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Bayesian Analysis of DSGE models:
A Panel Approach�

Tareq Sadeqy
EPEE, Université d�Evry Val d�Essonne

Abstract

This methodological paper in Bayesian econometrics applied
to macroeconomic models, presents �rst the Bayesian estimation
of DSGE models, then illustrates the e¤ects of the estimation for
a panel of countries, assuming some homogeneity across coun-
tries. Under some speci�cations, the results exhibit more preci-
sion about parameters in a panel approach. The gain of precision
is important using a panel of small samples of data.

1 Introduction

Bayesian methods in econometrics are increasingly used by researchers
and policy-makers. The Bayesian econometrics is simply based on the
Baye�s rule of probability. This probability helps us to make any infer-
ence about parameters or about the model: Test of hypotheses, predic-
tion, model choice,... etc.
This recent approach of econometrics has known many recent ex-

pansions. Klein�s "Textbook of Econometrics" published in 1954, only
presents some discussion of the Bayesian theory. Arnold Zellner�s book
"An Introduction to Bayesian Inference in Econometrics" published in
1971 is considered as the �rst book in Bayesian econometrics. Theil
(1978) included a chapter about Bayesian inference and random ratio-
nal behavior, in which he explained the Baye�s theorem and provided
some applications. Until the end of the 1980�s very few applications
of the Bayesian methods were studied. For instance, Zellner published
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an article in 1986 on the Bayesian analysis and prediction using assy-
metric loss functions. Porier (1995) underlies in his book "Intermediate
Statistics and Econometrics: A Comparative Approach." Bayesian and
frequentist methods, but does not discuss models used by economists
beyond regression.
The Landon-Lane�s (1998) article was the �rst in evaluating macro-

economic models using bayesian methods, evaluating a Real Business
Cycle model using likelihood method, but incorporating parameter un-
certainty in the model evaluation through the use of a prior probability
distribution. Then, the evaluation of RBC models and general equil-
librium models has seen an increasing number of publications. These
developments of Bayesian methods in the evaluation of macroeconomic
models, notably in the Dynamic Stochastic General Equilibrium mod-
els, brought the DYNARE toolbox, which is a group of programs under
MATLAB for solving and estimating these models using the Bayesian
methods. DYNARE is now one of the most used toolbox by economists
and researchers on policy-making.
The Bayesian econometrics, recently developped, takes into account

the researcher�s belief about parameters. On the contrary, the classical
econometrics extracts all the information about parameters from data
and does not allow for any prior belief to in�uence or to change the belief
about parameters. Data cannot always give the appropriate information
about the parameters for many possible reasons. It may be because of
short data samples or because of the complicate structure of the model
to estimate. However, using the Bayesian approach, we can give a weight
to our belief about the parameters values, or to the theoretical calibrated
values of the model�s parameters.
In dynamic stochastic general equillibrium models (DSGE), we need

to estimate a complicate model with structural parameters as one block.
Until a recent time, authors used to calibrate these parameters from
data or from previous studies. The reason is that classical econometrics
through non-linear estimation methods (Maximum likelihood, GMM,
SMM,...etc.) may face identi�cation problems due to the data issues
mentioned above1. As a result, using Maximum likelihood estimation,
or other methods depending only on the information given by the data,
we can get unlikely parameters values.
In policy-making process, dealing with uncertainty and risk man-

agement is the essence of decision-making. Planners should choose the
parameters with least risk, this gives us a reason to consider parame-
ters as random variables. Furthermore, when the decision-maker make a

