+Y Z,iL

i

α+Y = αY − ΣY ZΣ−1ZZαZ
ηY t = εY t − ΣY ZΣ−1ZZεZt
Σ+Y Y = ΣY Y − ΣY ZΣ−1ZZ

where L denotes the lag operator,

and
µ
ηY t
εZt

¶
∼ N

·µ
0

0

¶
,

µ
Σ+Y Y 0
0 ΣZZ

¶¸
with the partitioning of the matrices Γi,α and β being conformable to that of Xt.

Equation (2) is known as the V ECM block recursive form and its main

interest is to provide the analytic expression of the conditional error correction

model. Note that the disturbance orthogonalization doesn’t affect the equations

describing the evolution of the Zt variables, i.e. the marginal model.

3 Necessary and sufficient conditions for non-
causality and strong exogeneity in VECM

An important issue concerns Granger non-causality testing in V ECM .

This constitutes the purpose of the first sub-section which provides a necessary

and sufficient condition for non-causality. This condition is easier to implement

empirically than that of Toda and Phillips (1991) since it can always be tested

in any cases by means of traditional chi-squared statistics. Moreover, unlike the

condition proposed by Giannini and Mosconi (1992), our condition permits to

clearly distinguish the nullity of the parameter blocks one can always achieve

without any loss of generality of the nullity of the parameter blocks resulting

from the non causality property.

Besides, when analyzing strong exogeneity one deals simultaneously with

weak exogeneity and non-causality. The second sub-section addresses this issue

and develops a framework based on a canonical decomposition of the long-run

matrix Π in which a simple necessary and sufficient exogeneity condition for
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strong exogeneity can be formulated.

It must be underlined that the necessary and sufficient conditions for non-

causality and strong exogeneity proposed here can be expressed as minimum

conditions on the parameters of canonical decompositions of the long-run ma-

trix, in which the nullity of some parameter blocks implies no loss of generality.

Actually, these representations exploit the indeterminacy existing on the α and

β matrices : it is indeed now well-known that the parameters of these matrices

are not separately identified without r2 additional restrictions (cf. Bauwens

and Lubrano, 1994), since for any non-singular r × r matrix Ψ, we could define
Π =

¡
αΨ−1

¢ ³
Ψβ

0´
, and α∗ = αΨ−1, β∗ = βΨ0 would be equivalent matrices

of adjustment coefficients and cointegrating vectors.

3.1 Non-causality

As it is now generally admitted the non-causality hypothesis can turn out to

be difficult to test empirically in V ECM because test statistics usually require

special conditions to be asymptotically chi-squared distributed (see e.g. Toda

et Phillips, 1991, theorem 2) : indeed, unless r = 1, long run non causality from

Y to Z
n
αZβ

0
Y = 0

o
implies non linear restrictions on long run parameters.

The aim of this section is to remedy this difficulty by developing a framework

that permits to formulate a necessary and sufficient condition for non-causality

which can be tested with statistics having in any cases an asymptotic chi-squared

distribution. To this end, we consider the following theorem proved in Rault

(2000) :

Theorem 1 : Let Π = αβ
0
be a n × n reduced rank matrix of rank r (0 < r < n)

and partition β into
·
βY
βZ

¸
.

(i) If we define r1 = rank (βY ), then the α and β matrices can always be repara-
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metrised as follows :

β = [β1 β2] =

·
βY Y
βZY

0
βZZ

¸

α = [α1 α2] =

·
αY Y
αZY

αY Z
αZZ

¸

, where βY Y , αY Y , βZY , αZY , αY Z ,βZZ , αZZ are respectively g × r1, g × r1,

k × r1, k × r1, g × r-r1, k × r-r1, k × r-r1 sub-matrices, with rank (βY Y ) = r1
and rank (βZZ) = r − r1.
(ii) r1 is uniquely defined and is invariant to the chosen reparametrisation. It

is such as3

max(0, r − k) ≤ r1 ≤ min(g, r).

(See Rault, 2000, for Proof).

Under the reparametrisation of the α and β matrices of theorem 1, the

conditional and marginal models (cf. equation 2) become :



conditional model :

∆Yt =
p−1P
i=1

Γ+Y Y,i∆Yt−i +
p−1P
i=0

Γ+Y Z,i∆Zt−i + α+Y Y β
0
1Xt−1 + α+Y Zβ

0
ZZZt−1 + ηY,t

marginal model :

∆Zt =
p−1P
i=1
ΓZY,i∆Yt−i +

p−1P
i=1
ΓZZ,i∆Zt−i + αZY β

0
1Xt−1 + αZZβ

0
ZZZt−1 + εZ,t

(2a)

Theorem 1 enables to determine the minimum number of long-run relation-

ships containing necessarily the Yt variables. It is proved using a basis change

in the cointegrating space which permits to separate the cointegrating vectors

into two sub-groups : a first one of dimension r1 containing both Zt and Yt

variables, and another one of dimension r − r1 only composed of Zt variables,
denoted hereafter “purely exogenous long-run paths”. To this partition of the

β matrix corresponds a new α separated into α = [α1 α2] . Theorem 1 implies

3This property is derived from rank (β) = r.
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no loss of generality and only requires the determination of the r1 rank of the

upper block of the β matrix, i.e. βY Y .

Given this canonical decomposition we can state the following proposition :

Proposition 1 : Necessary and sufficient non-causality condition.

Y doesn’t cause Z in Granger sense (1969), if and only if
½
ΓZY,i = 0, i = 1, ..., p− 1
αZY = 0

in the canonical representation given by theorem 1.

