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Abstract

In the context of long memory, the finite-sample distortion of statistic distribu-
tions is so large, that bootstrap confidence intervals (percentile and percentile-t) for
the long memory parameter do not perform better than the corresponding asymp-
totic confidence interval. In this paper, we propose confidence intervals based on
inverting bootstrap tests for the long memory parameter in the ARFIMA model.
We show that classical confidence intervals have very poor performances, even the
percentile-t interval, whereas confidence intervals based on inverting bootstrap tests
have quite satisfactory performance. For this purpose, we use techniques for mea-
suring effectiveness of confidence regions and for the graphical display of simulation
evidence concerning the coverage and effectiveness of confidence regions in finite
sample. Monte Carlo results on the confidence intervals for various situations are
presented. These intervals are then applied on stock market indices.
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1 Introduction

Many time series in diverse fields of application may exhibit long-memory or long-range
dependence. This occurs when the autocorrelation function (a.c.f.) at large lags decays
to zero at a slower rate than data following an ARMA(p,q) model and at a quicker rate
than that of a unit root processes (see Mandelbrot and Wallis [1969], Mandelbrot [1971]).
The class of fractionally integrated (FI) processes is characterised by hyperbolic decay
rate, and it is often used to try to capture this strong data dependence. Granger and
Joyeux [1980] and Hosking [1981] are two seminal articles on ARFIMA(p, d, q) processes.

Many methods for estimating and testing the long memory parameter d are described
in Beran [1994]. However, a point estimator does not make sense if the uncertainty around
the estimate is not taken into account. In the literature, the standard deviation of the
estimators are provided. This standard deviation can be used to build an asymptotic
Gaussian confidence interval. However, in the case of long memory, the distortion of
the statistics due to the autocorrelation is so large that “asymptotic” means more than
several thousands observations (see de Peretti and Marimoutou [2002]). Consequently,
this implicit asymptotic confidence interval cannot necessarily be used in practice.

In this paper, we have first develop bootstrap confidence intervals (percentile and
percentile-t) for the long memory parameter in the ARFIMA model. These intervals
are based on Robinson [1995]’s estimator. However, in the context of long memory, the
finite-sample distortion of statistic distributions is so large, that even bootstrap confidence
intervals do not perform better than the corresponding asymptotic confidence interval.
In a second step, we then propose a confidence interval based on inverting bootstrap
tests following the methodology proposed by Davidson and MacKinnon [2001] and we
adapte it to the estimate of the long memory parameter. Double bootstrap versions of
the procedures are also discussed.

In order to present the results of the Monte Carlo study of the properties of confi-
dence regions for long range dependence, coverage plots and coverage effectiveness curves
are used. These methods are proposed by de Peretti [2004]. These graphical techniques
are inspired by the graphical techniques of Davidson and MacKinnon [1998] in the case
of tests. These techniques measure the effectiveness of confidence regions and display
graphics of simulation evidence concerning the coverage and effectiveness of confidence
regions in finite sample. These graphs convey much information, in a more easily assim-
ilated form, than tables, PP plots, and QQ plots can do. It is often desirable to compare
the effectiveness of alternative confidence regions, but this can be difficult to do if all
the regions do not have the correct coverage probability. If the values of effectiveness
criteria are plotted against (nominal) confidence level, the result will not be very useful,
since a method can have a good effectiveness curve due to a coverage distortion and not
because of a real effectiveness. Unfortunately, this is what is often implicitly done when
region effectiveness is reported in a table. The graphical method we use for displaying
effectiveness plots the effectiveness criterion against the coverage probability, i.e. the true
confidence level; and then, the various methods can be compared. We use these graphical
methods for investigating the finite-sample properties of Confidence Regions we propose.

Monte Carlo results on the confidence intervals for various situations are presented.
Various confidence regions based on Robinson [1995]’s estimator are compared: the con-
fidence region using the asymptotic distribution of the estimator, the percentile and the
percentile-t confidence regions using the bootstrapped distribution, and the confidence
region based on inverting bootstrapped Robinson [1995]’s test. We show that classical
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confidence intervals have very poor performances, even the percentile-t interval, whereas
confidence intervals based on inverting bootstrap tests have quite satisfactory perfor-
mance.

These intervals are then applied to stock market index volatility.
The plan of the paper is as follows. In section 2, classical and inverting tests confidence

intervals are applied on the estimation of the LRD parameter in the ARFIMA models. In
section 3, a number of Monte Carlo results are presented on the various LRD confidence
intervals to illustrate the use of coverage plots, and the use of coverage-effectiveness
curves. In section 4, the long memory confidence intervals are applied to stock market
indices. Section 5 concludes. In section A, we present the graphs proposed by de Peretti
[2004] for experiments dealing with confidence region coverage probability, as well as
coverage-effectiveness curves.

2 Long range dependence confidence regions

This Section proposes various confidence regions for the long range dependence parame-
ter. Various confidence regions based on Robinson [1995]’s estimator are proposed: there
are the confidence region using the asymptotic distribution of the estimator (subsec-
tion 2.2), the percentile (subsection 2.3) and the percentile-t (subsection 2.4) confidence
regions using the bootstrapped distribution, and the confidence region based on inverting
bootstrapped Robinson [1995]’s test (subsection 2.5). Double bootstrap versions of the
procedures will also be discussed. See Table 1 for a listing of these methods.

Table 1: Listing of the confidence region methods

Classical interval Based on inverting tests

Asymptotic Wald type Inverting
confidence interval asymptotic tests

Bootstrap Percentile
Bootstrap-t Percentile-t with Inverting

asymptotic variance bootstrap tests
Double Percentile-t with Inverting double
bootstrap-t bootstrap variance bootstrap tests

Robinson [1995]’s estimator is chosen rather than others, because, for example, Hurst
and Lo methods have less satisfactory properties, and Higuchi [1988]’s estimator seems
to be consistent only for d ∈ [−0.5, 0.5] whereas Robinson [1995]’s estimator is consistent
for d ∈ [−0.5, 1].

Since Robinson [1995]’s statistic is not exactly pivotal, bootstrapping will not perform
perfectly. However, Robinson [1995]’s statistic is asymptotically pivotal, which means
that its distribution does not depend asymptotically on any nuisance parameters. In that
case, bootstrapping should yield confidence regions that are accurate to higher order, in
the sample size, than the confidence provided by asymptotic theory; see Beran [1988],
Horowitz [1994], and Davidson and MacKinnon [1996b,a].

In our Monte Carlo simulations, we deal with the univariate linear ARFIMA(p,d,q)
model with Gaussian errors. Consequently, the error terms of the bootstrap samples in
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the methods presented in this section are obtained from a Gaussian distribution rather
than by resampling from the residuals, since the error terms are normally distributed.
This case is deliberately chosen for the following reason. The finite sample distribution
of the statistic can suffer from two types of departure from the asymptotic distribution:

1. The first type of departure comes from the error terms that can be not Gaussian.
This departure due to non-Gaussian error terms is often quickly reduced thanks to
the limit central theorem (in many bootstrap studies, parametric bootstrap works
similarly than nonparametric bootstraps).

2. The second type of departure coming from the fact that the denominator of the
studentised statistic is not independent from the numerator. Conversely, the second
type of departure can be more persistent with respect to the sample size, especially
in the case of long range dependence time series (see de Peretti and Marimoutou
[2002] where parametric bootstrap and nonparametric bootstraps work similarly
but both have size distortions).

Thus, in our Monte Carlo experiments, we focus on the Gaussian case to show that
asymptotic methods have serious problems that are not due to a misspecification of the
error terms distribution but to the second type of departure. In this situation, the use of
bootstrap combined with inverting tests is greatly advised.

In practice, macroeconomic series are often non-Gaussian and financial series are al-
most always strongly non Gaussian. The bootstrap procedure can be adapted to this
kind of data by the use of nonparametric methods. In our case, when the replications of
the series are generated, we just have to draw the bootstrap error terms in the empirical
distribution of the residuals of the estimation of the series rather than in a Gaussian
distribution (see section 4 for an application of this nonparametric bootstrap, and David-
son [1998] and subsection B.1 for examples and details of other nonparametric bootstrap
distributions).

2.1 The model and the estimator

Robinson [1995]’s estimator pertains to the normal linear ARFIMA(p,d,q) model 1:

φ(L)(1− L)dxt = θ(L)εt t ∈ {1, . . . , T}, (1)

{εt} ∼ i.i.d.N(0, σ2), (2)

where

• φ and θ are polynomials that have not necessarily all roots outside the unit circle,

• σ2 < ∞,

• L is the lag operator,

• d is the differencing parameter and takes a real value.

In some circumstances, a long-memory process may be approximated by a fractionally
integrated model; hence estimating for long-memory can be done by an estimation of d.

For applying Robinson [1995]’s procedure, a truncation point m has to be chosen and
we choose the rule proposed by de Peretti and Marimoutou [2002]:

m =
√

T × 2.