1These problems appear in DSGE models estimation, where parameters are con-
sidered as one block, due to co-movements of variables unexplicated by the data.
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forecast of the economy, she needs to consider not only the future path
of the economy, but also the distribution of possible outcomes of path of
the economy. Then, decision-makers need to reach a judgement for their
policy upon probabilities, risks, costs and bene�ts of the policy choice.
The risk-management of the monetary or �scal policy means dealing
with probability distributions. If the decision-maker has a prior belief
about the policy choice based on previous observations or constructed by
theoretical models, then the risk-management process is an application
of Bayesian analysis of the model. The decision-maker once have a look
on the posterior distribution of the policy can construct an opinion or a
judgement about what policy to adopt.
When decision-makers search for the model that represents the econ-

omy, they do not search only for the best model but also for possible
models probability distribution that may represent the economy. The
best model would be that of the highest probability. The Bayesian ap-
proach is both a risk analysis of the model and a strategy analysis for
policy directed to achieve economic objectives, for example the objec-
tives of the central bank in price stability and the sustainable economic
growth.
When a policy-maker uses the Bayesian choice of policy-making, she

uses its own �rst belief, before any empirical analysis, about the optimal
strategy to adopt, with a probability distribution that we call a prior.
The question now is how to construct our belief about parameters (or
policy-choice). First, the prior covers all the range that a parameter
may be de�ned on. For example, if we know that the parameter takes
only positive values, this information can be represented by a Gamma
distribution prior. Second, the moments of the prior distribution can
be obtained through several ways in order to represent the researcher�s
belief. The moments can be obtained subjectively from previous out-
comes or other studies, or can be obtained objectively through other
approaches that we develop later in the core of this paper.
The researcher�s belief can then be updated by the observed data dis-

tribution, that is known as the likelihood distribution. The fundamental
rule of the Bayesian approach is the Baye�s rule of conditional probabil-
ity, that combines the probability distribution re�ecting the prior guess
and the data distribution. The combination of the prior distribution
and the data distribution, will give us a more clear idea about the eco-
nomic characterstics (parameters, the policy choice, forecasting or the
model choice). We can, thus, get a new distribution re�ecting a posteri-
ori belief. In order to analyze the new distribution, we need to use the
posterior ditribution in inference.
Like in classical econometrics, we can take a two-dimension model
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applying panel data econometrics. But we do not have to forget that
the Bayesian econometrics are probability distribution analyses and not
point-estimation like in classical econometrics. The Bayesian approach
provides information about not only the parameters estimation, but also
about the overall distribution of the parameters conditional to the ob-
servables. So, in a panel dimension, instead of point-estimating the indi-
vidual speci�c e¤ects, we can estimate the distribution of the individual
random e¤ect.
As in classical econometrics, a panel dimension implies an informa-

tion gain, if we can prove some similarities across the individuals dimen-
sion. This feature can be a solution for short-data samples problem.
In other words, increasing the dimension of the data can give a higher
informative (less �at) likelihood distribution, if the similarities are well
speci�ed. The use of a panel dimension is useless, if the similarities are
misspeci�ed, since the posterior distribution risks to be with too many
modes or to be a �at distribution.
Nowadays, none of the research studying on DSGEmodels considered

a panel-data model, with similarities of parameters across the countries
dimension. After scanning the literature of applied Bayesian economet-
rics on economic models, I found only two interesting articles that deal
with panel-data models applied by economists. The �rst is the article
of Koop et al. (2000), that applies Bayesian estimation on an output
growth model for a panel of countries. The purpose of this study is to
analyze cross-country sources of output growth. The authors specify an
informative prior for each parameter associated to each country. The
other article is a working-paper of the ECB, by Canova et al (2004) that
applies the Bayesian inference on a dynamic panel VAR model for the
G-7 countries, assuming interdependance between countries.
Similarities of some parameters in DSGE models can be speci�ed if

we apply them to countries located in the same region, or to those who
could have some similarities in consumption dynamics or institutional
characteristics.
Simalarity speci�cation about only a part of parameters allows us

to test the heterogeneity of other parameters. However, the heterogene-
ity in the Bayesian analysis is di¤erent from the classical approach, we
test the parameters intervals rather than the point-estimates. In the
Bayesian analysis, we compare the uncertainty of each parameter, it
cannot resume only to the distance between point-estimates.
The priors choice has a big role in the Bayesian estimation process on

a Panel data model, since priors must take into account the similarities
and di¤erences across countries or individuals. As a result, any misspec-
i�cation about parameters similarities can a¤ect the posterior distribu-
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tion, and thus the risk-management and the decision-making process.
The paperis organized as follows: In section 2 we introduce a gen-