The proof follows the same line of arguments as those presented in Toda and

Phillips (1991) and is omitted here to save space. It is obvious that if r1 = 0,

then the β1 vectors vanish completely, which means in other terms that there

only exist purely exogenous long-run paths. In this case, the above condition

reduces itself to ΓZY,i = 0.

The non-causality condition given above is very convenient to use empirically

since long run non-causality hypothesis is equivalent to αZY = 0, and hence can

be tested using asymptotic χ2 tests (cf. section 4). It is indeed not a non-

linear condition like Toda and Phillips’s one (1991) since it only implies nullity

of some loading factors in the α matrix. Moreover, unlike the conventional

sufficient long-run non-causality condition (αZ = 0), which has for consequence

to eliminate the error-correction mechanism
³
αZβ

0
Xt−1

´
in the marginal model,

our condition doesn’t constrain this model to be a VAR in first differences, since

it can also include purely exogenous long-run paths. Notice that this condition

remains identical if one considers the parameters of the first g equations of the

conventional V ECM partitioned into Yt and Zt.

3.2 Strong exogeneity

This sub-section deals with the strong exogeneity hypothesis and introduces

a necessary and sufficient condition for strong exogeneity, less restrictive and

easier to handle than the existing one (ΓZY (L) = 0 and αZβ
0
Y = 0). Indeed,

our condition allows both the marginal and conditional models to contain purely

exogenous long-run paths. Before stating this condition we need a more general

decomposition of the Π matrix and we give it in the following theorem.
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Theorem 2 Let Π = αβ
0
be a n × n reduced rank matrix of rank r (0 < r < n)

and consider the reparametrisation

β =

·
βY Y
βZY

0
βZZ

¸
,α =

·
αY Y
αZY

αY Z
αZZ

¸
given in theorem 1. Then :

(i) there exists an integer r2 so that the α et β matrices can always be repara-

metrised as follows :

α = [α1 α21 α22] =

·
αY Y
αZY

αY Z1
0

αY Z2
αZZ2

¸

β = [β1 β21 β22] =

·
βY Y
βZY

0
βZZ1

0
βZZ2

¸

, where αY Y , βY Y , αZY , βZY , αY Z1 , βZZ1 , αY Z2 , αZZ2 , βZZ2 are respectively

g × r1, g × r1, k × r1, k × r1, g × r∗, k × r∗, g × r2, k × r2, k × r2 sub-

matrices, with r1 + r2 + r∗ = r and rank (αZZ2) = r2 ≥ 0.
(ii) if in addition αZY = 0 (or r1 = 0), then r2 is uniquely defined and is

invariant to the chosen reparametrisation. It is such as4

max (0, r − r1 − g) ≤ r2 ≤ min(g, k, r).

(See Appendix for Proof).

Given the new expression of the α and β matrices given in theorem 2 (i),

the conditional and marginal models (cf. equation 2) can be rewritten as :

conditional model :

∆Yt =

p−1X
i=1

Γ+Y Y,i∆Yt−i+
p−1X
i=0

Γ+Y Z,i∆Zt−i+α
+
Y Y β

0
1Xt−1+

³
α+Y Z1β

0
ZZ1 + α+Y Z2β

0
ZZ2

´
Zt−1+ηY,t

(2b)

marginal model :

∆Zt =

p−1X
i=1

ΓZY,i∆Yt−i +
p−1X
i=1

ΓZZ,i∆Zt−i + αZY β
0
1Xt−1 + αZZ2β

0
ZZ2Zt−1 + εZ,t

4Remind that rank (α) = r .
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Theorem 2 is proved using a basis change in the dual space of the cointe-

grating space, namely in the adjustment space (generated by the rows of the

α matrix), which leads to partitioning the (r − r1) long run relations involving
the Zt variables alone into two sub-groups of respectively dimension r∗ and r2

: a first sub-group which only belongs to the conditional model and a second

one which both appears in the marginal and conditional models. To this sec-

ond partition on the α adjustment space corresponds a new β whose expression

is given by theorem 2. The fact that the α and β matrices are of rank r en-

tails in particular that the rank
¡
α+Y Z1

¢
= rank

¡
βZZ1

¢
= r∗ ≥ 0 and that

rank
¡
βZZ2

¢
= r2 ≥ 0. The table below summarizes in which equations these

three distinctive groups of long-run relations appear :

Cointegrating relations Number of Coefficients in the Coefficients in the
(r1 + r2 + r

∗ = r) cointegrating vectors conditional model marginal modelh
β
0
Y Y ,β

0
ZY

i h
Yt
Zt

i
= η1t ∼ I(0) r1 α+Y Y αZY

β
0
ZZ1Zt = η∗2t ∼ I(0) r∗ α+Y Z1 0

β
0
ZZ2Zt = η2t ∼ I(0) r2 α+Y Z2 αZZ2

Remark 1 - The canonical decomposition given in theorem 2 can be applied to

any singular Π matrix of rank r.

Remark 2 - Some rank conditions are explicitly given in theorem 2. Neverthe-

less one must keep in mind that the ranks of the different blocks of the α and β

matrices are yet always linked by the two following conditions5 :

- the Π = αβ
0
matrix is of rank r,

- the α0⊥

µ
In −

pP
i=1
Γi

¶
β⊥ matrix is of full rank (n− r).

Consequently the different parameter blocks cannot be equal to zero independently

of the short-run coefficients Γ, and of the rank conditions given above.