1 The ARFIMA model is presented in detail by Granger and Joyeux [1980] and Hosking [1981].
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2.2 The classical asymptotic confidence region

The classical asymptotic confidence region for the long range dependence parameter d is
obtained from Robinson [1995]’s estimator as follows:

[d1, d2] =
[
d̂ + σ̂( d̂ ) qα/2 , d̂ + σ̂( d̂ ) q1−α/2

]
,

where:

• d̂ is the estimate of d,

• σ̂(d̂) is the asymptotic estimate of the standard deviation of d̂, that is 0.5/
√

m, (see
Robinson [1995]),

• qα is the α-quantile of the asymptotic distribution of the studentised d̂ statistic,
that is the normal distribution, (see Robinson [1995]).

Since d̂ is asymptotically Gaussian only for d0 ∈
[

1
2
, 3

4

)
(see Velasco [1999]), the procedure

is valid only for this range of values.
For using our graphical methods, we need to compute the confidence level 1−αs such

that d0, the true value for d, is included in the border of the confidence region ∂R, that
is {d1, d2} here. Consequently, we obtain:

1− αs = F

(d0 − d̂

σ̂( d̂ )

)2


where F is the CDF of a χ2 variable with one degree of freedom.
Dealing with the effectiveness, denoted E(1 − α) in subsection A.4, we measure it

by the confidence interval length expectation. It should be noted that the length of
confidence intervals depends on the confidence level 1 − α. Consequently, the length
expectation, corrected or not by the technique proposed in subsection A.4, has to be
computed for all the confidence levels. The length of the asymptotic confidence interval
is:

e(1− α) = 2 q1−α/2σ̂( d̂ ).

For each replicated series, the length of the confidence interval is computed for each level
1 − α. For the whole Monte Carlo experiment, i.e. for all the replicated series, the
expectations for each level are estimated by the sample mean of the lengths e(1− α).

In the computational program, a set of values for the confidence level is defined:

{0.001, 0.002, . . . , 0.009, 0.01, 0.02, . . . , 0.09, 0.1, 0.2, . . .
. . . , 0.9, 0.91, 0.92, . . . , 0.99, 0.991, 0.992, . . . , 0.999}.

For each of these values, the vector e(1− α) is computed (with matrix algebra, it is very
straightforward).

2.3 The percentile confidence interval

For a general presentation of percentile and percentile-t methods, see Davidson and MacK-
innon [1993], Efron and Tibshirani [1993], Hall [1992], Hjorth [1994], and Shao and Tu
[1995].
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Let {d̂b}B
b=1 denotes the set of statistics simulated by bootstrap, where B is the number

of bootstrap replications. The percentile confidence interval is given by

(b1, b2) =
(
d̂[Bα/2], d̂[B(1−α)/2]

]
,

where [ . ] is the rank statistic of the integer part.
The level such that d0 ∈ ∂R is equal to:

1− αs = 2 min{pv, 1− pv},

where

pv =
1

B

B∑
b=1

I(d̂b ≤ d0).

Since d̂ is consistent only for d0 ∈
[
−1

2
, 1
)

(see Velasco [1999]), the procedure is valid only
for this range of values.

More details about the bootstrap procedure have to be provided. We go through the
following steps:

• First, the data must be estimated using a model as close as possible to the real data.
This model will be used as a data generating process (DGP) for generating simulated
samples, and then, the simulated replications d̂b of the statistic d̂. We propose here
to estimate an ARFIMA(1,d,1) model 2. For the parameter d, the value d̂ is chosen
(estimated in a semi-parametric way here by Robinson’s estimator). The remaining
parameters are estimated by maximum likelihood conditionally to d̂. We prefer this
procedure rather than estimating all the parameters by an one step estimation by
maximum likelihood, because we need the estimation of d in the ARFIMA(1,d,1)
model in the same way as the estimation of d for the confidence interval. Otherwise,
the replications d̂b can follow a probability law too different from the probability
law that generates d̂. Since the aim of the bootstrap procedure is to estimate the
distribution of d̂, the method can be biased.

• The second step of the bootstrap procedure is to generate B replications {xb}B
b=1

of the time series x. B has to be sufficiently large to avoid random effect of the
bootstrap experiment: at least several hundreds, several thousands is desirable. It
is also desirable that (1 − α)(B + 1) be an integer (see Davidson and MacKinnon
[1993]). Each xb is generated from a Gaussian ARFIMA(1,d,1) with the previously
estimated parameters (see section 4 for the non-Gaussian bootstrap). For each xb,
d is estimated by Robinson’s procedure, providing d̂b, a bootstrap replication of d̂.
And then, the critical coverage is computed using the set of {d̂b}b.

For easily calculating the effectiveness, here the length of the interval, we propose the
following method. The length of the interval is given by

e(1− α) = d̂[B(1−α)/2] − d̂[Bα/2].

Rather than calculating e(1−α) for a predetermined set of 1−α, as in subsection 2.2, we
prefer calculating each possible different length since the number of possibilities is finite,

2 A more sophisticated estimate can be done by estimating an ARFIMA(p,d,q) model and choosing
p and q by a selecting criterion as AIC or BIC, but the large flexibility of the ARFIMA(1,d,1) model is
sufficient for our illustration here.
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because the bootstrap distribution is discrete. The corresponding levels are computed
only later. Using matrix algebra, it is very straightforward: the vector of lengths is:

e = d̂?(trunc(B/2 + 1) : B)− d̂?(ceil(B/2) : 1),

where d̂? is the ordered vector of bootstrap replications. The function trunc gives the
greatest integer smaller than the argument and the function ceil give the smallest integer
greater than the argument. The associated confidence levels are the sequence:{

2b

B + 1

}
b

where b ∈
{

0, . . . , trunc

(
B + 1

2

)
− 1

}
.

2.4 percentile-t confidence interval

The percentile-t procedure is similar to the percentile procedure, but rather than using
directly the estimator of d, the studentised form of this statistic is used.

τ =
d̂− d

σ̂(d̂)
,

σ̂(d̂) will be discussed latter. This leads a to statistic that is asymptotically pivotal, and
this permits to obtain a higher rate of convergence for the method. τ is bootstrapped to
obtain B replications, denoted τ b, as follows:

τ b =
d̂b − d̂

σ̂(d̂b)
.

The percentile-t confidence interval is[
d̂− τ [1−α/2]σ̂(d̂), d̂− τ [α/2]σ̂(d̂)

)
The coverage corresponding to d0 ∈ ∂R is equal to:

1− αs = 1− 2 min{pv, 1− pv},

where

pv =
1

B

B∑
b=1

I(τ̂ ≤ τ0),

and

τ0 =
d̂− d0

σ̂(d̂)
.

The length for the (1− α)-confidence interval is:(
τ [1−α/2] − τ [α/2]

)
σ̂(d̂).

As for percentile procedure, the percentile-t procedure is valid only for d0 ∈
[
−1

2
, 1
)
.

The DGP for replicating τ is determined in the same way as for the percentile as well
as the lengths of the intervals.

σ̂(d̂), the estimated variance of d̂, is computed in two different ways: the first one is the
asymptotic estimate (see subsection 2.2), the second one is the bootstrap estimate. For
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obtaining the bootstrap estimator of σ(d̂), the time series are estimated and replicated
B2 times in the same way as previously. B2 can be different from B. Since it is less
important, it is generally taken smaller than B. For each replicated series, d̂ is computed

leading to a set of
{

d̂b
}

b
from which the standard error is computed. It should be noted

that when the percentile-t method is used, and thus replicated series are generated for
computing the test P value, the bootstrap estimator of σ(d̂) must be applied on each
bootstrap replication of the series for obtaining the studentised statistics. This leads to
replications of replicated series. This method is often called double bootstrap.

A last remark about the percentile-t method: even if it has a better asymptotic
convergence rate than the percentile method, in finite sample, the studentisation can
produce a statistic that is farther from pivotal than the original statistic. This instability
can be catastrophic, see among others Li and Maddala [1996],Berkowitz and Kilian [2000],
Davidson [2000], and Siani and Moatti [2003]. Thus, we have to check by Monte Carlo
experiments that this method remains stable in finite sample.

2.5 Confidence region based on inverting tests

For a general presentation of confidence intervals based on inverting tests, see David-
son and MacKinnon [1993] Chapter 5, and for confidence intervals based on inverting
bootstrap tests, see Davidson and MacKinnon [2001].

Let T1−α(d′) denote the result of a test for H0 : d = d′ against H1 : d 6= d′ at
significance level α:

T1−α(d′) =

{
1 if d = d′ is retained
0 otherwise

.

The confidence region built by inverting tests for a confidence level of 1− α is defined as
following: d′ is in the region if and only if the test retains d = d′ for a significance level
of 1− α, i.e.

d′ ∈ R̂(1− α) ⇐⇒ T1−α(d′) = 1.

Let p(d′) denote the P value of the test for d = d′. We have

T1−α(d′) = 1 ⇐⇒ p(d′) ≥ α.