eral presentation of the Bayesian approach. We focus on priors and
their choice process, posterior distributions and their computation for a
DSGE model. Section 3 presents Bayesian analysis in panel data DSGE
models, and some assumptions about the model and the shocks. Sec-
tion 4 presents a simple DSGE model in a closed economy, as a Data
Generating-Process (DGP). Then the model is estimated on the simu-
lated data in di¤erent scenarios, where we compare parameters proba-
bility distributions under similarity speci�cation. Finally, we conclude
at the end of this paper.

2 A general presentation of the Bayesian approach

In the frequentist point of view, there is a true value for each parameter
and we try, on the basis of the information provided by the data, to
estimate them. On the other hand, the Bayesian approach considers the
parameter as a random variable following a distribution. The Bayesian
approach is fundamentally based on the Baye�s rule

P (� j y) = P (y j �)P (�)
P (y)

(1)

The distribution, denoted by P (�), is called the Prior probability distri-
bution of the parameter �, it re�ects the belief of the researcher on that
parameter. The conditional distribution of the parameter �, denoted by
P (� j y), is the updated distribution of the parameter after extracting
information from the data, this updated distribution is called the poste-
rior distribution. While the conditional distribution of the data y to the
parameter value is just the conditional likelihood function and P (y) de-
notes the marginal likelihood function. The ratio between the posterior
and the prior can tell us how much the data can be informative about
the parameter. Since the marginal likelihood function P (y) is constant
for all the values of �, the posterior density function P (� j y) is propor-
tional to the numerator, the multiplication of the prior and the condi-
tional likelihood, that we�ll call the posterior kernel �P (� j y). Hereafter,
the posterior density function will be approximated by a kernel density
function, using sampling methods, like the Metropolis-Hastings algo-
rithm, that combine the prior distribution and the information present
in the data given by the likelihood distribution. So, the shape of the
distribution of the parameter is updated by the shape of the likelihood
function.

P (� j y) _ �P (� j y) = P (y j �)P (�) (2)
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This method works if all the variables are observable in the data,
but usually this is not the case in DSGE models, we have unobservable
variables such as capital stock, rental rate of capital, shocks values. To
estimate the model using the Bayesian method, we need to simulate
these unobservable variables. To do so, we need to use a state space
representation of the model and to apply the Kalman �lter. However, our
DSGEmodel has not only lagged variables but also rational expectations
of future variables (backward-forward looking model), that�s why we
need to transform the model into a state-space representation.
We can re-write the model into a recursive state-space model through

di¤erent algorithms that exist in literature like King and Watson (1998),
Klein (1999), Sims (2002) and the AIM algorithm2 using the parameters
values, then we can apply the new form of the model to the Kalman
�lter, in order to simulate the unobservable variables.

2.1 Priors
Priors may represent the beliefs of the researcher about the parameters.
The priors are called subjective if the probability distributions are con-
structed in a subjective way, without using any evaluation based on the
data or on previous studies. However, priors may represent the evalua-
tion based on the observations or on previous models evaluations, called
objective priors. Some priors may be between these two cases, objec-
tive in the forme of the distribution but subjective in its values. When
a prior contains enough information on the parameters, it is called an
informative prior. Elsewhere, a non-informative prior must minimize its
in�uence on the posterior distribution.
The choice of the prior distribution is a critical point for the Bayesian

approach, since the choice of the belief a priori about the parameter
contributes in the belief a posteriori. The choice of the prior distribu-
tion is important to say how much the data contributes in updating the
information about the parameter�s distribution. If we want to let the
data speak for themselves about the parameter�s distribution, we should
choose a non-informative prior. For example, a uniform prior insures
that the prior information about a parameter is neutral and does not
change the information that we get from observable variables distribu-
tion. Non-informative priors are typically selected when information is
scarce or when we want to minimize the in�uence of the prior on the
posterior distribution. Non-informative priors are location invariant pri-

