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PREFERENCES AS DESIRE FULFILMENT

MARC-ARTHUR DIAYE AND DANIEL SCHOCH

Abstract. We consider preferences as fulfilment of cardinal conditional de-
sires, which can be either positive or negative, or both. In contrast to the
standard multiattributive approach, we do not presuppose the desires to be
preferentially independent, but rather allow for conditional preference reversal.
It is only assumed that the desires do not supervene on each other.
The relation between preferences and desires are analyzed. We formulate

a representation theorem characterizing when a preference order is compatible
with the logical structure of desires, and has an additive representation over
the desires. It is unique relative to a given utility function representing the
preferences. For cardinal preferences on a difference or ratio scale, this implies
that the strength of desires is measured on a common ration scale.

1. Introduction

A utilitarian representation of conditional desires has been proposed by Lang
[Lang (1996)]. It was first used by [Lang et al. (2002)] in the context of Qualitative
Decision Theory, but differs from the classical multicriteria approach (e.g. see
[Dubois et al. (2001)]) in that the criteria are conditional and they do not separate
as product spaces. The formalism was later rediscovered in a different context by
[Schoch (2000)].
Even since utilitarian representations of goals have been proposed for a certain

time (e.g. [Doyle & Wellman (1991)], [Bacchus & Grove (1997)], for an update see
[Doyle & McGeachie (2002)]), they stick to the paradigma of attribute factoriza-
tions. We believe that, in general, desires or goals cannot be identified with elemen-
tary attributes in product spaces. Many desires are conditional and thus depend on
the fulfilment of others. Consider, for example, the two desires ’I would like to eat
potatoes now’ and ’If I am being served potatoes I strongly prefer them cooked (oth-
erwise I prefer not to eat them at all and have something else)’. With respect to their
product space, the two attributes {potatoes,¬potatoes} and {cooked,¬cooked} are
not preferentially independent in the sense of [Keeney & Raiffa (1976)]: The pref-
erence for potatoes is reversed under the condition they are being served raw. The
preferential entanglement of attributes reflects the prima facie character of desires.
In contrast to the unconditional nature of the agent’s preference for potatoes, there
is no ceteris paribus condition which allows us to extract the desire from her prefer-
ence structure. The alledged solution [Doyle & Wellman (1991), p. 701] of choosing
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logically dependend attributes seems alluring, but we believe it will not work out
with more complicated examples, especially when multi-valued attributes are in-
volved.
The model of Lang, van der Torre, and Weydert [Lang et al. (2002)], on the

other hand, allows to represent conditional desires by propositions of any logical
form and in arbitrary combinations. The purpose of this paper is to study the
link between the utility representation of desires and cardinal preferences, and to
state a necessary and sufficient condition under which the latter can be uniquely re-
duced to the former which is then serving as an explanatory foundation of cardinal
preferences. It is organized as follows. In section 2, we set some basic definitions
of qualitative decision theory and in section 3, we analyze the logical structure of
a desire structure. Section 4 deals with the non-supervenience condition. This
condition says that any desire introduces a partition in the information structure.
Section 5 includes a representation theorem which completly characterizes the ad-
ditive representation of a desire structure. In section 6, we show that Qualitative
Decision Theory can be used in Choice Functions Theory to obtain a weaker defi-
nition of rationality which includes the Sen’s [Sen (1993)] example. Finally section
7 concludes.

2. Desires and Utility

Let W be a set of possible worlds. We assign to it an algebra L of subsets
of W representing the propositions, or the language, in which the content and the
condition of the desire could be formulated. Within the model, one can differentiate
between three types of desires

Loss Desires: A loss desire stands for the agent’s preference to avoid a cer-
tain circumstance. An example for a loss desire is ”I don’t mind the color
of my car, unless it is black, which I hate”.

Win Desires: A win desire expresses the agent’s positive acknowledgement
upon an achievement without regret in its absence. The wish ”If I eat fish I
would like to have white Bourgogne wine with it (but I don’t mind if wine
is not available and I have just water)” represents a pure win desire.

Mixed Desires: Some desires combine both aspects. The above example ”If
I eat potatoes, I would like to have them cooked (I like potatoes, but I hate
to be served raw ones)” is a mixed desire.

The logical structure of a conditional desire δ of the form ”under condition B I
desire A” (i.e. I wish that A comes true if B is true) is represented by a pair hA,Bi
with

(2.1) A,B ⊆W
to which we associate the type of the desire (loss, win, or mixed). The cardi-
nal structure representing the strength of the desire is given by its local utility
function u :W → R

(2.2) u (ω) =

 −α, if ω ∈ B\A
0, if ω ∈W\B
β, if ω ∈ A ∩B

with α,β ≥ 0, where a loss desire has α > 0 and β = 0, while α = 0 and β > 0
indicates a win desire, and both α > 0 and β > 0 stands for a mixed desire. The
form is intuitively appealing. Positive utility is assigned to desire fulfilment, and a
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punishment term in worlds violating the desire. When the condition of the desire
fails, outside B, the local utility function behave neutral. This structure justifies
to set

(2.3) A ⊆ B
since substituting A by A ∩B leaves the local utility function unchanged.
Let ∆ = {hAi, Bii , i = 1, . . . , d} be a set of desires with local utility functions

ui, respectively. From the local utility functions we can in a natural way derive a
preference order % on W by choosing an aggregation function φ to define the total
utility function

U (ω) = φ (u1 (ω) , . . . , ud (ω)) ,

which in our model is simply the sum

(2.4) U (ω) =
dX
i=1

ui (ω) ,

by setting

(2.5) ω % ω0 ⇔ U (ω) ≥ U (ω0) .
The coefficients of the local utility functions are treated cardinally relative to

a given utility scale, which may be either cardinal or ordinal. It therefore seems
natural to choose the straight sum as the aggregation function. Its local utility
function contributes to the total sum only by adding a (non-negative) constant
preserving the preference order.
The local utility function of each mixed desire can be written as a sum of local

utility functions of a win and a loss desire. We call win and loss desires elementary
desires, which are sufficient for cardinal representation, since (2.4) can always be
decomposed into win and loss desires. The qualitative structure of desires can
therefore best be represented by dividing the set ∆ of desires into two non-disjoint
subsets, the positive desires ∆+ containing the win and mixed desires, and the
negative desires ∆− consisting of the loss desires and the mixed desires, too.