In our case, the region is an interval. Consequently, it can be defined by both its limits,
say dinf and dsup (corresponding respectively to the lower and the upper limit). These lim-
its correspond to both the values of d′ such that p(d′) = α (see Davidson and MacKinnon
[1993] Chapter 5). For computing the P value, see subsubsection 2.5.1 and subsubsec-
tion 2.5.2.

For using our graphical methods, the critical confidence level 1 − αs has to be com-
puted. This level 1 − αs is such that d0 = d

(s)
inf or d0 = d

(s)
sup, where (s) indicates that the

values come from a simulated series. But it is known that p(d
(s)
inf) = 1−α = p(d

(s)
sup), thus

1− αs = p(d0),

where p(d0) is the P value of the underlying test at d = d0. Fortunately, for confidence
regions based on inverting tests, the critical confidence level is very easy to compute.

With regard to the effectiveness of this method, a problem arises since the test is not
defined for all values for d. For computing the confidence interval limits, the values d′ for
d such that p(d′) = α have to be found. Classically, p(d) is a function that increases from
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0 to 1 and then decreases from 1 to 0 when d goes from −∞ to +∞. In our situation, the
method is only defined for d0 ∈

[
−1

2
, 1
)
, thus, the function reaches its minimum values

for d0 = −1
2

and d0 = 1 and the defined confidence levels go from 0 to a certain maximum
value, say 1− αmax, that is lower than 1.

Since p(d) is random, depending on the realisation of the observed time series, 1−αmax

will be random, going from 0 to 1. The consequence is that for all predefined confidence
levels 1 − α, there is a positive probability that the confidence interval is not defined,
and thus the expectation of the interval length is also undefined. It should be noted
that this does not mean that the method does not work. In fact, it says rigorously that
there is no sufficient information in the time series for allowing an estimation whereas the
asymptotic confidence interval gives meaningless limits and the percentile(-t) methods
give always numerical limits based on computational proportions that can have no sense.
For illustrating all the same the effectiveness of confidence interval based on inverting
tests, we detail results for two particular series in section 4.

2.5.1 Inverting asymptotic tests

More precisely, if the asymptotic test based on an estimator of d (Robinson’s one, or
another estimator) is used, the P value can be built as following 3

p(d′) = 1− Fd′ (τ(d′)) ,

where

τ(d′) =

(
d̂− d′

σ̂(d̂)

)2

,

Fd′ is the asymptotic cdf of τ(d′), and σ(d̂) is the standard deviation of d̂. Any expla-
nations must be given for why F is indexed by d′ since we can think that τ(d′) follows
simply a χ2

1. If d′ ∈ (−1
2
, 3

4
), the Robinson’s estimator is Gaussian under the null that

d = d′, and Fd′ is simply the cdf of a χ2
1 random variable. In this case, the confidence

interval built by inverting asymptotic tests is equal to the classical asymptotic confidence
interval. However, when 1−α goes to 1, then dinf goes to −∞ and dsup goes to +∞, and
we necessarily fall in the non Gaussian case, and Fd is not the cdf of a χ2.

It is not very useful to develop this method only for obtaining an extension of the
classical asymptotic confidence interval (see subsection 2.2) for the case where d0 is not
included in

[
−1

2
, 3

4

)
. Moreover, confidence regions based on inverting bootstrap tests

(see subsubsection 2.5.2) will provide better approximation than with asymptotic tests.
Consequently, this method is not presented.

2.5.2 Inverting bootstrap tests

We consider here bootstrap tests based on an estimator of d (Robinson’s one, or another
estimator). More precisely, for the Monte Carlo experiments, the parametric (single and
double) bilateral bootstrap test based on Robinson’s estimator is used: see its description
in subsection B.1 4. Obviously, as for percentile methods, nonparametric versions of the

3The P value will be more complicated for bootstrap because it takes into account the asymmetry of
the statistic distribution: see subsubsection B.1.3.

4 Our procedure is inspired from the test of de Peretti [2003], but this last one is reduced to the case
where the null hypothesis is “no long memory” (d0 = 0), whereas our procedure extends to the case
d0 ∈

[
− 1

2 , 1
)
. So, for more discussions about double and single bilateral bootstrap tests for long memory,

see de Peretti [2003].
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test can be used. In our experiments, nonparametric versions of the test are not used.
We restrict our attention to Gaussian procedures for permitting to see the gain of the
use of inverting tests confidence regions compared to not inverting tests, without noisy
error due to nonparametric estimation. Nevertheless, the basic nonparametric test (only
resampling) is applied in section 4 and the details of this method and of others are in
subsection B.1. Both the single and the double bootstraps are discussed, since, even
if the double bootstrap is asymptotically better than the single bootstrap, it has the
disadvantage of having a computing time B2 times larger than the single version, where
B2 is the number of bootstrap replications used for the computation of the standard
deviation of the test statistic. Finally, the unilateral version of the test is not presented,
since it has absolutely no advantage compared to the bilateral version.

2.5.3 Note on the LRD estimation of differentiated series

When the values for d such that p(d) = 1−α are sought for building the confidence interval
based on inverting tests, it can be frustrating to stop at −0.5 and 1. A solution that
appears naturally is to differentiate the series such that they are stationary for example.
It can be done by successive augmented Dickey-Fuller (ADF) tests, differentiating the
series at each step, until the series looks stationary. If the series is differentiated n times,
the LRD estimate is then defined as equal to the LRD estimate of the differentiated series
plus n: d̂(∆nx) + n. The problem is that the LRD estimate on the original series (when
it can be computed) is in general unequal to d̂(∆nx) + n because the bias coming from
the estimation on the original series is in general different from the bias coming from the
estimation on the differentiated series (even if both the estimators are consistent). This
difference causes jumps into the P value function, leading to problematic resolution of the
equation p(d) = 1 − α. Consequently, we advise to not use differentiation for inverting
tests without further improvement of this methodology in the future.

3 Monte Carlo experiments

Coverage plots and coverage effectiveness curves (see section A) are used to present the
results of a study of the properties of the long range dependence confidence regions pre-
sented in the previous Section. These confidence regions are based on Robinson [1995]’s
estimator: there are the confidence region using the asymptotic distribution of the estima-
tor (subsection 2.2), the percentile (subsection 2.3) and the percentile-t (subsection 2.4)
confidence regions using the bootstrapped distribution, and the confidence region based
on inverting bootstrapped Robinson [1995]’s test (subsection 2.5). Double bootstrap
versions of the procedures are not presented here because of time consumption.

All the following experiments deal with Gaussian ARFIMA(p,d,q) processes. Since
the constant term is only a location parameter and does not influence the regions perfor-
mances, it is set to zero. Similarly, σ, the standard deviation of the model, is only a scale
parameter and does not affect at all the performances, is set to one. The test statistic
depends then on the parameters (φ, d, θ) and T in Equation 1. In a first step, we focus
on the coefficient d and the sample size T , setting φ and θ to zero. T = 2n is used, where
n is an integer. Each experiment is run with S = 10, 000 replications of the time series,
using the same random numbers for avoiding additional experimental errors (variance).
For each replication in each experiment, the same random numbers for bootstrapping
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are used for avoiding random effect in the result of the bootstrap method between the
replications.

3.1 Case of ARFIMA(0,d,0) processes

We pick combinations of d and T in Table 2 to investigate. B is the number of bootstrap

Table 2: choice of d and T

Case d T B B2

1.1 -0.4 256 488 0
1.2 0 512 244 0
1.3 0.4 256 488 0
1.4 0.8 128 976 0

replications 5. It should be noted that the values for B chosen for these experiments are
sufficient for illustrating the methods since in our case the distortions found in the results
are not due to a gap of bootstrap replications (even if increasing B can improve a little
the results) but to large distortions of the distribution of the test statistic depending on
the parameter values. Since the bootstrap methods have to estimate these parameters, an
error in the estimations lead to an error in the coverage. The plot of the P value function
with respect to various parameters makes it clear (see de Peretti [2003]). However, for
a real data study, there is not the same constraint than for Monte Carlo experiments,
and we advise to use much more bootstrap replications than used in our experiments,
since the user may want more precision for the coverage. B2 is the number of bootstrap
replications used in the estimation of the variance in the double bootstrap. It is taken
equal to 0 for the moment (instead, the asymptotic estimation of the variance is used).

3.1.1 Coverage plots

The standard deviation of the coverage plots is equal to√
c(1− α)(1− c(1− α))

S
(3)

where c(1− α) is the coverage. Thus, when 1− α goes from 0 to 1, and for S = 10, 000,
the standard deviation goes from 0 to 0.005.