2DYNARE Toolbox uses the generalized Schur decomposition of the algorithms
of Sims (2002) and Klein (1999). However, Anderson(2006) shows that the AIM is
the most accurate and least cost algorithm to transform the model into a state-space
model.
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ors. This implies that the probability density function is equal for all
values in a set �:

P (�1 2 �) = P (�2 2 �)
The Je¤rey approach proposes a method to generate non-informative

priors based on Fisher information matrix. The matrix of information
is the expected hessian matrix of the probability density function of the
data conditional to the parameters. Je¤rey�s proposition says that the
prior can be calculated in the following way:

P (�)= (det [I (�)])0:5

Ii;j (�)=�E
�
@2 log f (yj�)
@�i@�j

�
However, if the prior has a big role in the determination of posterior�s

shape, this means that the a priori belief, or the theoretical feature, is
an important contribution. Also, in the case of short data samples,
priors must be as much precised as possible, since the updating by the
likelihood distribution is insu¢ cient to improve our belief about the
parameter. The choice of these priors should be in an objective way.

2.2 Posteriors simulation
Often, the posterior distribution P (� j y) cannot be calculated analyti-
cally, because the marginal likelihood of y is not easy to calculate, it is
the sum (integral for a continuous set of parameters) of the product of
the prior and the likelihood over all the possible valus of the parameter.
But, since the marginal likelihood is a constant function of parameters,
the posterior distribution has a shape proportional to that of the kernel
posterior distribution

�P (� j y) = P (y j �)P (�) (3)

As a result, we can use the kernel posterior distribution as an approxi-
mation of the posterior. The reason for using the kernel as an approxi-
mation of the posterior is that the marginal likelihood is complicate to
calculate, we need to solve numerically multiple integrals. So, in order
to compute the posterior distribution, we could simulate it rather than
compute it analytically.
The recent litterature of Bayesian estimation for DSGE models uses

Markov Chain Monte-Carlo methods (MCMC), using a Gibbs sampler
algorithm or a Metropolis-Hastings algorithm (hereafter called MH). The
MCMC methods consider that the parameter sequence follow a Markov
Chain process with a transition matrix Q. The advantage of the MCMC
methods to sampling methods is that they consider the parameter as a
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sequence. The sequance is updated by data at each iteration. In order
to stationarize the Markov-Chain, we need to throw out a big number
of the �rst similations, the rest of the sequence dresses the shape of the
posterior distribution. The MH algorithm is time-consuming since the
acceptation rate3 of the simulations must be 30-50%; if the acceptation
rate is too low the posterior shape will be only on a small range around
the mode, on the other hand, if the acceptation rate is too high the
posterior�s shape will include so far values on the tails of the distribution.
Since we throw 50-70% of the replications, we need a huge number of
Monte-Carlo simulations. However, we use all the simulations of the
Gibbs sampler. But the drawback of this method is in the case when we
have a block of parameters, we need to solve multiple integrals which is
highly cost, this is the case in DSGE models. This is the reason why
many studies use MH algorithm as an MCMC method in DSGE models
estimation.
Using the Metropolis-Hastings algorithm, we will draw a large num-

ber L of the parameter from the transition probability. In order to get
a stationary Markov Chain process, we will throw a large number of
the �rst simulations (n0). The Metropolis-Hastings algorithm works as
follow:
1) For n = 0, the initial value of the parameter is �0
2) Draw a random number u from a uniform distribution U [0; 1]
3) Draw �t from Q (�n; �t), where Q (�n; �t) is the probability to get

a value �t of the parameter sequence, conditional to the parameter value
�n at the precedent iteration.
4) Calculate the Hastings ratio4: H (�n; �t) =

Q(�t;�n)
Q(�n;�t)

and the MH

ratio: MH (�n; �t) =
P (yj�t)P (�t)
P (yj�n)P (�n)

H (�n; �t)

If MH (�n; �t) > u, then �n+1 = �t, else keep the previous draw
�n+1 = �n; n = n+ 1:
Repeat steps 1 to 4 until we reach the maximum number of iterations

L. The iterations from n0 to L will give the shape of the posterior
distribution P (� j y).
We can note that the MH algorithm uses acceptation sampling by

drawing u between 0 and 1. This is in order to avoid to get sequences
on the tails of the posterior distribution.