3. The Logical Structure of Desires

There is one general conceptual problem which appears whenever mixed desires
or both win and loss desires are involved, the specific form of the aggregation
formula (2.4) is very ambigous, since positive and negative terms interfere. If the
range of U is finite, it could always be written as a step function

(3.1) U (ω) =
mX
i=1

γiχSi (ω) ,

where γ1, . . . , γm are the nonzero elements of the range of U , Si = U
−1 [γi], and χA

is the characteristic function of A. This corresponds to an ad-hoc representation of
unconditional win desires hSi,W i for γi > 0, and loss desires hW\Si,W i for γi < 0.
If the range of U is not finite, then U , which we assume to be a measurable, could
at least be approximated by a sequence of step functions.
It is far from being easy to say what it means that a mixed desire is represented

by some utility function U , not to speak of their comparison. [Lang et al. (2002)]
have proposed that a single desire δ = hA,Bi is represented by a preference order
% on W iff the set B\A is dominated by A ∩ B with respect to this order. This
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criterion seems to be adequate only if positive and negative desires do not interfer
leading to preference reversal. In our former example, not having potatoes is not
preferentially domineered by having them. As it will be expected by this insight,
the representation theorems found in [Lang et al. (2002)] are restricted to the two
cases of either pure win or pure loss desires. In contrast, we will adopt a holistic
view declaring only of a complete set ∆ to be representable by the preference order,
which holds if and only if its utility function can be written in the form (2.4).
There are two major conceptual differences between norms and desires. Al-

though, fulfilment of norms is desirable, the validity of a norm is independent of
it. In a case of murder, even if the crime has irreversibly being commited, the
norm not to do so would still be assumed to hold. In contrast to this, desires share
with goals the principle of fulfilment expressed by (2.3), while a conditional norm
of the type ’obligement towards A, given ¬A’ would still make sense, at least in a
Kripkean framework.
We call a desire δ = hA,Bi consistent, if and only if A ∩ B 6= ∅, which under

convention (2.3) is equivalent to A 6= ∅. Consistency also implies that the negative
alternative can be avoided, B\A 6=W .1 Inconsistent desires are to have one’s cake
and eat it.2 This should not be confused with the stronger notion of satisfiability
of (consistent) wishes, which is judged relatively to the subset W0 ⊆W of available
alternative worlds, and holds, if and only ifW0∩A∩B 6= ∅. Inconsistent conditional
desires δ = hA,Bi, A ∩B 6= ∅, are equivalent to consistent unconditional pure loss
desires of the form δ0 = h¬B,W i in the sense that they have a local utility function
of the same form. We call a desire δ = hA,Bi nondegenerated, if and only if it
is consistent and B\A 6= ∅.
Secondly, the biconditional O (., .) representing qualitative conditional norms is

generally assumed to be closed under logical consequence and conjunction stable,
and follow the ’filter’ axioms: O (A|B) ∧ A implies A0 ⇒ O (A0|B) and O (A|B) ∧
O (A0|B)⇒ O (A ∧A0|B), while ¬O (⊥ |B) with the contradictory proposition ⊥ is
supposed to hold for consistent B, and O (., .) is extensional in both arguments, al-
lowing for substitution of equivalent propositions. In a qualitative context, a weaker
norm like ’you should not kill’ is therefore reducable to the stronger norm ’you
should not injure’, whenever killing implies injuring the victim. In a quantitative
context, if strengths of norm violations are to be introduced, an injurance is defi-
nitely of minor severity than a murder. The same holds for quantitative conditional
desires, where the desire ’I strongly prefer a Mercedes car’ is to be differentiated
from ’I would be happy to have a car at all’.
The notion of writing the logical structure of a desire as an ordered pair of

sets can be justified as follows. Two desires δ = hA,Bi and δ0 = hA0, B0i are
called structurally equivalent, iff their utility functions differ only by coefficients,
whenever they are relevant. More precisely,

1Since for A,B ⊆ W we have B\A = W ⇔ B = W ∧ A = ∅, and thus A ∩ B 6= ∅ ensures
B\A 6=W .

2In deontic logic it is normally not assumed that for the dyadic deontic operator O (A|B)
representing a conditional norm we must have A ∧B consistent. We might insist that, even if a
violation of a conditional obligation has already been committed, under this condition the norm
not to do so might still hold. The consistency condition might constitute a conceptual difference
between the logic of norms and of desires; the former which links real worlds to morally ideal
worlds, the latter represents a decision theoretical concept.
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Definition 1. Two real-valued functions u and u0 on W are called structurally
equivalent, u ≈ u0, iff there exists a bijective sign-preserving real-valued function
ϕ with

u (ω) = ϕ (u0 (ω)) for all ω ∈W .
Here, a real-valued function ϕ is called sign-preserving iff sgn (ϕ (x)) = sgn (x) for
all x, where, by convention, sgn (0) = 0.