Figure 1 presents the coverage plots of the asymptotic confidence interval, the per-
centile interval, the (single) percentile-t interval, and the interval based on inverting
(single) bootstrap tests for the four cases of the parameters described in Table 2. Table
3 presents the same results than the third graph in Figure 1 (i.e. the case 1.3 of the
parameter in Table 2) but using a tabular presentation. Is this table pleasant to read ?
Figure 1 shows clearly that the confidence interval based on inverting bootstrap tests is
by far the best method on the basis of coverage accuracy criterion in all the situations.
Percentile and percentile-t methods have large coverage distortions, that are as large as

5B is chosen to meet the capacity of Gauss software to store a T ×B matrix which is used in matrix
algebra computation for these simulation experiments.
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Figure 1: Coverage plots in the case of an ARFIMA(0,d,0) process
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Table 3: Coverage in the case of an ARFIMA(0,d,0) process
d = 0.4 T = 256

Confidence levels
Method 75% 90% 95% 99%

Asymptotic 0.60 0.77 0.85 0.94
Percentile 0.89 0.96 0.97 0.99
Percentile-t 0.64 0.77 0.82 0.91
Inverting tests 0.77 0.92 0.95 0.98

for the asymptotic confidence interval, except for the case d = 0 (i.e. i.i.d.) where the
asymptotic method dominates them a little (there is no curve for the asymptotic method
in the case of d = 0.8 since it is not applicable in this situation). It is not surprising
that the percentile method does not perform for estimating the long memory parameter,
since the percentile does not correct the bias in the estimates whereas it is known that
the long memory estimators are generally very biased. What is more surprising is the
unsatisfactory result for the percentile-t method that normally corrects the bias. The
unsatisfactory result is probably due to the studentisation of the statistic that does not
bring it closer to pivotal (closer to pivotal the statistic is, better the bootstrap methods
will perform) since for the single bootstrap, only the asymptotic standard error of the
statistic if used for studentising it, and for Robinson [1995]’s method, this asymptotic
standard error is only a constant depending on the sample size (see Robinson [1995]).
Double bootstrap should lead to more satisfactory results for the percentile-t methods,
but also for confidence interval based on inverting double bootstrap tests, that will still
dominate all the methods.

It should be noted that the specification of the data model is not necessarily well
chosen by the bootstrap DGP. For example, in this paper, the bootstrap DGP is an
ARFIMA(1,d,1) process whereas the true DGPs of the first set of simulations are ARFIMA(0,d,0)
processes, and the true DGPs of the second set of simulations are ARFIMA(1,d,0) pro-
cesses. Nevertheless, our Monte Carlo experiments are more realistic if the true DGP be
used, since in practice the real DGP (the one of nature) is not known, and the orders
of the ARFIMA(p,d,q) model have to be chosen a priori (the ARFIMA(1,d,1) model is
often chosen) or estimated by any methods (AIC or BIC criteria or by inference tests).

Since the differences between the confidence regions are very clear with coverage plots,
the use of coverage discrepancy plots is not necessary in this situation.

3.1.2 Coverage-effectiveness curves

Figure 2 presents the confidence level-effectiveness curves of the asymptotic confidence
interval, the percentile interval, the (single) percentile-t interval for the four cases of
the parameters of the Table 2. The results for the interval based on inverting (single)
bootstrap tests are not presented here because of the difficulty of estimating the length of
the interval (see subsection 2.5). Several results will be provided later about this point.
On the basis of confidence level-effectiveness curves, the percentile and the percentile-t
seem to have the same effectiveness and to be dominated by the asymptotic method that
has a lower average length.
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Figure 2: Confidence level-effectiveness curves in the case of an ARFIMA(0,d,0) process
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Figure 3: Coverage-effectiveness curves in the case of an ARFIMA(0,d,0) process
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The effectiveness criterion is the average length here.
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However, before concluding hastily, let us have a look to Figure 3 that presents the
coverage-effectiveness curves for the intervals obtained with the same methods. Fol-
lowing the results on Figure 3, the percentile method has the most satisfactory “true”
effectiveness. For these three methods, this information is not very interesting since these
methods have too large coverage distortions to be used in practice. What the graphics
in Figure 3 can tell us is only that if the coverage distortions could be corrected, the
percentile method will have the most satisfactory effectiveness compared to both other
methods. Nevertheless, this kind of graphic is very useful for choosing among methods
that have reasonable coverage distortions: it permits to make arbitrage between the cov-
erage distortion and the true effectiveness for each methods and then to chose the most
appropriate.

In addition, the standard errors of the lengths of the confidence intervals are plotted
against their Coverage. This leads to what can be called Coverage-‘Standard error of the
length’ curves that can be viewed as coverage-effectiveness curves for a secondary effec-
tiveness criterion (see Figure 4). The same conclusion than previously holds. However,
the graphics on Figure 4 allow to see that the larger d is, the larger the standard error of
the length. This is unsatisfactory since for large values of d, even if the average length of
an interval is satisfactory, the probability to have a large length is great, and thus there
is a big uncertainty on the value for the true value for d. This disadvantage cannot be
viewed only on the basis of average length, but also on the basis of length standard error.

For the length of confidence interval based on inverting tests, see the analysis in
subsection 4.4.

3.2 Case of ARFIMA(1,d,0) processes

We choose combinations of d and T in Table 4 for the investigation.

Table 4: choice of φ, d, and T

Case φ d T B

2.1 0.4 0 1024 122
2.2 0.8 0.4 1024 122

Figure 5 presents the coverage plots of the asymptotic confidence interval, the per-
centile interval, the (single) percentile-t interval, and the interval based on inverting
(single) bootstrap tests for the two cases of the parameters described in Table 4).

Figure 6 presents the coverage-effectiveness curves for the three first methods. For
φ = 0.4 d = 0 T = 1024, the same conclusion than for the previous subsection holds.
Conversely, the case φ = 0.8 d = 0.4 T = 1024 shows catastrophic results which remind
us that when the short memory parameters are too strong (close to unit root), the short
memory property is confused with long memory property.

4 Application to financial time series

We propose to investigate the long memory properties of the following stock indices: ASX
(all ordinaries index, Australia), Dow Jones Industrial 30, FTSE LATIBEX (all shares
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Figure 4: Coverage-‘Standard error of the length’ curves in the case of an ARFIMA(0,d,0)
process
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The effectiveness criterion is the standard error of the length here.
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Figure 5: Coverage plots in the case of an ARFIMA(1,d,0) process
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Figure 6: Coverage-effectiveness curves in the case of an ARFIMA(0,d,0) process
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The effectiveness criterion is the average length here.

18



index), Hang Seng (Hong Kong), NASDAQ, NASDAQ Composite, NIKKEI 225 (stock
average, Tokyo), and Singapore SE (all share) from 07/28/2006 to 07/27/2007. The
number of observations is around 250 depending on the series.

4.1 The stock index levels

Figure 7 plots the stock indices index in level. It can be observed that the stock index se-
ries (denoted (xi,t)

T
t=1 for index i = 1, . . . , N) are clearly nonstationary. More rigorously,

for studying the stationarity of the stock index levels, parametric and nonparametric
bootstrapped versions of the augmented Dickey-Fuller (ADF) tests are used, with uni-
lateral and bilateral bootstrap P values (see Appendix C). The number of bootstrap
replications being 999. For selecting the number of augmentations, the residuals from
the ADF regressions are tested for serial correlation using Ljung-Box and Box-Pierce
tests (from 1 to 8 lags) until they look like white noise. All tests have been conducted
by using our own programs via Gauss software. All the P values are close to one (they
are not presented here) confirming that the series are nonstationary. Consequently, the
returns of the series

ri,t = ln

(
xi,t

xi,t−1

)
(4)

will be used in the following.

4.2 The stock index returns

For studying the stationarity of the stock index returns, the same bootstrapped ADF
tests are used. All the P values are close to zero (they are not presented here) concluding
that the series are clearly stationary.

Table 5 presents some descriptive statistics. For studying the normality hypothesis,
three tests for normality are used. The first procedure tests for the nullity of the skewness.
The second one tests whether the kurtosis is equal to 3. Finally, the last tests for both
moments simultaneously: Jarque-Bera test (see Bera and Jarque [1980, 1981]). Since the
critical values of Jarque-Bera test are not exact in finite sample due to the correlation
between the estimated skewness and the estimated remind, and since the finite sample
distribution for all the tests are not equal to their asymptotic distributions, we propose
to use bootstrap versions of these tests (see Appendix D). Of course, it is a parametric
bootstrap since the null hypothesis is the normality of the series, but in addition, we allow
the Gaussian process under the null to be autocorrelated because if it is not taken into
account, the autocorrelation amplifies the distortion of the test statistic distribution com-
pared to the asymptotic distribution. Unilateral and bilateral bootstrap P values are also
used (except for the asymptotic tests, since the asymptotic distributions are symmetric:
both the P values are the same, and for Bera-Jarque test because it is unilateral by con-
struction). The number of bootstrap replications is 999. There is a lag of the dependent
variable in the regressor set. The number of lags is chosen by Ljung-Box and Box-Pierce
tests using 1 to 8 lags until the residuals seem independent. Again, all the P values are
close to zero, showing that the series are strongly non-Gaussian. Consequently, nonpara-
metric methods, such as Robinson long memory estimator and nonparametric bootstrap
confidence intervals, have to be used in the following.