3The acceptation rate is the part of draws to be used in the posterior�s shape
construction. It insures that the draws are not issue of draws neither on the tails
of the distribution nor concentrated around the mode. See the algorithm steps for
details.

4Note that the Hastings ratio is equal to one in symmetric Markov transition ma-
trix. In this case, we go back to the initial algorithm, without Hastings development,
the Metropolis algorithm.
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2.3 The likelihood function of a State-Space model
In order to calculate the posterior kernel, we need to calculate the like-

lihood, this is not trivial in DSGE models, since they are backward-
forward looking and they contain unobserved variables. If the linearized
form of the model is under the form:

AEtXt+1 +BXt + CXt�1 +D"t = d (4)

where A;B, C and D are coe¢ cient matrices, Xt is a vector of variables,
"t is a vector of shocks and d is a vector of constant coe¢ cients. The
problem of these models is that the matrix A may be singular. As
a consequence the model cannot be directly written into a recursive
form. We need to use the Schur decomposition through algorithms such
as AIM, Klein(1999) and Sims(2002). The matrices A and B can be
decomposed using the generalized Schur decomposition into QUZ and
QMZ, respectively. The matrices Q and Z are supposed to be invertible
and the matrices U and M are upper-triangular matrices. A unique
stable solution of the model exists if and only if the number of eigenvalues
of the matrix Z larger than one (unstable eigenvalues) is equal to the
number of forward-looking variables. This last condition is the condition
of Blanchard and Kahn (1980) of stability. As a result of the presence
of upper-triangular matrices, the model can be written into a recursive
state-space model represented in these two blocks of equations:

yt = b0 + Ztb1 + b2ct + ut (5)

ct = Tct�1 + a+ �t (6)

Equation (5) is the set of space equations or the measurement equations,
with yt are the observable variables, ct are the unobservable variables,
Zt a set of exogenous variables, b0; b1 and b2 are, respectively, the cor-
responding coe¢ cients and the serially uncorrelated measurement error
is ut, with a variance-covariance matrix R. Equation (6) is the set of
state equations that are recursive equations of the unobservable vari-
ables, with a constant transition matrix T , a constant a and a serially
uncorrelated error "t, with a variance-covariance matrix E.
In order to compute the likelihood distribution of the observed data,

we need �rst to generate the unobserved variables using the Kalman
�lter. We will expand the discussion about the Kalman �lter5 and its
algorithm using the pooling estimation in a panel approach. The most

5See Hamilton (1994) and Harvey (1990)
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important output of the Kalman �lter is the one-step ahead prediction
error of the observed variables

vt = yt � ŷtjt�1

with a variance matrix denoted by Ft, where ŷtjt�1 is the prediction of
the observed variables using the information available in t� 1. Now, we
can write the likelihood function:

ln (L (y j c0; P0; �)) = �
T

2
ln (2�)� 1

2

TX
t=1

ln j Ft j �
TX
t=1

v0tF
�1
t vt (7)

Since the likelihood function is computed, we can write the posterior
kernel

�P (� j y) = P (�)L (y j c0; P0; �) (8)

If we cannot compute analytically the shape of the posterior distribution,
we need to use the Metropolis-Hastings algorithms explained previously.

3 Pooling Bayesian estimation method

The interesting point of a pooling Bayesian estimation is that we can
get more information by the data distribution, the likelihood function of
all countries data. Here, we need an assumption on the parameters of
the model, they may have a common value across countries. Taking into
account the similarity of some parameters across countries increases the
contribution in updating our belief about the parameters. In the case
of the emerging and transition countries, especially the Eastern Europe
countries, where few data are available, this estimation may be more
accurate or less dependant on the prior. In addition, it permits to test
the heterogeneity between the parameters posteriors across countries.