Structural equivalence implies ordinal equivalence for local utility functions in
our sense (and is even equivalent to it for mixed desires), but obviously not in
general, since the function ϕ is not required to be monotoneous. We obtain the
following straightforward characterization:

Proposition 1. Two local utility functions u and u0 with parameters α,β and α0,β0

associated to desires δ = hA,Bi and δ0 = hA0, B0i, respectively, are equivalent iff
the following two conditions hold:
(i) B0\A0 = B\A or ((α0 = 0 or B0\A0 = ∅) and (α = 0 or B\A = ∅))
(ii) A0 ∩B0 = A ∩B or

¡¡
β0 = 0 or A0 ∩B0 = ∅¢ and (β = 0 or A ∩B = ∅)¢

Moreover, if δ and δ0 are nondegenerated mixed desires satisfying (2.3), the two
conditions collapse to

B = B0 ∧A = A0.
Desires must be uniquely defined by the support of the local utility function. Pos-

itive desires should not occur under different conditions in the same desire structure.
In these cases we assume that the weakest condition is chosen to represent the desire
in the structure. Negative desires hA,Bi are likewise characterised by B\A. More-
over, no positive desire should be exactly outweighted by a corresponding negative
desire for all possible worlds. These arguments motivate the conditions (i) (ii) and
(iii) in the following definition.

Definition 2. A pair D = h∆+,∆−i is called a desire structure iff ∆ = ∆+∪∆−
is a set of ordered pairs δ = hA,Bi with A ⊆ B (2.3), each of which represents a
non-degenerated desire, and
(i) For all hA,Bi , hA,B0i ∈ ∆+ there is B = B0.
(ii) For all hA,Bi , hA0, B0i ∈ ∆−, B\A = B0\A0 implies A = A0.
(iii) For all hA,Bi ∈ ∆+ and hA0, B0i ∈ ∆− we have A 6= B0\A0.
We call the elements of ∆+\∆− win desires, ∆−\∆+ the loss desires, and
∆+ ∩∆− the mixed desires.

Definition 3. Let D = h∆+,∆−i be a desire structure. Its characteristic sets
are declared as follows,

Σ : = Σ+ ∪ Σ−, where
Σ+ : =

©
A| hA,Bi ∈ ∆+ª , Σ− := ©B\A| hA,Bi ∈ ∆−ª .

Conditions (i) and (ii) of the definition of a desire structure (definition 2) ensure
that each desire structure is associated to exactly one characteristic set. Clause
(iii) ensures that each characteristic set can be associated to either a positive or a
negative desire.

Remark 1. The mapping from a desire structure to its characteristic sets is one-
one. Moreover,

(3.2) Σ+ ∩ Σ− = ∅.
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Definition 4. Let D = h∆+,∆−i a finite desire structure, and % a relation on
W . We say that % is D-representable if and only if for the characteristic sets of
Σ = {S1, . . . , Sd}, there are coefficients γ1, . . . , γd with γi > 0 for Si ∈ Σ+, γi < 0
for Si ∈ Σ−, such that % is represented by the utility function

(3.3) U (ω) =
dX
i=1

γi · χSi(ω),

in the common sense

∀ωω0 ∈W : ω % ω0 ⇔ U (ω) ≥ U (ω0) .
The qualitative desire structures induce the following natural dominance relation

about the agent’s desires:
Definition 5. Let D = h∆+,∆−i be a desire structure. World ω0 is weakly dom-
inant to ω, ω0 w ω, iff more gain or mixed desires are fulfilled in ω0 than in ω, and
less loss or mixed desires are unfulfilled.

ω0 w ω ⇔
½

ω /∈ B\A⇒ ω0 /∈ B\A for all hA,Bi ∈ ∆− and
ω ∈ A⇒ ω0 ∈ A for all hA,Bi ∈ ∆+ .

From now on, Â and ∼ will denote the asymmetrical and the symmetrical parts
of % respectively, and A and ≡ stand for the corresponding parts of w.
Definition 6. Let D be a desire structure and w its associated dominance relation.
A weak order (complete and transitive) % on W is said to obey the condition of
weak monotonicity iff for each w,w0 ∈W
(3.4) ω0 w ω ⇒ ω0 % ω.

It satisfies the condition of strong monotonicity iff it satisfies weak monotonicity
and for each w,w0 ∈W
(3.5) ω0 A ω ⇒ ω0 Â ω.

The following fact is easily to be concluded from (3.3).
Proposition 2. If D is a desire structure and % a D-representable weak ordering
on W , then % satisfies the strong monotonicity condition.

4. The Non-Supervenience Condition

The following section introduces the concept of supervenience, which we will
need to impose restrictions on the logical structure of desires. A property or a
proposition S is said to supervene on a set Σ of properties or propositions if and
only if from a complete information on Σ it is determined whether S holds or not.
Supervenience is weaker than definability, since the function obtaining the truth
value of S from those of Σ is unknown. It is only assumed to exist. In certain
special languages, one can infer that supervenience is equivalent to an adjunction
of definitions.3 We will assume that a feasible set of desires is independent in the
sense that no supervenience relation holds among them: Any desire introduces

3Let N be a set of propositions. A predicate D is definable in N if and only if there is
an open formula ϕx such that N |= ∀x (Dx⇔ ϕx). Within monadic first-order predicate logic,
supervenience has been shown to be equivalent to

N |= ∨ni=1∀x (Dx⇔ ϕix)

for some open formulas ϕ1, . . . ,ϕn.
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a new partition in the information structure generated by the characteristic sets.
In other words, for each desire δ there is a set C ⊆ W on which, in the sense
of a ceteris-paribus condition, all other desires are equally satisfied, and which is
subdivided by the characteristic set of the desire into two nonempty subsets. This
seems to be a natural condition, which also allows for hierachically ordered desires,
as in the potatoe example above.
Assume an agent has a preference order representable by a desire structure with

characteristic sets Σ. Then the following equivalence relation represents the infor-
mation structure on W given by her desires.

Definition 7. Let Σ ⊆ ℘ (W ). We define an equivalence relation =Σ on W by

∀ω,ω0 ∈W, ω =Σ ω0 ⇔ ∀S ∈ Σ (ω ∈ S ⇔ ω0 ∈ S) .

Indeed, the subject is indifferent to all =Σ-equivalent states, since =Σ is a sub-
relation of ≡.
Remark 2.

(=Σ) ⊆ (≡)

Remark 3.
Σ0 ⊆ Σ⇒ (=Σ) ⊆ (=Σ0) .