5Note that the second condition rules out the possibility of variables integrated of order 2
and assures that the variables are at most integrated of order 1. All our results are valid as
long as this condition holds. However this condition is not a relation between the parameters
and it corresponds to concrete economic situations. Our method can be applied under the
assumption of stability of this situation, i.e. no variable is supposed to go from the state I (1)
to the state I (2). Actually, this is a relatively usual condition in the econometric literature.
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The strong exogeneity hypothesis for the parameters of interest combines

non-causality with weak exogeneity. Let’s remember that Engle and al ’s (1983)

define a vector of Zt variables to be weakly-exogenous for the parameters of

interest, if (i) the parameters of interest only depend on those of the conditional

model, (ii) the parameters of the conditional and marginal models are variation

free, i.e. there exists a sequential cut of the two parameter spaces (cf. Florens

and Mouchart, 1980). We can now established the following proposition :

Proposition 2 : Necessary and sufficient condition for strong exo-

geneity. If r2 < k then Zt is strongly exogenous for all the parameters of the

conditional model if and only if


αZY = 0
α+Y Z2 = 0
ΓZY,i = 0, i = 1, ..., p− 1

in the canonical

representation given by theorem 2.

The proof follows directly from the previous results and hence is omitted here

to save space. If r2 = k, this means that there exists as many purely exogenous

long-run paths as Zt variables, which entails that the Zt are stationary6. In

this case there is no βZZ2 parameter to estimate since this sub-matrix is equal

to Ik : therefore, these variables can appear as well in the conditional model as

in the marginal one.

Like the non-causality condition given in section 3.1, the condition in propo-

sition 1 doesn’t prohibit the marginal model from including cointegration rela-

tions that involve purely exogenous long-run paths. Thus, it doesn’t entail this

model to be a VAR in first differences, since in addition to the nullity of the

parameters ΓZY,i = 0, i = 1, ..., p− 1 associated to variables in first differences,
it is only the corresponding part of α (and not full lines) which is required

to vanish for strong exogeneity. What is more, the conditional and marginal

models now contain two completely separate sets of purely exogenous long run

paths. This means that the parameters of interest of the investigator can now

also include a subset of purely exogenous long run paths in addition to the long

6Notice that the condition rank (βZZ) = r − r1 implies that k ≥ r − r1 = r2 + r∗. In the
case where r2 = k then r∗ = 0.
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run relationships involving both Yt and Zt. The strong exogeneity of the Zt

variables for all parameters of the conditional model implies that :

(i) none of the r2 purely exogenous long-run paths appearing in the marginal

model belong to the conditional model,

(ii ) Y doesn’t cause Z in Granger sense (1969), which implies that :

a) none of the r1 long-run paths containing both Yt and Zt appear in the

marginal model,

b) ΓZY,i = 0, i = 1, ..., p− 1.
Strong exogeneity entails a complete separation of the process generating

{Yt/Zt} and {Zt}, that is between the conditional and marginal models. Under
this hypothesis one can make valid forecasts of Y from the conditional model,

given forecasts of Z from the marginal model. Theorem 3 provides an important

result concerning the non-causality hypothesis.

Theorem 3 (deduced from Giannini and Mosconi, 1992, theorem 2).

If Xt is an n-dimensional process integrated of order 1, cointegrated of order r,

and generated by equation (1), then the necessary and sufficient non-causality

condition (αZY = 0 and ΓZY,i = 0, i = 1, ..., p−1) entails r∗ = 0 in the canonical
representation given by Theorem 2.

Indeed, if r∗ were strictly positive, the non-causality condition would be

sufficient for the existence of variables integrated of order 2, since the matrix

α0⊥(In −
pP
i=1
Γi)β⊥ would have in this case reduced rank.

We mention now for completeness the following corollary which considers the

parameters of the first g equations of the partitioned V ECM as of economic

interest.

Corollary 1 : Zt is strongly exogenous for the parameters of the first g equa-

tions of the partitioned V ECM into Yt and Zt if this reduced form is already

orthogonalized (i.e. ΣY Z = 0) and if Zt is strongly exogenous for the parameters

of the conditional model.(See Appendix for Proof) .
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Note that this last case may turn out not to be very useful in practice since

actually it seldom occurs that the empirical researcher has some structural in-

terest in the unrestricted short-run dynamic parameters of the reduced form

V ECM , exception maybe in case of separation analyses (cf. Granger and Hal-

drup, 1997).

4 Inference and testing

The necessary and sufficient conditions for non-causality and strong exo-

geneity introduced in section 3 require first and foremost to rewrite the Πmatrix

under one of the canonical decompositions given by theorems 1 and 2. Then, in

this framework these conditions have all been expressed in terms of coefficient

nullities of the α, β and Γ matrices, which permits to use the conventional chi-

squared statistics (see Johansen, 1995). As we have already noticed, these two

representations require the determination of one or two specific ranks of sub-

matrices, according to the hypothesis under consideration. In this section we

focus exclusively on the decomposition given in theorem 2 since non-causality

testing in the framework of theorem 1 has already been carefully investigated in

Rault (2000). We thus develop a sequential procedure of rank tests suitable to

the remaining case, that is to the strong-exogeneity hypothesis. More precisely,

we first provide a sequential procedure of rank tests in order to determine the

r1 and r2 ranks of the βY and αZZ matrices. These ranks are needed to rewrite

the Π matrix under the canonical form given in theorem 2. We then indicate

how to test in this framework the necessary and sufficient condition for strong

exogeneity given in proposition 2. Note that it is assumed here that the coin-

tegrating rank is known, that is, has been estimated in the lines of Johansen

(1988), at a preliminary step (cf. section 2).

The strong exogeneity hypothesis may be investigated using the following

sequential test procedure composed of four stages :

1) first determine the r1 rank of the βY matrix which corresponds to the

reparametrisation of the α and β matrices given in theorem 1 using the simple
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sequential test procedure proposed by Rault (2000). This procedure is based

on asymptotically chi-squared distributed LR statistics whose properties have

been analyzed with Monte-Carlo experiments for known r.