3.1 Our speci�cation about the model
In DSGE models literature, no one takes into account similarities and
di¤erences between countries, in the same model. However, this is an
important feature, since we can test the heterogeneity between some pa-
rameters and gain more degrees of freedom of the estimation, in compara-
ison with a seperate country-by-country estimation. Moreover, we have
to take into consideration the correlation of shocks across countries. We
will assume that some of the structural parameters are identical across
countries. While, some other structural parameters are not restricted to
be identical across countries, they are supposed to be heterogenous.
We suppose also that shocks are correlated between countries, since

they have important commercial trade between them. This hypothesis
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increases the cost to compute the likelihood function and to estimate
the model, since the prediction using the Kalman �lter must take into
account the correlation of shocks between countries. This fact implies a
huge amount of covariance parameters to estimate. So, if the variance-
covariance matrix of shocks contains a big number of di¤erent matrices
of variance-covariance, this gives a matrix with a huge number of para-
meters to estimate:

Q =

2666666664

Q1 Q12 ::: ::: Q1j ::: Q1J
Q12 : :
: : :
: : :
: Qj :
: : QJ�1;J
Q1J :: :: QjJ :: QJ

3777777775
This large number of parameters to estimate increases the cost of the
estimation, that we will pay in terms of estimation time and estimation
accuracy.
In order to take into account the proximity between countries (the

correlation between shocks) and the short samples problem, we will sup-
pose that the shocks are composed of two uncorrelated components: one
is global for all the region ("gt ), while the other

�
"ljt
�
is local and uncor-

related between countries, with the country index j = 1; :::J:

"jt = "
g
t + "

l
jt (9)

where each component is a vector of the same number of shocks.
Both the local and the global shocks are normally distributed with

variance matrices Qlj and Q
g, respectively.

"ct � N (0; Qc)

"ljt � N
�
0; Qlj

�
As a result, the variance matrix of the pooled vector ("t) containing

the total shocks ("jt) can be written as:

Q =

26666664
Ql1 +Q

cQc : : : Qc

Qc : : :
: : Qlj +Q

c : :
: : : : :
: : : Qc

Qc : : : QcQlJ +Q
c

37777775
(JH�JH)

This matrix contains only J + 1 di¤erent submatrices.
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3.2 Priors
As we metioned previously, some of the structural parameters are re-
stricted to be identical across countries, so we suppose that they have
the same prior distribution and parameter value.
For the unrestricted parameters, prior distributions are selected inde-

pendently for each country. Priors of the structural parameters, denoted
by P

�
�j
�
, have similar shapes but di¤erent values of moments. The pri-

ors can be both objective and non-informative, objective priors are taken
from other available studies, these priors are related to the structural pa-
rameters of the model, while non-informative priors concern mostly the
auxiliary parameters that are related to the shocks.
The innovations of the shocks process, "lj;t and "

c
t are normally dis-

tributed, with mean zero and variance Qlj and Q
c. The priors of the

autoregressive parameters are denoted by P
�
�j
�
. These priors can be

determined using the Je¤rey approach or using uniform priors.

3.3 A multi-country State-Space model

In order to write the likelihood function of the pooled data, we need to
build the Kalman �lter for a panel state-space model where the error
terms are correlated between countries. To get the pooled state-space
model for panel data, we will apply the Schur decomposition to each
country; then get the state-space model seperately, using the priors as-
sociated to each country parameters.

yj;t = Zj;tb1;j + b2;jcj;t + uj;t (10)

cj;t = Tjcj;t�1 + �j;t (11)