Definition 8. Let Σ ⊆ ℘ (W ). We say that S ⊆W supervenes on Σ, in symbols
S | Σ, iff

∀ω,ω0 ∈W : ω =Σ ω0 ⇒ (ω ∈ S ⇔ ω0 ∈ S) .
The following three remarks follow immediately from the definition.

Remark 4. S | Σ iff S can be written as a sum of equivalence classes from W/ =Σ
iff for all F ∈W/ =Σ : F ⊆ S ∨ F ∩ S = ∅.

Remark 5.
S ∈ Σ⇒ S | Σ.

Remark 6.
Σ0 ⊆ Σ ∧ S | Σ0 ⇒ S | Σ.

Supervenience and measurability by a set-algebra are closely related, as the fol-
lowing lemma shows. It emphasizes again the connection between supervenience
and the information structure given by Σ.

Proposition 3. Let Σ ⊆ ℘ (W ). If S is measurable with respect to the smallest (σ-)
algebra containing Σ andW , S ∈ σ (Σ ∪ {W}), then S supervenes on Σ. Moreover,
if Σ is finite, then the two statements are equivalent.

Corollary 1. (to the proof)

S | Σ⇔ S | σ (Σ ∪ {W})

The rest of the section contains material needed for the proof section and can be
skipped at first reading. The following proposition gives an important information
about the number of elementary Σ-supervenient sets.
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Definition 9. The granularity of a set of sets Σ ⊆ ℘ (W ) is defined as the number
of equivalence classes

gran (Σ) := #(W/ =Σ) .

Proposition 4. Let Σ ⊆ ℘ (W ) be finite such that S | Σ\ {S} is false for all S ∈ Σ.
Then

gran (Σ) ≥ #Σ+ 1.
Morevover, the number of worlds exceeds the number of desires.

5. A Representation Theorem

We now impose a non-supervenience condition on desire structures which will
be a prerequisite for our representation theorem and for the relative uniqueness of
the representation.

Definition 10. A desire structure D with characteristic sets Σ is called non-
supervenient, iff no characteristic set supervenes on the others,

(5.1) not (S | Σ\ {S}) for all S ∈ Σ.
Let us now deal with the representational problem. Fix a desire structure D =

h∆+, ∆−i with its associated set of characteristic sets Σ.
Definition 11. For p ≥ 2 we define a binary relation Λp over W p,

(ω1, . . . ,ωp) Λp
¡
ω01, . . . ,ω

0
p

¢
,

with ωj, ω0j ∈W , j = 1 . . . p, by
# {j : ωj ∈ S} = #

©
j : ω0j ∈ S

ª
for each S ∈ Σ.

It is easy to see that Λp is an equivalence relation. In order to achieve an
additive representation, we introduce the cancellation conditions Cp by Tversky
[Tversky (1964)] and Fishburn [Fishburn (1970)],[Fishburn (2001)]. See alsoWakker
[Wakker (1989)].

Condition 1 ( Cp). For ω1, . . . ,ωp, ω01, . . . ,ω
0
p ∈W :

(ω1, . . . ,ωp) Λp
¡
ω01, . . . ,ω0p

¢
, ω0k % ωk for all k = 1 to p− 1

is equivalent to not(ω0p Â ωp).

It is easy to see that :

Remark 7. If Conditions C2 and C3 are satisfied then % is a weak order.

Theorem 1 (The main theorem). Let D = h∆+, ∆−i be a finite non-supervenient
desire structure, and let Σ = {S1, . . . , Sd} be its associated characteristic sets. The
following two conditions are equivalent for a relation % on W .

(1) Condition Cp is satisfied for p = 2, 3, 4, . . . and % satisfies strong monotonic-
ity.
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(2) % is a D-representable weak order, i.e. there exists γ1, . . . , γd with γi > 0
for Si ∈ Σ+, γi < 0 for Si ∈ Σ− such that for all ω, ω0 ∈W

(5.2) ω % ω0 ⇔ U(ω) ≥ U(ω0),
where

(5.3) U(ω) =
dX
i=1

γi · χSi(ω).

Moreover, for each utility function U of the form (5.3) representing % in the
sense of (5.2), the coefficients γi are uniquely defined, and there are always more
constraints on U than those needed to determine the coefficients.

The uniqueness property is especially useful in case % is stemming from a richer
framework ensuring cardinal utilities, which is unique up to a positive affine trans-
formation. Then the coefficients are unique up to a common positive factor. The
last statement is to show that under the condition of non-supervenience, desire
theory has an empirical content: For a given preference order % on W and a given
non-supervenient desire structure D, the question whether % is D-representable is
non-trivial.
Qualitative Decision Theory suggests a definition of rationality. Let us first

define the following binary relation induced by a desire structure D.
Definition 12. A Desire structure D induces a binary relation over W denoted
RD and defined by : ∀ ω,ω0 ∈ W, ωRDω0 if there exists a desire δ = hA,Bi ∈ D
such that ω ∈ A and ω0 ∈ B.
Our assumption is that RD the binary relation induced by a desire structure D

is not necessarily the agent’s true preference over W (except when RD is a weak
order) which is assumed to be always a weak order. That is we want to extend
RD to a weak order called latent weak order preference and denoted %D. However
we want this latent preference to respect the first condition of compatibility in the
sense of Roberts [Roberts (1971)]4 between a binary relation and a weak order:

(5.4) %D ⊆ 5 RD ∪ JRD
where JRD =

©
(ω,ω0) ∈W 2 : (ω0,ω) /∈ RD and (ω,ω0) /∈ RD

ª
is the incomparabil-

ity relation w.r.t. RD. For instance if RD is acyclic, we can take the following weak
order:
(5.5)

%D= TuR∗ +
³
JTu

R∗ ∩ T lR∗
´
+A with:

R∗ = RD ∪ JRD
TuR∗ is defined by : ∀ ω,ω0 ∈W, ωTuR∗ω0 ⇔ {b ∈W : bR∗ω} ⊆ {b ∈W : bR∗ω0}
JTu

R∗ is the incomparability relation w.r.t. T
u
R∗

T lR∗ is defined by : ∀ ω,ω0 ∈W, ωT lR∗ω0 ⇔ {b ∈W : ω0R∗b} ⊆ {b ∈W : ωR∗b}
A is constructed from JTu

R∗ ∩ JT lR∗ by orienting the edges of the graph
representing TuR∗ +

³
JTu

R∗ ∩ T lR∗
´
+ JTu

R∗ ∩ JT lR∗ such as to preserve
the transitivity of TuR∗ +

³
JTu

R∗ ∩ T lR∗
´
.