The long memory feature is not search directly in the stock index returns since it
is known that the financial returns do not exhibit long memory property, in accordance
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Figure 7: Stock indices
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Table 5: Moments of the stock indices.

Stock Series Mean Standard Skewness Kurtosis
index deviation

ASX Returns 0.0009 0.0174 0.0043 80.2877
(Australia) Absolute returns 0.0074 0.0158 9.4691 100.2484

Squared returns 0.0003 0.0027 11.0047 122.7773

Dow Jones Returns 0.0007 0.0061 -1.1119 7.6627
Industrial 30 Absolute returns 0.0043 0.0044 2.3167 12.0106

Squared returns 0.0000 0.0001 7.3523 75.4239

FTSE Returns 0.0015 0.0152 -0.3068 3.5536
LATIBEX Absolute returns 0.0120 0.0096 1.2406 4.5786

Squared returns 0.0002 0.0004 3.0521 14.8703

Hang Seng Returns 0.0012 0.0100 -0.5944 4.3368
(Hong Kong) Absolute returns 0.0076 0.0066 1.4193 5.7393

Squared returns 0.0001 0.0002 4.2412 29.9275

NASDAQ Returns 0.0010 0.0088 -0.4611 4.9405
Absolute returns 0.0067 0.0058 1.7211 7.9692
Squared returns 0.0001 0.0002 5.9291 56.4770

NASDAQ Returns 0.0008 0.0082 -0.6492 5.1261
Composite Absolute returns 0.0062 0.0054 1.7628 8.3363

Squared returns 0.0001 0.0001 6.2625 62.6264

NIKKEI 225 Returns 0.0005 0.0092 -0.4976 4.0644
(stock average) Absolute returns 0.0069 0.0060 1.3689 5.3110
(Tokyo) Squared returns 0.0001 0.0001 3.7099 21.2146

Singapore Returns 0.0018 0.0094 -1.0343 5.7145
SE Absolute returns 0.0072 0.0063 1.8202 7.8889

Squared returns 0.0001 0.0002 4.8071 32.6776
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with financial market efficiency hypothesis. Consequently, the stock index volatility is
explored.

4.3 The stock index volatility

The following measures of the volatility are used:

vi,t = |ri,t| (5)

v2
i,t = r2

i,t, (6)

v?
i,t = ln(|ri,t|). (7)

The presence of long memory in the series is estimated using confidence intervals based
on Robinson’s test. The classical asymptotic confidence interval is used. In addition, non-
parametric percentile and percentile-t are also used. The nonparametric bootstraps are
based on the empirical distribution of the residuals: they resample the residuals. The
number of bootstrap replications is B = 3999. (There are also versions of double boot-
strap, but the consumption time is too large and are not.) Finally, the confidence interval
based on inverting (single) nonparametric bootstrap tests is applied. The procedure is
described in subsection B.1. Again, nonparametric methods are sed (see subsubsec-
tion B.1.2). (A version of double bootstrap also exists and is described in subsection B.2.
But the consumption time is too large and are not used here.) The number of boot-
strap replications used for the inverted tests is B = 399. Table 6 presents the confidence
intervals for the long memory parameter in the stock market volatility series.

Non long memory in found in ASX, FTSE, NASDAQ, and NASDAQ composite. We
know from Monte Carlo experiments that in the case of non long memory, the meth-
ods perform similarly. That can be observed in Table 6. Conversely, the presence of
long memory feature is found in Dow Jones Industrial 30, Hang Seng, Nikkei 225, and
Singapore SE. The value of the long memory parameter d seems to be between 0 and
0.5. It can be observed that the percentile confidence interval is systematically moved
to the left with respect to the other methods, suggesting a left bias. It should be noted
that the confidence interval based on inverting tests is systematically larger than the
other confidence intervals. We know from Monte Carlo experiments that the confidence
interval based on inverting tests is more reliable than the other methods. Consequently,
the results on real data suggest that the uncertainty around the long memory estimate
is not accounted for enough by the classical methods. The confidence interval based on
inverting tests permit to account for this uncertainty, especially in the case of Singapore
SE for which the long memory is large.

4.4 P value functions used to build confidence intervals based
on inverting tests

The limits of the confidence interval based on inverting (single bootstrap) tests presented
in Table 6 are determined by the values for d such that the test P value is equal to 30%.
As an illustration, P value functions with respect to the values for d are presented in
Figure 8, in the case of Hang Seng (Hong Kong).

22



Table 6: Long memory 30%-confidence interval on the stock index volatility

Stock Confidence |ri,t| r2
i,t ln(|ri,t|)

index interval Lower Upper Lower Upper Lower Upper
limit limit limit limit limit limit

ASX Asymptotic -0.0032 0.0221 0.0615 0.0868 -0.0905 -0.0652
(Australia) Percentile -0.2090 0.0808 -0.1506 0.1422 -0.2962 -0.0124

Percentile-t -0.2039 0.0860 -0.1360 0.1568 -0.2853 -0.0015
Inverting tests -0.2005 0.0989 -0.1359 0.1635 -0.2956 0.0155

Dow Jones Asymptotic 0.2765 0.3018 0.1971 0.2224 0.2563 0.2816
Industrial 30 Percentile 0.0462 0.3343 -0.0290 0.2571 -0.0843 0.2079

Percentile-t 0.1020 0.3901 0.0204 0.3065 0.1880 0.4801
Inverting tests 0.1005 0.4320 0.0211 0.3419 0.0803 0.4439

FTSE Asymptotic -0.0694 -0.0441 -0.1338 -0.1085 0.1366 0.1619
LATIBEX Percentile -0.2902 0.0016 -0.3354 -0.0465 -0.0917 0.1938

Percentile-t -0.2572 0.0347 -0.3377 -0.0488 -0.0373 0.2481
Inverting tests -0.2702 0.0695 -0.4167 -0.0500 -0.0394 0.2814

Hang Seng Asymptotic 0.3826 0.4080 0.3291 0.3544 0.3877 0.4130
(Hong Kong) Percentile 0.1224 0.4045 0.0865 0.3752 0.1263 0.4073

Percentile-t 0.2441 0.5262 0.1664 0.4551 0.2514 0.5324
Inverting tests 0.1853 0.4633 0.1532 0.4953 0.1903 0.4684

NASDAQ Asymptotic -0.0819 -0.0566 -0.0230 0.0023 -0.0629 -0.0376
Percentile -0.2916 -0.0151 -0.2390 0.0444 -0.2741 0.0190
Percentile-t -0.2654 0.0111 -0.2071 0.0763 -0.2616 0.0316
Inverting tests -0.2934 0.0212 -0.2148 0.0816 -0.2684 0.0338

NASDAQ Asymptotic 0.0745 0.0998 0.0731 0.0984 -0.0210 0.0043
Composite Percentile -0.1409 0.1519 -0.1544 0.1382 -0.2325 0.0540

Percentile-t -0.1196 0.1731 -0.1087 0.1839 -0.2126 0.0739
Inverting tests -0.1229 0.1765 -0.1670 0.1751 -0.1929 0.1043

NIKKEI 225 Asymptotic 0.2338 0.2591 0.3111 0.3364 0.0717 0.0970
(stock average) Percentile 0.0102 0.2958 0.0593 0.3586 -0.1468 0.1365
(Tokyo) Percentile-t 0.0552 0.3407 0.1470 0.4463 -0.1098 0.1736

Inverting tests 0.0365 0.3786 0.1352 0.5415 -0.1256 0.1738
Singapore Asymptotic 0.4328 0.4581 0.4233 0.4486 0.1424 0.1677
SE Percentile 0.1272 0.4141 0.1300 0.4219 -0.1549 0.1368

Percentile-t 0.3347 0.6217 0.3080 0.5999 0.0313 0.3230
Inverting tests 0.2996 0.9705 0.2687 (*)1.000 -0.0550 0.2230

(*) The tests retain the null hypothesis for every value of d up to d = 1. Robinson test is not
valid for value greater than 1.
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Figure 8: P value functions of bootstrap tests
in the case of Hang Seng (Hong Kong)
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5 Conclusion

In the case of long memory processes, the statistics are far from pivotal, and classical
confidence intervals suffer from large distribution distortions leading to weak performance,
even when bootstrap techniques are used. In practice, bootstrap intervals (percentile and
percentile-t) do not perform better than the asymptotic confidence interval.

To solve this problem, we provide a confidence interval based on inverting bootstrap
tests. We used the bootstrap test proposed by de Peretti [2003], that uses a bilateral p
value accounting for asymmetric distributions, and thus performing better than classical
tests since the long memory estimator distribution is asymmetric.

Monte Carlo experiments are carried out for obtaining information about the prop-
erties of confidence interval procedures in finite samples. However, the rich detail in
the results they provide can be difficult to apprehend if they are presented in the usual
tabular form. In this paper, we use graphical techniques provided by de Peretti [2004],
namely, coverage plots, coverage discrepancy plots (which may optionally be smoothed),
and coverage effectiveness curves. These techniques can make the principal results of an
experiment immediately obvious. All of these techniques are based on the construction
of an estimated cumulative distribution function of the (true) coverage associated with
some confidence regions and on effectiveness criteria that were discussed, without loss of
computing time compared to classical tabular presentation.