2) then, for the value of the r1 rank found in stage 1, test H0 : αZY = 0

using conventional asymptotic χ2 tests (cf. for instance Toda and Phillips (1991,

1993). If you accept the null hypothesis pass to step (3), or else stop. The latter

case implies you also refuse the strong exogeneity hypothesis since as stated in

proposition 2 it requires αZY = 0.

3) finally, given the r1 rank found in step 1 and αZY = 0 consider the model

given by the canonical decomposition in theorem 1 :

β =
£
β1 β2

¤
=

·
βY Y
βZY

0
βZZ

¸
,α =

£
α1 α2

¤
=

·
αY Y
αZY

αY Z
αZZ

¸
and for j = 1, ..,min (g, r − r1) test the restrictions :

αZZ =
£
0(k, j) αZZ2 ]

(where αZZ and αZZ2 are respectively k × r-r1 and k × r−r1− j sub-matrices)
under which the long-run parameters can be written as follows :

β = [β1 β21 β22] =

·
βY Y
βZY

0
βZZ1

0
βZZ2

¸

α = [α1 α21 α22] =

·
αY Y
0

αY Z1
0

αY Z2
αZZ2

¸

, where βY Y , αY Y , βZY , βZZ1 ,αY Z1 ,βZZ2 , αY Z2 , αZZ2 are respectively g × r1,
g × r1, k × r1, k × j, g × j, k × r − r1 − j, g × r − r1 − j, k × r − r1 − j
sub-matrices.

The above writing corresponds to a model defined as :

H0,j

 There exists a basis of the cointegrating and adjustment spaces
such as β = (β1,H1βZZ1 ,H1βZZ2), α = (H2αY Y ,H2αY Z1 ,α22)
with. rank (βY Y ) = r1, rank (β) = rank (α) = r


where H1 =

µ
0(g,k)
Ik

¶
and H2 =

µ
Ig
0(g,k)

¶
and β1,βZZ1 ,βZZ2 ,αY Y ,αY Z1 ,α22, are respectively n× r1, k × j,
k × r − r1 − j, g × r1, g × j, n× r − r1 − j sub-matrices.
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The parameters to be estimated are β1,βZZ1 ,βZZ2 ,αY Y ,αY Z1 ,α22 , given that

some of the constraints apparently imposed on long-run parameters, in partic-

ular those on the β matrix are only identifying constraints in our model. The

boundaries for j are calculated from the rank conditions :

1 ≤ j ≤ k
j ≤ g

0 ≤ r − r1 − j

To test the H0,j hypothesis, we proceed as in Johansen and Juselius (1992), Jo-

hansen (1995), Giannini and Mosconi (1992), Konishi and Granger (1993) and

we use the appropriate version of the switching algorithms developed by these

authors (cf. Hecq et al., 2001) to test our linear restrictions on the long-run

parameters, the test statistic being in this case asymptotically chi-squared dis-

tributed. As pointed out by a referee this assumes that the switching algorithm

reaches the global maximum of the likelihood function7. Our way of proceeding

is thus very close to that of Hecq et al., (2001) who test restrictions on the α

matrix in the context of separability analyses.

More precisely, as our aim is to determine the r2 rank of the αZZ sub-matrix,

let us consider the following sequences of null hypotheses8 :


H0,1 i.e. rank (αZZ) ≤ min (k, r − r1 − 1) ,
:
for j = 2, ..., ,min (g, r − r1) , as long as H0,j−1 is not rejected,
H0,j i.e. rank (αZZ) ≤ min (k, r − r1 − j)

To test these different hypotheses, we adopt the following sequential test proce-

dure9:
7 It must be underlined that the hypotheses about the asymptotic distribution of the sta-

tistic under the null are not rejected by the results of our simulations reported in section
5.

8This procedure is a natural extension of the one presented in great details in Rault (2000).
9Let’s point out (cf. the Monte Carlo experiment results) that this procedure performs

quite well in term of αZZ rank selection, even if some αZZ columns are linear combination of
others.
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Step 1 : test H0,1 with the ξ1 statistic at the α1 level
and reject H0,1 if ξ1 > χ21−α1(v1) =⇒ rank (αZZ) = r − r1,
:
for j = 2, ...,min (g, r − r1) , as long as H0,j−1 is not rejected,
Step j : test H0,j with the ξj statistic at the αj level
and reject H0,j if ξj > χ21−αj (vj) =⇒ rank (αZ2) = r − r1 − j + 1
else accept H0,j if ξj < χ21−αj (vj) =⇒ rank (αZ2) = r − r1 − j

Each statistic is a likelihood ratio test :

ξj = −2lnQ(L0,j/L1) = T
"
r1P
i=1
ln(1− bρ1i) + r∗P

i=1
ln(1− bρ2i) + r2P

i=1
ln(1− bρ3i)− rP

i=1
ln(1− eλi)#

(3)

which is asymptotically distributed under H0,j as a χ21−αj (vj), where νj is the

number of degrees of freedom calculated as the number of zero restrictions im-

plied by Hoj, that are beyond those from normalization. L1 corresponds to

the cointegrating hypothesis under the assumption of r cointegrating vectors,eλi denotes the eigenvalues of the unrestricted V ECM , and bρ1j , bρ2j , bρ3j corre-
spond to the eigenvalues associated respectively to the r1, j, (r−r1−j) restricted
cointegrating relationships and their associated weights.