4See also [Monjardet (1978)] or [Diaye (1999)].
5By duality, we have PRD ⊆ ÂD where PRD and ÂD are the asymmetric components of RD

and %D respectively.
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TuR∗ and T
l
R∗ are partial weak orders (reflexive and transitive) and are called upper

section partial weak order and lower section partial weak order associated with R∗

respectively.

Example 1. W = {a, b, c, d} , D = {h{a, b}, {a, b, c}i , h{a}, {a, c, d}i}.
The binary relation induced by the desire structure is

RD = 6 {(a, a), (b, b), (a, b), (b, a), (a, d), (a, c), (b, c)}
This binary relation is neither transitive (indeed there is no condition in D , in-
cluding both b and d) nor complete. We can extend it to the weak order %D=
TuR∗ +

³
JTu

R∗ ∩ T lR∗
´
+A which is here equal to TuR∗ .

%D= {(a, a), (b, b), (c, c), (d, d), (a, b), (a, d), (a, c), (b, c), (b, d), (d, c), (c, d)}

Definition 13. Let W be a set of possible worlds, and D be the agent’s desire
structure. The agent is rational w.r.t. D (or is D-rational) if :
(i) D is independent.
(ii) There exists %D a weak order overW , which respects (5.4) and is D-representable.
Remark that all these weak orders are equivalent from D-rationality standpoint.

Let us illustrate the concept of D-rationality with the following example.
6. Example with Choice Functions Theory

Let W be a finite set of objects and P (W ) be the power set. A Domain of
Choice F is a subset of P (W )\∅. A Choice Function C is a function defined from
F to P (W ) with the condition that C(S) ⊆ S. A choice function is univalent if
∀ S ∈ F, #C(S) = 1. For simplicity purpose, we will restrict ourselves to the class
of univalent choice functions whose domains of choice are closed under ∪ and ∩.
Finally we will remove7, without loss of generality, from the domain of choice F the
single element sets {x}.
C(S) is usually interpreted as the agent’s choice over a choice set S. We will

interpret C(S) as a conditional choice. That is we interpret hC(S), Si as a condi-
tional desire : ’I desire C(S) if S happens’. hC(S), Si is of course not degenerated
in the sense defined in section 3. The domain of choice F and the choice function C
induce a desire structure D in the sense of definition 2, constructed by the following
way:

RULE OF CONSTRUCTION:
(1) Set ∆ = {hC(S), Si : S ∈ F}
(2) D = h∆+,∆−i where
∆− = {hC(S), Si : ∃ S0 ∈ F, S0 ⊂ S s.t. ∃ x ∈ C(S) ∩ S0 and x /∈ C(S0)}
∆+ = ∆\∆−.
(3) If there exist: hC(S), Si , hC(S0), S0i ∈ ∆+ with C(S) = C(S0) or

hC(S), Si , hC(S0), S0i ∈ ∆− with S\C(S) = S0\C(S0) or
hC(S), Si ∈ ∆+, hC(S0), S0i ∈ ∆− with C(S) = S0\C(S0) then
remove from D the one with the smallest condition (in term of ⊂).

6(x, y) ∈ RD ⇔ xRDy
7The main reason is that when C is univalent, then trivially C ({x}) = {x}.
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END.

Thus a desire hC(S), Si is a loss desire (see step 2) if8 there exists another
desire hC(S0), S0i whose condition S0 is included in S and such that the element
x desired by the agent under S (and belonging to S0) is not desired by him under
S0 : S0 ⊂ S, C(S) = {x}, x ∈ S0, C(S0) = {x} and x 6= x. Finally let us
remark that the condition specified in ∆− is a violation of the so-called Condition
α ([Chernoff (1954)]):

∀ S, S0 ∈ F, S0 ⊂ S ⇒ C(S) ∩ S0 ⊂ C(S0)
According to our above definition 13, C is D-rational if the associated desire struc-
ture D is independent and there exists a weak order over W , which respects (5.4)
and is D-representable.
Let us now recall the current definition of rational choice used in choice function

theory.

Definition 14 (Richter 1971). Let C : F → P (W ) be a choice function. C is
Richter-rational 9 if there exists a binary relation Q over W such that:

∀ S ∈ F, C(S) = {x ∈ S : xQy,∀ y ∈ S}

Remark 8. Let C : F → P (W ) be a univalent choice function with F closed under
∪ and ∩. Let D be the desire structure constructed using the Rule of Construction.
Then C is Richter-rational iff Σ = Σ+. Indeed [Moulin (1985)] has proved the
equivalence between Richter-rationality and Condition α for univalent choice func-
tions over abstract domains of choice. Moulin’s result holds, of course, in our case
where F is closed under ∪ and ∩.
Remark 9. When C is Richter-rational then RD is actually the so-called revealed
preference relation and is rationally equivalent to any weak order %D which respects
(5.4) and is D-representable.
The following result shows that D-rationality is weaker than Richter-Rationality.

Proposition 5. Let C : F → P (W ) be a univalent choice function with F closed
under ∪ and ∩. Let D be the desire structure constructed using the Rule of Con-
struction.
(1) implies (2).

(1) C is Richter-Rational (or equivalently Σ = Σ+).
(2) C is D-rational.