These techniques are used for presenting the results of a number of experiments con-
cerning long memory confidence intervals. We think that results, which are entirely
presented in graphical form, are of interest and provide more information in a more eas-
ily assimilable fashion than a tabular presentation or QQ plots could possibly have done.
The results show that percentile and percentile-t methods does not perform correctly at
all, conversely to confidence interval based on inverting bootstrap tests that works quasi-
perfectly compared to the confidence intervals obtained with the previous methods: the
coverage is much closer to the confidence level.

Finally, the confidence intervals are applied to various measure of stock market volatil-
ity series. Half of the series do not exhibit long memory feature in their volatility. The
other series exhibit long memory with long memory parameters greater than 0 and smaller
than 0.5, suggesting stationary volatility series, except in the case of Singapore SE, which
exhibit strong long memory.
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Appendix

A Graphical methods

We use the Graphical Methods for Investigating the Finite-sample Properties of Confi-
dence Regions proposed by de Peretti [2004]. These methods are presented below.

A.1 The position of the problem

Let θ be the parameter vector of interest:

θ ∈ Θ ⊂ Rk.

Let τ be the statistic used for constructing the confidence region:

τ ≡ τX(θ),

where X is the observed finite sample. τ can also be a vector. The cumulative distribution
function (CDF) of τ is denoted Fθ. The distribution of τ has to depend on θ for being
able to estimate it.

Let R be a confidence region for θ with confidence level 6 1− α:

R ≡ R
(
τ, {F−1

θ }θ∈Θ, 1− α
)
.

However, there is an infinity of possibilities giving such a confidence region. Each of
the possibilities corresponds to a different method. When the notation R is used in the
following, we mean one of these methods.

If θ0 is the true value of the parameter vector θ that generates the random sample X,
then

∀θ0 ∈ Θ,∀α ∈ [0, 1], P
(
θ0 ∈ R(τ(θ0), {F−1

θ }θ∈Θ, 1− α)
)

= 1− α.

The graph of {(1− α, P (θ0 ∈ R)); α ∈ [0, 1]} is equal to the 45 degrees line. However,
the family {Fθ}θ∈Θ is not known in general.

Therefore, the family {Fθ}θ∈Θ has to be estimated and we denote its estimation by
{F̂θ}θ∈Θ. F̂θ can be the asymptotic limit of {Fθ}θ∈Θ as T −→∞, or it can be a distribution
derived by bootstrapping, or it can also be some other approximations of Fθ (coming from
a first order Taylor expansion, for instance). Let us denote

R̂ ≡ R
(
τ(θ0), {F̂−1

θ }θ∈Θ, 1− α
)

.

The difference between R and R̂ can also come from an approximation in the analytical
calculus of R. Since F̂θ is not exact, we have in general

P (θ0 ∈ R̂) 6= 1− α,

6The confidence level for R is the probability of observing the true value of the parameter vector in
the random region R, according some distribution F . See Davidson and MacKinnon [1993], chapter 5,
for more explanations.
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but we wish R̂ such that
P (θ0 ∈ R̂) ≈ 1− α,

i.e. that the graph of {
(1− α, P (θ0 ∈ R̂)); α ∈ [0, 1]

}
is near the 45 degrees line. P (θ0 ∈ R̂) is the coverage probability, or just the coverage, of
the random region R̂. It is the true probability that the region will include, or cover, the
true value of the parameter vector.

A.2 The Monte Carlo procedure

Consider a Monte Carlo experiment in which S realisations of the interest statistic τ(θ)
are generated using a data generating process (DGP) that is a special case of the model.
We may denote these simulated values by τs(θ), s ∈ {1, . . . , S}.

P
(
θ0 ∈ R(τs(θ0), {F̂−1

θ }θ∈Θ, 1− α)
)

can be computed using the Monte Carlo experi-

ment:

P̂
(
θ0 ∈ R(τs(θ0), {F̂−1

θ }θ∈Θ, 1− α)
)

=
1

S

S∑
s=1

I
(
θ0 ∈ R(τs(θ0), {F̂−1

θ }θ∈Θ, 1− α)
)

for S very large. I( . ) denoted an indicator function that takes the value 1 if its argument
is true an 0 otherwise.

Set 1− αs the value of 1− α such that

θ0 ∈ ∂R
(
τs(θ0), {F̂−1

θ }θ∈Θ, 1− α
)

where ∂ represents the border of a set of values. 1 − αs can be called critical coverage.
1−αs can be multiple, but it is easy to assume that it is unique by assuming the natural
hypothesis that R (and R̂) is increasing with respect to 1 − α in the sense of inclusion.
This hypothesis is obtained if R is optimised using the maximum likelihood principle, for
instance, but not only.

It should be noted that

(1− αs ≤ 1− α) ⇐⇒
(
θ0 ∈ R̂(τs(θ0), {F̂−1

θ }θ∈Θ, 1− α)
)

,

thus,

P̂
(
θ0 ∈ R(τs(θ0), {F̂−1

θ }θ∈Θ, 1− α)
)

=
1

S

S∑
s=1

I(1− αs ∈ [0, 1− α]).

In practice, we just count the proportion of 1− αs smaller or equal to 1− α. In fact, it
is the empirical cumulative distribution function of the random variable:

1− αs ≡ 1− αs

(
τs, {F̂−1

θ }θ∈Θ, R, θ0

)
.

All the graphs we discuss are based on the empirical cumulative distribution function
of the confidence level 1−αs of R(τs, {F̂−1

θ }θ ∈ Θ, . ) if the true value θ0 of the parameter
vector is just over ∂R (the border of R).
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Let F0 denotes the finite-sample distribution of 1− αs such that the coverage proba-
bility is equal to the confidence level, i.e.

F0(1− α) = P
(
θ0 ∈ R(τ(θ0), {F−1

θ }θ∈Θ, 1− α)
)

= 1− α.

Let F denote the generally unknown (true) finite-sample distribution of 1− αs, i.e.

F (1− α) = P (1− αs ≤ 1− α),

= P
(
θ0 ∈ R(τ(θ0), {F̂−1

θ }θ∈Θ, 1− α)
)

,

and F̂ , its Monte Carlo computation:

F̂ (1− α) = P̂
(
θ0 ∈ R(τ(θ0), {F̂−1

θ }θ∈Θ, 1− α
)

,

=
1

S

S∑
S=1

I(1− αs ≤ 1− α).

At any point xi in the (0, 1) interval, it is defined by

F̂ (xi) =
1

S

S∑
S=1

I(1− αs ≤ xi).

See appendix A for the choice of the xi’s.

A.3 Coverage Plots

The simplest graph that we will discuss is a plot of F̂ (xi) against xi. We shall refer to such
a graph as a coverage plot since it presents the (true) coverage probability against the
(nominal) confidence level. If F is correct, i.e. F = F0, each of the 1− αs is distributed
as an independent uniform random variable U(0, 1). Therefore, when F̂ (xi) is plotted
against xi, the resulting graph should be close to the 45 degrees line.

A.4 Coverage-Effectiveness Curves

Coverage plots and Coverage discrepancy plots are very useful for dealing with coverage
probability, but they are not useful at all for dealing with confidence region effectiveness.
We will discuss graphical methods for comparing the effectiveness of competing regions
using coverage-effectiveness curves. For an experiment (in which a given DGP is used),
these curves can be constructed using the empirical cumulative distribution function of
the critical coverage and the chosen effectiveness criterion. Effectiveness criteria will be
discussed in the next subsection.

It is often desirable to compare the effectiveness of alternative confidence regions, but
this can be difficult to do if all the regions do not have the correct coverage probability.
If the values of an effectiveness criterion are plotted against (nominal) confidence level,
the result will not be very useful, since claiming that a method is more satisfactory than
another one on the basis of an effectiveness criterion has no sense if the methods suffer
from different coverage distortions: for example, a criterion providing good results can
be spurious due to a default of coverage. Unfortunately, this is what is often implicitly
done when region effectiveness is reported in a table.
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In order to plot effectiveness against the (true) coverage probability, an experiment has
to be performed, preferably using the same sequence of random numbers for each region,
to avoid experimental errors. Let the points on the approximate empirical cumulative
distribution function be denoted F̂ (x), and let the estimated effectiveness for a confidence
level of x = 1 − α be denoted Ê(x). They have to be evaluated at a pre-chosen set of
points {xi}i=1,...,N . As before, F (x) is the probability of getting a critical coverage less
than x. Similarly, E(x) is the effectiveness for a confidence level of x. Tracing the locus of
points (F (x), E(x)) as x varies from 0 to 1 thus generates a coverage-effectiveness curve
on a correct coverage-adjusted basis. Plotting the points (F̂ (xi), Ê(xi)), does exactly
the same thing, except for experimental error due to the randomness of the Monte Carlo
simulations (however, the experimental error converges to zero when the number of Monte
Carlo replications goes to infinite). More precisely, it presents the effectiveness criterion
against the coverage probability, i.e. the true confidence level; and then, the various
methods can be compared.