For the identical parameters across countries, the corresponding para-
meters in the state-space model are repeated for countries.
We cannot predict the unobservable variables using seperate state-

space model in the last form, since the shocks are correlated across coun-
tries. This correlation must be taken into account in the prediction of
the state variables. Now, we can pile up the variables and parameters for
all countries taking into account the correlation across countries, given
above in the matrix Q. As a result, the pooled state-space model can
be written as:

y
(JK�1)
t = Z

(JK�JM)
t S

(JM�p)
Z b

(p�1)
1 + b

(JK�q)
2 S(q�JH)c c

(JH�1)
t + u

(JK�1)
t

(12)
c
(JH�1)
t = T (JH�JH)c

(JH�1)
t�1 + �

(JH�1)
t (13)
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WhereK is the number of endogenous space variables in the model,M is
the number of exogenous variables andH is the number of state variables
in the model. M and H contain, both, the heterogenous parameters and
the identical parameters corresponding to the variables. SZ and Sc are
selection matrices to pool the heterogenous parameters with the identical
parameters, where p; q and r are the number of corresponding parame-
ters, containing one identical parameter and J heterogenous parameters.
The transition matrix T is a highly sparse matrix, it contains blocks of
transition matrices for countries on the diagonal, the other elements are
zero. The matrix T contains some identical parameters.
Now, we will write the algorithm of the Kalman �lter, in the pooled

model case, with a homoskedastic shock. Given the initial value of the
state variables vector c(JH�1)0 , we will predict the next period state vari-

able by the transition equation:

ctjt�1 = Tct�1 (14)

The variance matrix of the state variable prediction is denoted by P , it
can be obtained by the solution of

Ptjt�1 = TPt�1T
0 + E (15)

We can now compare between the prediction of space variables and their
observed values, the prediction error is denoted by vt,

vt = yt � ytjt�1 (16)

where the space variable prediction can be obtained by the space equa-
tion (12)

ytjt�1 = b2ctjt�1 + Ztb1 (17)

We can also calculate the prediction error variance covariance matrix,
denoted by Ft, with dimension (JK � JK), that is simpli�ed since the
model does not contain measurement errors

Ft = b2Ptjt�1b
0
2 +R (18)

Finally, we can calculate the state variable ct, which we can take by the
state variable prediction plus the error term of the prediction

ct = ctjt�1 + Ptjt�1b
0
2F

�1
t vt (19)

and its variance matrix

Pt = Ptjt�1 + Ptjt�1b
0
2F

�1
t b2P

0

tjt�1
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Once the unbservable variables are simulated and the model is writ-
ten in a recursive way, we can write the the likelihood function of the
data:

lnL (y1; :::yJ j �1; :::; �J ; �1; :::; �J ; Q) (20)

=�JT
2
ln (2�)� 1

2

TX
t=1

ln jFtj �
TX
t=1

v0tF
�1
t vt

3.4 Posteriors simulation
Once the likelihood function is calculated, we can now calculate the ker-
nel function conditional to the other parameters values, for each country
independently, because for a hierrarchical model, posteriors are indepen-
dent if the priors are independent.

�P
�
�j j y1; :::; yJ ; �j� ; �1; :::; �J ; Q

�
(21)

=L (y1; :::; yJ j �1; :::; �J ; �1; :::; �J ; Q)P (�j)

where �j� denotes the vector of parameters for the remaining countries.
The posteriors kernel of the shocks autoregressive parameters vector

are witten similarly using their priors and the likelihood function

�P
�
�j j y1; :::; yJ ; �1; :::; �J ; �j� ; Q

�
(22)

=L (y1; :::; yJ j �1; :::; �J ; �1; :::; �J ; Q)P (�j)

Then, using the kernel functions (21)�(22) we can do the Metropolis-
Hastings algorithm for each country and simulate the posterior distrib-
ution for each country.

3.5 How to test the heterogeneity of parameters?
In order to test the heterogeneity using the Bayesian approach, we can
have more than one way. First, we can compare between the modes
of the di¤erent posterior distributions for each parameter, far distances
between modes can indicate heterogeneity of parameters. However, the
Bayesian approach considers the parameters as random variables, not as
a point. So, in order to analyze the parameters heterogeneity we need
to compare, not only between modes of posterior distributions but also
between the shape of the distributions. So, the second method that we
propose is to compare between the Highest Density Regions (HDR) at
a given common level 1 � � of the di¤erent distributions of the same
parameter. The HDR of a posterior distribution, at a level 1 � � is
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de�ned as the shortest interval where there is 1 � � of the parameter�s
distribution.