Example 2. Let W = {x, y, z, a} and C{x, y} = C{x, a} = {x}; C{{a, y} =
{a}; C{a, x, y} = {x}.
It is easy to see that Condition α is fulfilled, therefore ∆− = ∅.
Using the rule of construction we get the following desire structure :

D = {h{x}, {x, y, a}i , h{a}, {y, a}i}
All these desires are win desires and the associated set of characteristic sets is :

Σ = Σ+ = {{x}, {a}}
8This interpretation is due to the fact that C is univalent.
9This definition is known under the name of G-rationality. There exists another concept called

M-rationality, however they are equivalent in duality.
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C is Richter-Rational. D is independent and the binary relation
RD is {(x, x), (a, a), (x, y), (x, a), (a, y)}.
Let %D be the upper section weak order associated with RD ∪ JRD :
x ÂD a ÂD y ∼D z
where ÂD and ∼D are the asymmetric and symmetric parts of %D respectively.

%D is D-representable with U(x) = γ1, U(a) = γ2, U(y) = 0 , U(z) = 0 and
γ1 > γ2 > 0. Of course %D is rationally equivalent to RD.
However the converse ((2)⇒ (1)) is not true as shown by the below example

in which the individual in the Sen’s example ([Sen (1993)]) is D-rational but not
Richter-rational.

Example 3. Let W = {x, y, z} with x =”go home”, y =”tea”, z =”cocaine”.
C{x, y} = {y}; C{x, y, z} = {x}. δ1 = h{y}, {x, y}i is a win desire while δ2 =
h{x}, {x, y, z}i is a loss desire. Therefore Σ = Σ+ ∪ Σ−, where Σ+ = {{y}} ,
Σ− = {{y, z}} and RD = {(x, y), (y, x), (x, z)}. C is not Richter-Rational since
Condition α is violated, however C is D-rational. Indeed D is independent and
the following complete order %D= y ÂD x ÂD z , is D-representable with
U(x) = 0, U(y) = γ1 + γ2 , U(z) = γ2 , and γ1 > 0, γ2 < 0, γ1 + γ2 > 0.

D-rationality is also weaker than the concept of sub-rationality by a weak order
([Fishburn (1976)], [Deb (1983)], [Moulin (1985)]) since D-rationality allows for the
violation of the Fishburn’s Partial Congruence Axiom (which is required for sub-
rationality by a weak order when the domain of choice is selective) and for the
violation of Deb’s Axiom α∗ (which is required for sub-rationality by a weak order
when the domain of choice is abstract). It is also weaker than the concept of pseudo-
rationality by some linear orders because it allows for the violation of Condition α
while, according to [Aizerman & Malishevski (1981)], pseudo-rationality by some
linear orders requires its respect.

7. Conclusion

The formalism of Qualitative Decision Theory has been designed to model goals
for automatic decisions. It is, however, suitable for analysing preferences in terms
of the motives of the agent, which we called his or her desires. Applied to choice
functions theory, this leads to generalised form of rationality beyond the standard
paradigm of Richter rationality, which corresponds to the revealed preferences ap-
proach. We are able to cope with the Sen’s example of menu-dependent preference
reversal.

APPENDIX: PROOFS

Proof of proposition 1. The first part follows directly from the definition. For the
proof the second part observe that for consistent nondegenerated mixed desires the
two conditions (i) and (ii) are equivalent to B0\A0 = B\A and A0 ∩B0 = A∩B. It
follows

B = (A ∩B) ∪ (B\A) = (A0 ∩B0) ∪ (B0\A0) = B0,
and further by (2.3) we obtain A = A0. ¤
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Proof of proposition 3. Let Σ0 := σ (Σ ∪ {W}). We have to show that (=Σ) =
(=Σ0), then the first proposition follows from remark 5. By remark 3, (=Σ0) ⊆ (=Σ).
For the conversion we only have to show that for all x, y ∈W (i) if x ∈ Si ⇔ y ∈ Si
holds for each i ∈ I, then x ∈ Si∈I Si ⇔ y ∈ Si∈I Si, and (ii) x ∈ S ⇔ y ∈ S
implies x ∈W\S ⇔ y ∈W\S. The latter is trivial, so let x ∈ Si ⇔ y ∈ Si hold for
each i ∈ I. Define

S :=
[
i∈I
Si.

If there is an i ∈ I with x ∈ Si, then both x, y ∈ Si ⊆ S. Otherwise, neither x nor y
is in one of the Si, thus x, y /∈ S. Thus whenever Σ1 ⊆ Σ2, and Σ2 differs from Σ1
only by unions and complements of sets, then (=Σ1) ⊆ (=Σ2). Since clearly W | Σ,
we have completed the proof of (=Σ) = (=Σ0).
For the proof of the second proposition, let Σ be finite. In this case, Σ0 :=

σ (Σ ∪ {W}) is also finite and thus atomic. Let A1, . . . , An be its atoms. Then
S ∈ Σ0 iff S can be written as a union of atoms. We have to show that the atoms
coincide with W/ =Σ, then the proposition follows from remark 4. Each element of
W/ =Σ is either an intersection of a ’maximally consistent’ subset of Σ, orW\

S
Σ.

In either case, it is an atom of Σ0. Conversely, each atom supervenes on Σ, and,
since it is minimal w.r.t. this property, it must be in W/ =Σ. ¤

In order to give a proof of theorem 4, we will need the following three lemmata.

Lemma 1. For each S ⊆W and each Σ ⊆ ℘ (W ) we have

S | Σ⇔ (=Σ) =
¡
=Σ∪{S}

¢
.

Proof. ”⇒”: The direction ”⊇” follows directly from remark 3. In order to show
”⊆” let there be x =Σ y, then by assumption x ∈ S ⇔ y ∈ S, which completes
x =Σ∪{S} y.
”⇐”: Assume ¬S | Σ. Then there are x, y ∈W with x =Σ y but ¬ (x ∈ S ⇔ y ∈ S).