It should be emphasized that as the ξj statistic is derived under asymptotic

arguments it seems to provide a bad approximation of the finite sample distri-

bution since it tends to over-reject true nulls in small samples (see Psaradakis,

1994). Therefore, as one often encounters small size samples in empirical ap-

plications, we also consider the adjusted LR tests statistics, which is given by

replacing T by T − (s/n) + 0.5 [n− r(n− k)/(n+ 1)] in equation (3), where s
denotes the number of parameters to be estimated in equation (1). This small

sample correction performs better in terms of size distortion when testing for

linear restrictions on a multivariate gaussian model (see Anderson, 1984, ch 8

for the stationary case, and the simulations of Psaradakis, 1994 for the non-

stationary case).

4) Finally, we can test the strong exogeneity hypothesis for given values of

the r1 and r2 ranks. Indeed, in this case the Πmatrix can be rewritten under the
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canonical expression given in theorem 2 and the strong exogeneity hypothesis

leads in this framework to the following parametric restrictions (cf. proposition

2) :

H0,se :

½
ΓZY,i = 0, i = 1, ..., p− 1
α+Y Z2 = 0

As these restrictions only correspond to coefficient nullities several conven-

tional tests can be carried out (Likelihood ratio test, Lagrange Multiplier (LM)

test, Wald test). As the underlying motivation to imposing strong exogeneity

restrictions is to reduce the dimension of the estimated model (in a forecasting

purpose), a LM test could probably be the more robust one to possible mispecifi-

cation of the full V ECM (cf. Zhu, 2001). Such a test can easily be implemented

in empirical applications using most statistical computer packages.

5 The Monte Carlo design and results

This section reports some Monte Carlo replications and analyzes the size

distortions and power of the sequential procedure of rank tests introduced in

section 4. Artificial data were generated from four data generation processes

(DGPs) depicted in Table 1 of Appendix 2, each containing 11 variables (g = 5,

k = 6), integrated of order one, cointegrated of order 4, expressed in V ECM

forms. They are all of rank r1 = 1 and have short-run dynamic, since p is chosen

to be equal to 2. Alternative r2 ranks of the αZZ matrix were specified varying

from 0 to 3.

For each Monte Carlo simulation, we generated 6000 series of length T+100+

p, where p denotes the lag length in the estimated V ECM . We discarded the

first 100 observations to eliminate start-up effects. The vector of innovations εt

was a gaussian eleven dimensional white noise, with zero mean and covariance

matrix I11. The initial values (t = 0) have been set to zero for all variables

in the model, that is X0 = 011, and X1 = e1˜N(011, I11). All simulations

were carried out on a 266 Pentium II, using the matrix programming language

GAUSS, the εt were generated by the function “RNDN” and the nominal level

of all tests was 5%. Some routines are partly adapted from Sam Ouliaris’s
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COINT GAUSS program. For each DGP, five sample sizes were included; T =

50, 100, 200, 500, 1000, and the adjusted LR tests statistics was used for T ≤ 100.
In each replication, the lag length p and the dimension of the cointegrating rank

r are treated as known in a first step, so that we can exclusively focus on the

performance of our sequential test procedure.

We now comment the results of our sequential test procedure related to

strong exogeneity testing. We first consider the situation where the r1 rank of

the βY matrix has correctly been selected as well as αZY = 0, that is we suppose

that the starting point is given by stage 3 of the procedure developed in section

4. Then, only the r2 rank of αZZ has to be determined. The tabulated results

of the experiments are reported respectively in Tables 2 and 3 (cf. Appendix

2). Tables 2 contains the estimated empirical size and power of the Ho,j null

hypothesis tests, while Tables 3 presents the sequential test procedure empirical

size. The numbers in the body of Tables 2 are respectively the percentage

of rejections of the null hypotheses and the percentage of acceptance of the

true rank r2 of αZZ (that is the proportion of “success”of αZZ actual rank

determination) at the 5 % level. Note that actually the results are very close to

those reported in Rault (2000) for the sequential procedure of rank tests related

to non-causality testing10 and can be summarized as follows.

All H0,j null hypothesis tests (j = 1, .., 4) suffer from size distortion in small

samples (T = 50, 100), but in large samples (T = 500, 1000) they approximate

quite well the correct size. Moreover, our simulation results indicate both finite

distance and asymptotic power of the tests equal to 1.

As far as the sequential test procedure is concerned, our simulations show as in

Rault (2000) that the multiplicity of tests leads to a global size problem in small

samples (T = 50, 100), since the sequential procedure estimated size turns out to

be highly dependent on the number of tests necessary to conclude (respectively

7.17 %, 9.63 %, 10.7 % for r2 = 2, ..., 0 and T = 100). However, it is no more the

case in large samples (T = 200, 500 or 1000) since for any possible r2 true rank,

10 In Rault (2000), it is the rank of a sub-matrix extracted from the β matrix which is
investigated and not an α sub-matrix rank, as it is the case here.
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the estimated size is now always very close to 5 % (respectively 5.23 %, 5.49 %,

5.64 % for r2 = 2, ..., 0 and T = 500). This result is due to the fact that the

H0,j null hypothesis tests (j = 1, .., 4) are extremely powerful and never reject

any null hypothesis H0,j when it’s true.