Similarly to the coverage, calculating E(xi) for a set {xi}i is done from the same
simulated series, and consequently, it is not necessary to run an additional experiment
for each confidence level xi, and thus, there is no loss of computing time. Moreover, in
practice, the calculation for a set {xi}i is often straightforward by matrix algebra: for
instance, for the asymptotic, percentile and percentile-t confidence intervals presented in
section 2, the computation is written with only two lines in the Gauss program, and it
takes an almost nil computing time compared to the one for the bootstrap loop.

There is one practical problem with drawing coverage-effectiveness curves by plotting
Ê(xi) against F̂ (xi). For regions that under- or over-cover severely, there may be a region
of the coverage-effectiveness curve that is left out by a choice of values of xi. For solving
this problem, a very large number of Monte Carlo replications should have to be chosen,
but it is not necessarily possible in practice because of the computing time. Nevertheless,
if a region under- or over-covers severely, it cannot be chosen for practical uses, and thus,
it is not useful to compute its “true” effectiveness by coverage-effectiveness curves.

A.5 How to choose the effectiveness criterion?

The effectiveness criterion depends on the mathematical problematics under consider-
ation, but also on the economic problematics. In this paper, we choose the expected
length of the confidence interval as the primary criterion, and the standard deviation of
the length of the confidence interval as a secondary criterion.

A.6 How to chose the “best” method ?

The coverage plots and the effectiveness curves are very useful for choosing among meth-
ods that have reasonable coverage distortions: they permit to make arbitrage between
the coverage distortion and the true effectiveness for each methods and then to chose the
most appropriate. There is no criterion that permits to select the “best” method from
the combination of both the whole coverage and the whole effectiveness curves. However,
the following rule can be used:

1. First, select the methods that have not their coverage plots too far from the 45o

degree line. The coverage is the most important feature, since if the coverage error
is too large, the method is false.
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2. Among the methods selected in the first step, select the methods that have the
best effectiveness curves. A large gain in the effectiveness can compensate the a
small loss in the coverage. This largeness depends on the situation and on the
decision-maker.

A.7 Details about the graphical representation

When S is large, storage space can be conserved by evaluating the EDF (1) only at N
points xi, i = 1, . . . , N , which should be chosen in advance so as to provide a reasonable
snapshot of the (0, 1) interval, or of that part of it which is of interest. As parsimonious
way to choose the xi is

xi = 0.001, 0.002, . . . , 0.009, 0.01, 0.02, . . . , 0.09, 0.1, 0.15, . . .

. . . , 0.85, 0.9, 0.91 . . . , 0.98, 0.99, 0.991, . . . , 0.998, 0.999 (N = 53) (8)

There are extra points near 0 and 1 in order to ensure that we do not miss any unusual
behaviour in the tails.

B Details on the LRD confidence intervals

B.1 Bilateral (single) bootstrap tests for long memory

For more details in the case of the null of no long memory, see de Peretti [2003]. While the
asymptotic tests are asymptotically valid, the tests based on the asymptotic distributions
are not exact in finite samples, and so, it is natural to “bootstrap” them. For the
conception of the bootstrap see Efron [1979], for its development, see Davidson and
MacKinnon [1993], and for further analysis, see Davidson and MacKinnon [1996b,a].

B.1.1 The bootstrap procedure

The procedure is as follows:

1. Compute the test statistic (Hurst, Lo, Robinson, Higuchi, Jensen, or others), which
will be denoted τ̂ .

2. Estimate the ARFIMA(p,d,q) model by maximum likelihood under the null H0:
d = d0, for obtaining the model parameters (φ̂, θ̂, σ̂2

ε) and the residuals ε̂. For
our simulations, p = 1 and q = 1 are chosen, but for estimating real data, we
strongly advice users to determine p and q by information criterions or other efficient
methods because an error in the choice of p and/or q generally yields to large bias
in the estimation and the inference of d (see Hauser et al. [1999].

3. Draw B sets of bootstrap error terms, εb, and use them to generate B bootstrap
samples xb. There are numerous ways to drawn the error terms, four of which are
described below. The elements of xb should be generated from the equation

xt = (1− L)−d0φ̂(L)−1θ̂(L)εb
t t ∈ {1, . . . , T}. (9)

In practice, we do as the GAUSS procedure for generating ARFIMA series: we
calculate the MA(q) filter corresponding to (1−L)−d0φ̂(L)−1θ̂(L) with a very large
order q (T for example), and we apply it to εb for obtaining xt. For that, of course,
we have to generate εb with a larger sample size (2× T for example).
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4. For each bootstrap sample, compute the statistic (Hurst, Lo, Robinson, Higuchi,
Jensen, or others), denoted τ b, with xb instead of x.

5. Then, compute the estimated bootstrap P value: see equation 11 or equations
12–13.

B.1.2 The error terms generating procedure

I examine four ways for generating the εb
t (see Davidson [1998]):

1. The parametric bootstrap, called b0: the εb
t are independent draws from the N(0, σ̂2

ε)
distribution.

2. The simplest nonparametric bootstrap, called b1: the εb
t are obtained by re-sampling

with replacement from the vector of {ε̂t}T
t=p̂+1.

3. A slightly more complicated from of nonparametric bootstrap called b2: the εb are
generated by re-sampling with replacement from the vector{√

T

T − 2p̂− 1

(
ε̂t −

1

T − p̂

T∑
i=p̂+1

ε̂i

)}T

t=p̂+1

. (10)

4. The most complicated nonparametric bootstrap, called b3: the εb are generated by
re-sampling from the vector with typical element ε̃t constructed as follows:

• let dt be the tth diagonal element of P[(1−L)−d0 φ̂(L)−1θ̂(L)], the matrix projecting

onto the space spanned by (1− L)−d0φ̂(L)−1θ̂(L);

• divide each element of ε̂ by
√

1− dt;

• re-centre the resulting vector;

• re-scale it so that it has variance σ̂2
ε .

This type of procedure is advocated by Weber [1984].

B.1.3 The choice of the bootstrap P value

By making a large number of drawings of bootstrap statistics τ b, a bootstrap P value can
be computed by the following formula:

p̂bil(τ̂
2) =

1

B

B∑
b=1

I((τ b)2 > τ̂ 2), (11)

see Davidson and MacKinnon [1993]. This formula corresponds to an unilateral test.
This sort of formulae is often associated with symmetric bilateral tests. However, the
size distortion is not necessarily symmetric. Thus, I prefer to use the following formula:

p̂(τ̂) = 2 min{p̂uni(τ̂), 1− p̂uni(τ̂)}, (12)

where

p̂uni(τ̂) =
1

B

B∑
b=1

I(τ b > τ̂), (13)
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that corresponds to a bilateral (asymmetric) test. Further considerations about this
P value can be found in Chapter 5 of Davidson and MacKinnon [1993] dealing with
confidence intervals.

B.2 Bilateral double bootstrap tests for long memory

The standard error of d̂, say σ̂(d̂), used for studentising d̂ can be computed in two
different ways: the first one is the asymptotic estimate (see subsection 2.2), the second
one is the bootstrap estimate. For obtaining the bootstrap estimator of σ(d̂), the time
series are estimated and replicated B2 times in the same way as previously: for each

replicated series, d̂ is computed leading to a set of
{

d̂b
}

b
from which the standard error

is computed. It should be noted that when this test is used, and thus replicated series
are generated, the bootstrap estimator of σ(d̂) must be applied on each replicated series
for obtaining the test statistics leading to replications of replicated series. This method
is often called double bootstrap.

C Bootstrapped ADF tests

The following variables have to be defined:

• B, the number of bootstrap replications,

• p, the number of augmentations in the ADF regressions.

B has to be chosen as large as possible, depending on the characteristics of the computer.
The choice of p is more difficult. We recall that the ADF regressions are:

∆yt = αyt−1 + β1∆yt−1 + . . . + βp∆yt−p + et,
∆yt = constant + αyt−1 + β1∆yt−1 + . . . + βp∆yt−p + et,
∆yt = constant + trend + αyt−1 + β1∆yt−1 + . . . + βp∆yt−p + et,

where yt is the time series, and et are the error terms, t goes from 1 to T . We propose
the following procedure for choosing p: The procedure starts at p = 0. The residuals
of each ADF regressions with p augmentations are tested for independence using both
the Ljung-Box’s and Box-Pierce’s tests. The number of autocorrelation coefficients taken
into account for the Ljung-Box’s and Box-Pierce’s tests go from 1 to 8. If the residuals
are not independent, p is incremented by 1 until the residuals look independent.

The steps of the bootstrapped ADF test are the following:

1. The Student test statistics for α for each ADF regression are computed. Let the
statistics be denoted tα. At this step, the residuals can be kept to be tested for
independence.