But this implies ¬ ¡x =Σ∪{S} y¢, and (=Σ) 6= ¡=Σ∪{S}¢. ¤

Lemma 2. Let E and E0 be equivalence relations on W with E ⊆ E0. Then
(i) #(W/E0) ≤ #(W/E) ,
(ii) #(W/E0) = #(W/E)⇔ E = E0,

where (ii) holds only for finite cardinal numbers.

Proof. (i) We have to define an embedding of the equivalence classes of E0 into
those of E0. Let there be F ∈ W/E0 an arbitrary equivalence class from E0. We
define a mapping h : W/E0 → W/E by selecting an arbitrary xF ∈ F and letting
h (F ) be the equivalence class of xF inW/E. For y ∈ h (F ) we have xFEy and thus
xFE

0y, or y ∈ F . This shows h (F ) ⊆ F . It follows that the mapping h is injective.
Two different equivalence classes F,G ∈W/E0, F 6= G are always disjoint and thus
h (F ) ∩ h (G) ⊆ F ∩G = ∅, which establishes h (F ) 6= h (G).
(ii) Only ”⇒” remains to show. Let there be E ( E0, then there are x, y ∈ W

with xE0y and ¬xEy. In other words, their equivalence classes coincide in W/E0,
but are disjoint in W/E. Let F denote the common equivalence class of x and y in
W/E0, and Hx, Hy the disjoint equivalence classes in W/E. Since E ⊆ E0, we find
Hx,Hy ⊆ F . Construct h as above, then it must be h (F ) 6= Hx or h (F ) 6= Hy.
Since as shown before, for any G ∈ W/E0, G 6= F , we have h (G) ∩ F = ∅, either
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Hx or Hy are not in the range of h. If W/E is finite, this proves #(W/E0) <
#(W/E). ¤

Lemma 3. For Σ,Σ0 ⊆ ℘ (W )

(i) Σ0 ⊆ Σ⇒ gran (Σ0) ≤ gran (Σ) .
(ii) gran (Σ ∪ {S}) = gran (Σ)⇔ S | Σ.

Proof. (i): With remark 3 we conclude (=Σ) ⊆ (=Σ0) and further with lemma 2 (i)
gran (Σ0) ≤ gran (Σ).
(ii): With lemma 2 (ii) gran (Σ ∪ {S}) = gran (Σ) is equivalent to (=Σ) =¡
=Σ∪{S}

¢
, and with lemma 1 equivalent to S | Σ. ¤

We are now able to complete the proof of proposition 4.

Proof of proposition 4. Induction over n := #Σ.
n = 0: It follows Σ = ∅ and thus x =Σ y for all x, y ∈W . Thus gran (Σ) = 1.
n − 1 → n: Since Σ 6= ∅ let S ∈ Σ and Σ0 := Σ\ {S}. By assumption, ¬S | Σ0,

and by inductive assumption

gran (Σ0) ≥ #Σ0 + 1 = n− 1 + 1 = n.
With lemma 3 (i) we find gran (Σ) ≥ gran (Σ0), and by lemma 3 (ii) from ¬S | Σ0
even gran (Σ) > gran (Σ0), establishing

gran (Σ) ≥ n+ 1 = #Σ+ 1,
which has to be shown. Since #Σ = #∆ by remark 1, and #W ≥ gran (Σ), the
number of worlds exceeds the number of desires. ¤

We now want to prove the theorem 1.

Proof of the main theorem. Let D = h∆+, ∆−i be a finite non-supervenient desire
structure with characteristic sets Σ = {S1, . . . , Sd}. If % is a D-representable weak
order in the sense of condition 2.), then by the additive representation theorem the
cancellation conditions Cp hold for p = 2, 3, 4, . . . , and strong monotonicity follows
from proposition 2.
Existence: In order to show the converse, assume that % is a relation on W

satisfying strong monotonicity and the cancellation conditions Cp, p = 2, 3, 4, . . . .
Then by remark 7, it is a weak order.
We define the following function π :W →Qd

i=1 Zi, with Zi := {0, 1}, by

(7.1) πi(ω) =

½
1, if ω ∈ Si,
0 otherwise,

= χSi (ω) .

By (3.2), this function is well-defined.
Let Z = π (W ) be the domain of π. By the monotonicity condition (3.4) we find

∀ω, ω0 ∈W : ω =Σ ω0 ⇒ ω ∼ ω0.

This can be rewritten as

∀ω, ω0 ∈W : π (ω) = π (ω0)⇒ ω ∼ ω0.
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Therefore, % induces a binary relation, denoted%Z , over the set Z, in the natural
way,

(7.2) ∀ ω,ω0 ∈W, ω % ω0 ⇔ π (ω) %Z π (ω0) ,

such that is there is an order-isomorphism between (W, %) and (Z,%Z).
The aim of the proof is now to find an additive utility representation φ of (Z,%Z),

such that the the composition of two functions φ and π

U : (W, %) −→
π
(Z, %Z) −→

φ
(R,≥) ,

ω 7→ φ(π(ω)),

serves as a D-representation of % in the sense of definition 4. We can therefore
analyze our problem as a problem of constructing additive utilities with finite sets.
Using 7.1 we can write Condition Cp in terms of elements of Z. Then according

to the additive representation theorem, Cp is satisfied for p = 2, 3, .... if and only if
there exist d real-valued functions m1, . . . ,md such that

φ0 (z) =
dX
i=1

mi(zi)

represents %Z ,
∀ z, z0 ∈ Z : z %Z z0 ⇔ φ0 (z) ≥ φ0 (z0) .

Renormalizing φ0 by subtracting a constant

b :=
dX
i=1

mi(0)

gives a representation of %Z by

φ (z) := φ0 (z)− b =
dX
i=1

[mi(zi)−mi(0)] =
dX
i=1

m̃i(zi),

with
m̃i(zi) := mi(zi)−mi(0).