Table 4 reports results in the situation where r1 is treated as unknown and

where the nullity of the parameters of the αZY matrix has to be tested in addi-

tion to the r2 rank. The performance of the tests is changed quite substantially

compared to the previous situation, since now, to return a “success” in the ex-

periment, our sequential procedure must make correct decisions concerning r1,

αZY and r2. It appears that even for large samples, the sequential procedure

estimated size deteriorates. It is respectively of 11.7%, 11.9 %, 12.02 % for

r1 = 1, r2 = 2, ..., 0 and T = 1000). However the size of the procedure remains

quite acceptable given the number of tests to be carried out to reach a decision

As in most practical applications it is inappropriate to assume that the coin-

tegrating rank (r) is a priori known, we finally conducted additional simulations

in the case r is unknown and determined using Johansen’s trace test. The re-

sults of the simulation experiments reported in Table 5 show that restricting

the cointegrating rank has little impact on the performance of the sequential

test procedure, as least as long as we do not restrict it to be less than the true

rank. More precisely, if r is over-estimated the sequential procedure estimated

size is very close to the case where the cointegrating rank is correctly specified.

This finding should not surprise us since, if one supposes for instance that r = 5

instead of r = 4, it is then possible to produce by linear combination a column

of zeros in the β matrix, which only adds a supplementary step in the sequential

procedure but doesn’t alter its performance since the H0,j null hypothesis tests

are very powerful. However the performance of the sequential test procedure is

severely distorted by underestimating the cointegrating rank. This is a useful

and significant result for the practitioner as it suggests that the sequential test

procedure may be conducted under the assumption of full rank of the Π matrix

without affecting its performance very markedly.
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6 Concluding remarks

In this paper we have studied the non-causality and strong exogeneity hy-

potheses in the context of a vector error correction model and we have gener-

alized the results obtained by Johansen (1992) and Toda and Phillips (1991).

In particular, we have developed a general setting that constitutes a suitable

basis in which a less restrictive strong exogeneity condition, as well as a simple

testable non-causality condition can be formulated. This setting is obtained

by two canonical representations of the long-run matrix Π and requires the de-

termination of the rank of one or two specific sub-matrices, according to the

property one is dealing with (non-causality or strong exogeneity). The novelty

of our approach is to exploit the indeterminacy of the cointegrating and loading

factor matrices to give a necessary and sufficient condition for non-causality as

well as a condition for strong exogeneity. These different sets of conditions per-

mit to clearly distinguish the nullity of some parameter blocks one can always

achieve without any loss of generality using basis changes of the nullity of the

parameter blocks resulting from the hypothesis to be tested.

We showed in Monte Carlo experiments that providing the cointegrating rank

is correctly selected or over-estimated, sequential testing to determine specific

sub-matrix ranks can have asymptotically a frequency of success comparable to

linear restriction testing on cointegrating parameters by usual Johansen’s tests

(1992). We think furthermore that a fruitful approach may be to use the Bartlett

correction factor recently suggested by Johansen (2000) to test hypotheses on

cointegrating vectors, to improve the performance of our sequential procedure

in small samples, but additional Monte Carlo investigations have to be carried

out.

Finally, we’d like to provide the applied researcher with a brief guideline and

specific comments.

First of all, we want to highlight that the exogeneity conditions introduced in

this paper appear as a bit more general than the existing ones and may pro-

vide a solution to the two classical related issues often encountered in empirical
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applications : (i) when there exists empirically more equilibrium relationships

than stipulated by economic theory (ii) when one is willing to make inference

on only the subset of cointegrating vectors in the conditional model. Indeed,

when such situations occur, applied researchers are faced with the problem of

what to do.

Secondly, special care should be taken in applied work to determine the true

number of cointegrating vectors before testing for exogeneity. This point is of

importance since our Monte Carlo experiment suggests that in data sets whose

cointegrating rank has correctly been determined or over-estimated, there is a

high probability that one can also discover the true ranks of sub-matrices con-

nected to strong exogeneity testing. However, the penalty attached to wrongly

determined r is substantial when r is under-estimated and in this case our se-

quential test procedure performs poorly with respect to size distortion, whatever

the size of the sample is.

Thirdly, our simulation results highlight the importance of using large samples

in applied research if possible, since our sequential test procedure related to

strong exogeneity performs better in term of true sub-matrix rank selection in

large samples.
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Appendix 1 : Mathematical details

Proof of theorem 2

(i) Given the expressions of the α and β matrices reported in theorem 1, we make

another reparametrisation, but this time in the adjustment space (EC), spanned by

the columns of the α matrix. To this end, we now consider Im (α2)
11 and we make

a new basis change in order to have a basis of Im (α2) ∩ Im
µ
0
Ik

¶
. It is then

easily shown that the transformation matrix from the α∗ basis to the α∗∗ basis can

be written as :

P =

 Ir1
0
0

0
Ir∗
0

0

B
0

Ir2

 ,
which leads to a new α of the form :

α = [α1 α21 α22] =

·
αY Y
αZY

αZY1
0

αY Z2
αZZ2

¸

Finally the corresponding β given by the expression β∗∗ = β∗(P−1)0 can easily

be checked to be the one reported in theorem 2 :

β = [β1 β21 β22] =

·
βY Y
βZY

0
βZY

0
βZZ2

¸

(ii) Consider now a basis change in the cointegrating space of the form β∗ = βM ,

which entails α∗ = α(M 0)−1 where M is a non singular (r, r) matrix and let us

determine the conditions that must hold on this transformation matrix M to have :

½
rank (β∗Y Y ) = rank (βY Y ) = r1
β∗Y Y = βY Y = 0

.

Partitioning M into

·
M11

M21

M12

M22

¸
enables us to write :

β∗ =

·
β∗Y Y
β∗ZY

β∗Y Z
0

¸
=

·
βY Y
βZY

βY Z
βZZ

¸ ·
M11

M21

M12

M22

¸
=

·
βY YM11

βZYM11 + βZZM21

βY YM12

βZYM12 + βZZM22

¸
.

11Im (α2) represents the α2 image space.