2. The bootstrap procedure needs a DGP for generating simulated samples under the
null. This DGP is determined by estimating the model under the null using the
data and the OLS procedure.

3. The bootstrap loop starts now. The simulated error terms, denoted eb
t , are generated

for a sample. There are four ways for generating the simulated error terms:
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(a) Parametric bootstrap: The simulated error terms are drawn from the normal
distribution

eb
t ∼ N(0, s2),

where s is the standard error of the error terms estimated from the ADF
regression using the data.

(b) Basic nonparametric bootstrap: The simulated error terms are drawn by ...

(c) Nonparametric bootstrap with corrected degree of freedom: since E(ê2
t ) 6=E(e2

t )
where ê2

t ) are the residuals of the ADF regression, but E(ê2
t ) =

For our program, the parametric and the second nonparametric bootstrap are cho-
sen.

4. The simulated time series under the null, denoted (yb
t )t, is generated recursively

using both the following steps:

(a) first, define ∆yb
t recursively:

∆yb
t = β̂1∆yb

t−1 + . . . + β̂p∆yb
t−p + eb

t ,

∆yb
t = ̂constant + β̂1∆yb

t−1 + . . . + β̂p∆yb
t−p + eb

t ,

∆yb
t = ̂constant + t̂rend + β̂1∆yb

t−1 + . . . + β̂p∆yb
t−p + eb

t ,

The p first values for yb
t can be chosen equal to the p first values of yt, inter-

preted as initial conditions. (Another way is to choose them randomly.)

(b) second, compute yb
t :

yb
t = y1 +

t∑
i=2

yb
i .

y1 is an initial condition.

5. The Student test statistics for α for each ADF regression are computed using the
simulated series (yb

t )t. Let the statistics be denoted tbα.

6. The steps 3–5 are done again B times. A set of statistics tbα, b = 1, . . . , B, is then
obtained for each the three ADF regressions, and for each both the parametric and
nonparametric bootstraps (thus there are six statistics).

7. The bootstrap P value is finally computed depending on the test hypothesis:

(a) If the null hypothesis H0 : α = 0 is tested against the alternative hypothesis
H1 : α < 0, the classical P value is

puni =
1

B

B∑
b=1

I(tbα ≤ tα),

where I is the indicator function. This P value corresponds to an unilateral
test.
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(b) If the null hypothesis H0 : α = 0 is tested against the alternative hypothesis
H1 : α 6= 0, the classical bootstrap P value is

pbilsym
=

1

B

B∑
b=1

I(|tbα| ≥ |tα|).

This P value corresponds to a bilateral test.

(c) In the case where the null hypothesis H0 : α = 0 is tested against the al-
ternative hypothesis H1 : α 6= 0, we also propose the following bootstrap P
value:

pbilasym
= 2 min{puni, 1− puni}.

This P value also corresponds to a bilateral test, but it takes into account the
asymmetry of the statistic distribution in addition. This P value can be found
in Davidson and MacKinnon [1993, chapter 5], in the context of confidence
regions.

In our program, the two last P values are used.

8. Finally, a significance level is chosen and compared to the P values. If a P value is
lower to the significance level, H1 is retained, otherwise H0 is retained.

D Bootstrapped tests for normality

It is first assumed that the processes that will be tested are stationary and independent.

D.1 The test statistics

First, the estimated centred moments are presented:

µ̂1(y) =
1

T

T∑
t=1

yt,

µ̂c
2(y) =

1

T

T∑
t=1

(yt − µ1(y))2,

µ̂c
3(y) =

1

T

T∑
t=1

(yt − µ1(y))3,

µ̂c
4(y) =

1

T

T∑
t=1

(yt − µ1(y))4,

where T is the sample size, and y is the time series. The estimated skewness and estimated
the kurtosis are defined as following:

ŝk(y) =
µ̂c

3(y)

(µ̂c
2(y))3/2

,

k̂u(y) =
µ̂c

4(y)

(µ̂c
2(y))2 .

From the skewness and the kurtosis, three statistics can be built:
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• a statistic based on the skewness:

tsk(y) =
k̂u(y)√
(6/T )

,

• a statistic based on the kurtosis:

tku(y) =
k̂u(y)− 3√

(24/T )
,

• and a statistic based on both the the skewness and the kurtosis: the Jarque-Bera
statistic (see Bera and Jarque [1980, 1981]):

tjb(y) =
(
tsk(y)

)2
+
(
tku(y)

)2
.

D.2 The asymptotic tests

Under the null hypothesis H0:“y is a Gaussian process”, the asymptotic theory establishes
that:

tsk(y) ∼ N(0, 1), (14)

tku(y) ∼ N(0, 1), (15)

tjb(y) ∼ χ2(2). (16)

However, in finite sample, the two first statistics do not follow the normal distribution,
even if the time series is Gaussian. Consequently, the third statistic do not follow the
chi2(2) distribution. This is a first reason for bootstrapping them. In addition, Jarque-
Bera statistic follows asymptotically a chi2(2) because of asymptotic independence of
tsk(y) and tku(y). However, in finite sample, these two components are dependent,
leading to a second error in Jarque-Bera test. This is a second reason for bootstrap-
ping Jarque-Bera statistic, since the bootstrap techniques are naturally able to take into
account this dependence.

D.3 The bootstrap tests

Let B denotes the number of bootstrap replications. B has to be chosen as large as
possible, depending on the characteristics of the computer. yt is the time series, t goed
from 1 to T . The steps of the bootstrapped test for normality are the following:

1. The test statistics defined in equations 14–16 are computed. Let τ(y) denote the
chosen statistic.

2. The boostrap procedure needs a DGP for generating simulated samples under the
null that is simply H0 : yt ∼ i.i.d.N(µ1, (µ

c
2)

2). This DGP is determined by estimat-
ing the model under the null using the data, i.e. by estimating µ1 nad µc

2. This
estimation can be made simply by µ̂1(y) and µ̂c

2(y). Of course, it is a parametric
bootstrap since the null hypothesis is the normality of the process.
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3. The bootstrap loop starts now. The simulated time series under the null, denoted
(yb

t )t, is generated by independently drawing from the normal distribution:

yb
t ∼ N

(
µ̂1(y), (µ̂c

2(y))2) ,

It is necessarily a parametric bootstrap.

4. The three test statistics are computed using the simulated series (yb
t )t.

5. The steps 3–4 are done again B times. A set of bootstrap statistics is then obtained
for each original statistic.

6. The bootstrap P value is finally computed: the classical bootstrap P value is

psym =
1

B

B∑
b=1

I(|τ(yb)2| ≥ |τ(y)2|).

We also propose the following bootstrap P value:

pasym = 2 min{puni, 1− puni},

where

puni =
1

B

B∑
b=1

I(|τ(yb)| ≤ |τ(y)|).

This P value takes into account the asymmetry of the statistic distribution in ad-
dition 7 This P value can be found in Davidson and MacKinnon [1993, Chapter 5],
in the context of confidence regions. This P value can be used only for tsk(y) and
tku(y), but not for tjb(y) because puni cannot be compute for tjb(y) since there are

two underlying statistics. An extension of the asymmetric P value could be done
for two dimensions, but in practice, it is very difficult.

7. Finally, a significance level is chosen and compared to the P values. If a P value is
lower to the significance level, H1 is retained, otherwise H0 is retained.

D.4 Extension to linear dependence

We propose here an extension of the bootstrap tests to linearly dependent processes.
For the asymptotic tests, the time series has to be independent, since the skewness and
the kurtosis depend on the dependence parameters. However, if the linear dependence
is specified in the bootstrap procedure, the bootstrap tests can apply easily to linearly
dependent processes, if they are stationary. If the linear dependence is not taken into
account, the autocorrelation amplifies the distortion of the test statistic distribution
compared to the asymptotic distribution. Two steps change: the DGP estimation under
the null, and the simulated series generation. We propose the following procedure:

2 The null is now yt ∼ Gaussian AR(p). This DGP is determined by estimating the
model under the null using the data and the OLS procedure. p is determined by the
AIC and SIC criteria. Let the estimated DGP be denoted ÂR(p̂). p̂ can be chosen
by criteria as AIC and SIC, and also by Ljung-Box and Box-Pierce tests (using 1
to 8 lags for example) until the residuals seem independent.

7This bilateral bootstrap P value is not useful for the asymptotic tests, since the asymptotic distri-
butions are symmetric: both the P values are the same, or unilateral.
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3a The simulated error terms, denoted eb
t , are generated for a sample. The simulated

error terms are drawn from the normal distribution

eb
t ∼ N(0, s2),

where s is the standard error of the error terms estimated from the AR(p) regression
using the data.

3b The simulated time series under the null, denoted (yb
t )t, is generated recursively

using both the Gaussian ÂR(p̂) model.

D.5 Monte Carlo results

The Monte Carlo results, that are not presented here, suggest that the bootstrap tests
are much more reliable than the asymptotic tests. The bootstrap tests are not perfect,
and suffer from size distortion, but only for very small sample size.
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