Since m̃i(0) = 0 and zi ∈ {0, 1}, we find by the definition of π
m̃i(πi(ω)) = m̃i(1) · χSi (ω) .

Together with 7.2, this establishes that % is represented by

(7.3) U (ω) = φ(π(ω)) =
dX
i=1

m̃i(πi(ω)) =
dX
i=1

γi · χSi (ω) ,

with γi := m̃i(1). This is already the desired form of the utility function.
It remains to be shown that γi > 0 for Si ∈ Σ+, and γi < 0 for Si ∈ Σ− for

all i = 1, . . . , d. Fix any i between 1 and d. Since the desire structure is non-
supervenient, Si | Σ0 can not be true for Σ0 := Σ\ {Si}. Thus by definition, there
exist ω,ω0 ∈ W with ω =Σ0 ω

0 and ω ∈ Si < ω0 ∈ Si. Without loss of generality,
assume that ω ∈ Si and ω0 /∈ Si. Since ω ∈ Sj ⇐⇒ ω0 ∈ Sj for all j 6= i, the
additive representation (7.3) gives us

U (ω) T U (ω0)⇔ γi T 0.
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Now, if Si ∈ Σ+, then obviously ω A ω0, and strong monotonicity entails γi > 0.
Analogously, for Si ∈ Σ− we get γi < 0.
Uniqueness: The question of uniqueness of the coefficients γi can only be

characterized in abstract terms, although it depends on the sets only. We define the
rank of the collection, rk (Σ), as follows. Let =Σ denote the equivalence relation
from definition 7. Let W/ =Σ = {F1, . . . , Fm} be the quotient sets and x1 ∈
F1, . . . , xm ∈ Fm representative elements. Define an m× d-matrix M by

(7.4) (M)ij =

½
1, if Fi ⊆ Sj
0 else

= χSj (xi)

for i = 1, . . . ,m, and j = 1, . . . , d. We call M the characteristic matrix of Σ.
Then define rk (Σ) as the rank of the characteristic matrix M .
With the help of the vectors ~γ = (γ1, . . . , γd) and ~y = (U (x1) , . . . , U (xm)) one

can formulate the problem in algebraic terms as the uniqueness of the solution of
the linear equation

(7.5) M~γ = ~y.

The solution ~γ given ~y is unique if and only if rk (Σ) = d, which depends on the
logical structure of Σ only. Assume now that Σ satisfies the non-supervenience
condition (5.1). Then proposition 4 implies that

(7.6) m > d,

which means that the equational system contains even more equations than neces-
sary. It has the form

S1 · · · Sd ~γ ~y
x1 ∈
...
...
xm ∈

F1
...
...
Fm


M11 · · · M1d

...
...

...
...

Mm1 · · · Mmd


 γ1

...
γd

 =

 U (x1)
...

U (xm)

 .

In order to ensure that the matrix has full rank, it is sufficient to show that the
column vectors are linearly independent. Consider the k-th column vector. Since
Sk | Σ\ {Sk} is false, by definition in remark 4, there are two (disjoint) equivalence
classes Fi and Fj of =Σ, which are undistinguishable by Σ\ {Sk} (a more detailed
argument can be extracted from the proof of lemma 2 (ii)). As a consequence,
Mil = Mjl for all l 6= k, the column vectors except for the k-th coincide on the
i-th and j-th position and so does every linear combination of them. On the other
hand, the k-th column vector has different values at these positions. Since this
holds for all k, the column vectors are linearly independent and the matrix has full
rank. Thus, the solution ~γ given the vector ~y of the domain of U is unique for each
utility function U representing % in the common sense. Moreover, from (7.6) we
see that there are m− d > 0 more constraints on U than needed to determine the
coefficients. ¤

Finally let us prove proposition 5.

Proof. Since #S = 1,∀S ∈ Σ and S ∩ S0 = ∅,∀S, S0 ∈ Σ, S 6= S0, then we have:
#W ≥ #Σ. Finally since C is Richter-rational and F is closed under ∪ and ∩,
then it is impossible to have #W = #Σ. Thus #W > #Σ.
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Since #W > #Σ and #S = 1,∀S ∈ Σ and S ∩ S0 = ∅,∀S, S0 ∈ Σ, S 6= S0 ,
then D the associated desire structure is independent. To complete the proof, we
have to show that there exists a D-representable weak order that respects (5.4).
Whatever the candidate functional U , we have:

U(xi) = γi if xi ∈
dS
k=1

Sk , and

U(xi) = 0 if xi ∈W \
dS
k=1

Sk , where #Σ = d.

Moreover an element xi ∈W \
dS
k=1

Sk for the following two reasons:

(7.7) xi /∈ A for any hA,Bi ∈ D with xi ∈ B

(7.8) xi /∈ B , ∀ hA,Bi ∈ D
The main difficulty in constructing a D-representable weak order %D is that it
should be such that:

(7.9)
x ÂD y, ∀ y ∈W \

dS
k=1

Sk and ∀ x ∈
dS
k=1

Sk

x ∼D y, ∀ x, y ∈W \
dS
k=1

Sk

Let us show that the weak order (see 5.5) %D= TuR∗ +
³
JTu

R∗ ∩ T lR∗
´
+ A respects

(5.4) and is D-representable. Indeed since C is Richter-rational, univalent and its
domain of choice is closed under ∪ and ∩ then RD is antisymmetric and transitive.
R∗ = RD ∪ JRD is therefore quasi-transitive10. Hence (5.4) is fulfilled. Let x be
an element such that (7.7) or (7.8) then {y ∈W : yR∗x} = W , therefore (7.9) is

fulfilled. Finally for any xi, xj ∈
dS
k=1

Sk , i 6= j , set γi > γj if xi ÂD xj . The

resulting functional is a D-representation of %D= TuR∗ +
³
JTu

R∗ ∩ T lR∗
´
+A. ¤
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