27



We have then the following implications :

 βY YM12 ⇔M12 = 0,
rank (βY YM11) = r1 ⇔M11invertible
M11invertible and M invertible⇔M12invertible

.

Next, the corresponding α given by α∗ = α(M 0)−1 can easily be checked to have the

following expression :

α∗ =

·
αY Y
αZY

αY Z
αZZ

¸ ·
(M 0

11)
−1

0

− (M 0
11)
−1
M 0
21 (M

0
22)
−1

(M 0
22)
−1

¸
=

·
αY Y (M

0
11)
−1

αZY (M
0
11)
−1

−αY Y (M 0
11)
−1M 0

21 (M
0
22)
−1 + αY ZM

0−1
22

−αZY (M 0
11)
−1
M

0
21 (M

0
22)
−1
+ αZZ (M

0
22)
−1

#
,

that is

α∗ =
·
α∗Y Y
α∗ZY

α∗Y Z
α∗ZZ

¸
If αZY = 0, then α∗ZZ = αZZ (M

0
22)
−1 and we have rank(α∗ZZ) = rank(αZZ) =

r2, which means that r2 is uniquely defined and is invariant to the chosen reparametrisation.¥

Proof of Corollary 1

The proof is straightforward since α+Y Z2 = 0⇐⇒ αY Z2−ΣY ZΣ−1ZZαZZ2 = 0.¥
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Table 1. Data Generation Processes (DGP) (n = 11, g = 5, k = 6, r1 =1)1 
 

DGP (1) : r2 = 3 DGP (2) : r2 = 2 DGP (3) : r2 = 1 DGP (4) : r2 = 0 
beta 
 -1.50 -0.50 -1.00  0.00 
  6.00  2.00  4.00  0.00 
 -1.35 -0.45 -0.90  0.00 
  1.50  0.50  1.00  0.00 
 -1.50 -0.50 -1.00  0.00 
  0.20  0.10 -0.20 -0.40 
  0.80  0.20  0.10  0.30 
  0.10  0.30 -0.30  0.60 
  0.20 -0.50  0.70 -0.10 
  0.40 -0.20  0.50  0.00 
  0.10 -0.30  0.40  0.20 
alpha 
 -0.50 -0.30 -0.40  0.30 
  0.30  0.20  0.60  0.50 
 -0.20 -0.20 -0.20  0.00 
  0.70  0.10  0.50  0.10 
 -0.90 -0.50 -1.10  0.00 
  0.00  0.40 -0.20  0.10 
  0.00 -0.50  0.00  0.10 
  0.00  0.40  0.60  0.00 
  0.00  0.30  0.10 -0.20 
  0.00  0.20 -0.30  0.20 
  0.00  0.50  0.30 -0.50 

beta 
 -1.50 -0.50 -1.00  0.00 
  6.00  2.00  4.00  0.00 
 -1.35 -0.45 -0.90  0.00 
  1.50  0.50  1.00  0.00 
 -1.50 -0.50 -1.00  0.00 
  0.20  0.10 -0.20 -0.40 
  0.80  0.20  0.10  0.30 
  0.10  0.30 -0.30  0.60 
  0.20 -0.50  0.70 -0.10 
  0.40 -0.20  0.50  0.00 
  0.10 -0.30  0.40  0.20 
alpha 
 -0.50 -0.30 -0.40  0.00 
  0.30  0.20  0.60  0.00 
 -0.20 -0.20 -0.20  0.00 
  0.70  0.10  0.50  0.00 
 -0.90 -0.50 -1.10  0.00 
  0.00  0.00 -0.20  0.10 
  0.00  0.00  0.00  0.10 
  0.00  0.00  0.60  0.00 
  0.00  0.00  0.10 -0.20 
  0.00  0.00 -0.30  0.20 
  0.00  0.00  0.30 -0.50 

beta 
 -1.50 -0.50 -1.00  0.00 
  6.00  2.00  4.00  0.00 
 -1.35 -0.45 -0.90  0.00 
  1.50  0.50  1.00  0.00 
 -1.50 -0.50 -1.00  0.00 
  0.20  0.10 -0.20 -0.40 
  0.80  0.20  0.10  0.30 
  0.10  0.30 -0.30  0.60 
  0.20 -0.50  0.70 -0.10 
  0.40 -0.20  0.50  0.00 
  0.10 -0.30  0.40  0.20 
alpha 
 -0.50 -0.30 -0.60  0.00 
  0.30  0.20  0.40  0.00 
 -0.20 -0.20 -0.40  0.00 
  0.70  0.10  0.20  0.00 
 -0.90 -0.50 -1.00  0.00 
  0.00  0.00  0.00  0.10 
  0.00  0.00  0.00  0.10 
  0.00  0.00  0.00  0.00 
  0.00  0.00  0.00 -0.20 
  0.00  0.00  0.00  0.20 
  0.00  0.00  0.00 -0.50 

beta 
 -1.50 -0.50 -1.00  0.00 
  6.00  2.00  4.00  0.00 
 -1.35 -0.45 -0.90  0.00 
  1.50  0.50  1.00  0.00 
 -1.50 -0.50 -1.00  0.00 
  0.20  0.10 -0.20 -0.40 
  0.80  0.20  0.10  0.30 
  0.10  0.30 -0.30  0.60 
  0.20 -0.50  0.70 -0.10 
  0.40 -0.20  0.50  0.00 
  0.10 -0.30  0.40  0.20 
alpha 
  0.00  0.50  0.00  0.60 
  0.10 -0.30 -0.10 -0.20 
 -0.10  0.00  0.00 -0.20 
  0.20 -0.20 -0.50  0.60 
  0.50 -0.40  0.20  0.00 
  0.00  0.00  0.00  0.00 
  0.00  0.00  0.00  0.00 
  0.00  0.00  0.00  0.00 
  0.00  0.00  0.00  0.00 
  0.00 -0.00  0.00  0.00 
  0.00  0.00  0.00  0.00 

 
 

Table 2. Empirical size and power of the Ho,j null hypothesis tests (j = 1,..,4)2 (rejection per 100), with 6000 replications at the 5 % nominal level of significance 3 
 
DGPS DGP (1) : r2 = 3 DGP (2) : r2 = 2 DGP (3) : r2 = 1 DGP (4) : r2 = 0 Hypothesis tested 
Sample size T 50 100 200 500 1000 50 100 200 500 1000 50 100 200 500 1000 50 100 200 500 1000  
α1   W1 = Ψ1 > A1 4 100 100 100 100 100 7.97 6.65 5.43 5.12 5.09 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 H0,1: {rang (αZZ) ≤ 3} against{rang (αZZ) =  4} 
α2   W2 = Ψ2 > A2 100 100 100 100 100 100 100 100 100 100 12.6 7.32 6.19 5.38 5.14 0.21 0.00 0.00 0.00 0.00 H0,2: {rang (αZZ) ≤ 2} against{rang (αZZ) ≥ 3} 
α3   W3 = Ψ3 > A3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 20.6 9.63 7.15 5.68 5.23 H0,3: {rang (αZZ )≤ 1} against{rang (αZZ) ≥ 2} 
α4   W4 = Ψ4> A4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 H0,4: {rang (αZZ) = 0} against{rang (αZZ) ≥ 1} 
 

                                                           
1 DGP (1) and (2) can easily be seen to be respectively of rank r2 =3 and r2 = 2. However the fact that DGP (3) and (4) are respectively of rank r2 = 1 and r2 = 0 is less straightforward : it requires noticing that the βY columns of these two DGPs are not linearly 
independent since they are respectively linked by C3=2 C2, for DGP (3) and by C3 =2 C2, C1 = C2 + C3 for DGP (4)). Note also that to save place the short run structure of the four DGP is not reproduced here but is available on request. 
2 Note that r1 is supposed here to have correctly been selected, and αZY=0 is also supposed to have been accepted at a preliminary step. 
3 The adjusted version of the test statistic was used for T = 50, 100. 
4 Ai, i = 1,..,4 denotes the critical value from the Chi-square distribution at the 5 % level of significance. 
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Table 3. Empirical size of the sequential test procedure5 (rejection per 100), with 6000 replications at the 5 % nominal level of significance 

 
DGPS DGP (2) : r2 = 2 

P ( 1W )  

DGP (3) : r2 = 1 

P ( 1W  2W ) 6 

DGP (4) : : r2 = 0 

P ( 1W  2W  3W ) 

Sample size T 50 100 200 500 1000 50 100 200 500 1000 50 100 200 500 1000 
r2 estimated = true r2 12.9 7.17 6.12 5.23 5.05 18.2 9.63 6.87 5.49 5.09 20.5 10.7 7.01 5.64 5.16 
 

 
Table 4. Empirical size of the sequential test procedure7 (rejection per 100), with 6000 replications at the 5 % nominal level of significance  
               in the case where the cointegating rank (ie. r = 4) is known  
 
DGPS DGP (2) : r2 = 2 

P ( 1W )  

DGP (3) : r2 = 1 

P ( 1W  2W ) 8 

DGP (4) : r2 = 0 

P ( 1W  2W  3W ) 

Sample size T 50 100 200 500 1000 50 100 200 500 1000 50 100 200 500 1000 
r2 estimated = true r2 14.5 14.21 14.1 12.4 11.7 35.5 15.3 14.1 13.2 11.9 37.2 26.5 16.5 14.4 12.2 
 

 
Table 5. Empirical size of the sequential test procedure (rejection per 100), with 6000 replications at the 5 % nominal level of significance 

                  in the case where the cointegating rank (ie. r = 4) is not correctly selected 
 
DGPS DGP (2) : r2 = 2 

P ( 1W )  

DGP (3) : r2 = 1 

P ( 1W  2W )  

DGP (4) : r2 = 0 

P ( 1W  2W  3W ) 

Sample size T 50 100 200 500 1000 50 100 200 500 1000 50 100 200 500 1000 
r=2 r2 estimated = true r2 100 100 100 100 100 56.3 38.9 35.8 35.1 30.2 60.1 51.3 39.7 35.9 29.6 
r=3 r2 estimated = true r2 25.6 25.3 23.6 22.4 18.5 45.4 26.8 23.9 22.7 18.9 47.6 38.5 27.8 24.8 20.3 
r=5 r2 estimated = true r2 14.9 14.8 14.7 12.6 11.8 36.8 16.2 14.9 13.8 12.3 38.1 27.0 17.2 14.9 12.6 
r= 6 r2 estimated = true r2 15.4 15.4 15.2 12.9 12.0 37.4 16.8 15.4 14.2 12.6 38.9 27.9 17.8 15.6 13.1 
 

 

                                                           
5 Note that r1 is supposed here to have correctly been selected, and αZY=0 is also supposed to have been accepted at a preliminary step. 
6 P ( 1W  2W ) represents the probability to be at the same time in the acceptance region 1W  of test 1 and in the critical region 2W of test 2. 
7 Now, to return a “success” in the experiment, the sequential procedure must make correct decisions concerning r1 , αZY and r2. 
8 P ( 1W  2W ) represents the probability to be at the same time in the acceptance region 1W  of test 1 and in the critical region 2W of test 2. 
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