HDR = [L�1 ;H�2 ]

with �1 and �2 the p-values of the distribution, satisfying �1 + �2 = �
H�2Z
L�1

P (�jy) d� = 1� �

Once, we have the di¤erent HDR�s for a di¤erentiated parameter, we
can compare between their longitude, larger intervals re�ect the fact that
the data of that country does not update su¢ ciently the belief about the
parameter.
The third way is using the Bayesian factor, which is de�ned as the

ratio of the posterior probability of a parameter.

Bi;j =
�P (�ijy1; :::; yJ)
�P
�
�jjy1; :::; yJ

� (23)

This way corresponds to testing the null hypothesis that the parameter
is identical between two countries, against the alternative that they are
di¤erent. If the Bayesian factor is di¤erent from 1, then the parameters
can be considered heterogenous across countries. The Bayesian factor is
bilateral (i.e: between two countries), for this fact we must �x a reference
country to which we can compare all the other countries.

4 Application on a DSGE model

For the illustration of the methodology in a panel of countries approach,
we will apply the Bayesian analysis on a Data Generating Process (DGP)
of a simple DSGE model for a panel of J countries. We will study three
scenarios of the model: The �rst asssumes that all parameters of the
dynamic model are di¤erent and will estimate it taking into account
this assumption, in the second scenario, some parameters are identical
across countries and others are di¤erentiated we will estimate the model
taking into account these assumptions. Finally, in the third scenario, we
assume an error of speci�cation of the model, where all parameters are
di¤erentiated but some are estimated ussing the assumption that they
are identical across countries.

4.1 The model
We use a simple dynamic stochastic general equilibrium in a closed econ-
omy, without capital. The model, that is given by Rabanal and Rubio-
Ramirez (2003), exhibits nominal rigidity of prices with partial indexa-
tion, and nominal rigidity of wages with parial indexation. The shocks
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of the economy are: a productivity shock (A), a government expendi-
ture (g) that is AR(1) process with ("g) as an innovation, a monetary
policy shock ("m), and a mark-up shock (�). The log-linearized model
is composed of the following equations:

yt = Etyt+1 � �
�
it � Et�ct+1 + Etgt+1 � gt

�
(24)

yt = "
a
t + (1� �)nt (25)

mct = wt + nt � yt (26)

�t =
!

1 + �!
�t�1 +

�

1 + �!
Et�t+1 + �p (mct + �t) (27)

mrst = gt +
1

�
yt + 
nt (28)

Ŵt � � = �EtŴt+1 + �w (mrst � wt) (29)

it = �rit�1 + (1� �r)
�

��t + 
yyt

�
+ "mt (30)

"at = (1� �a) + �a"at�1 + �at (31)

"gt =
�
1� �g

�
+ �g"

g
t�1 + �

g
t (32)

Equation (24) is an Euler equation with an elasticity of consumption
�, equation (25) is a concave production function with only labor as
a production factor, equation (26) is the optimal condition of the cost
minimization problem. Equation (27) is a Phillips curve, in a New-
Keynesian form6, prices are adjusted at each period with a probability
�p, when prices are not adjusted they are indexed with previous gross
in�ation rate with a degree of indexation ! between 0 and 1. Equation
(28) represents the marginal rate of substitution between labor and con-
sumption, where 
 is the inverse elasticity of labor supply with respect
to real wages. Equation (29) is the equation of nominal wages growth Ŵ
with respect to marginal rate of substitution, real wages and in�ation7,
wages adjust also with a probability �w, when wages are not adjusted
they are indexed to past wage with past period in�ation indexation.
The indexation degree of wages is denoted by � that is between 0 and 1.
Equation (30) is a Taylor monetary rule and �nally equations (31) and
(32) represent the AR (1) process of the shocks.
Since the model is log-linearized around the steady state, the vari-

ables of the model above are all equal to zero at the steady state.

6�p =
(1��)(1��p�)(1��p)
(1+!�)�p(1+�(���1)) where �� is the steady state elasticity of substitution

between di¤erentiated goods.
7�w =

(1��w�)(1��w)
�w(1+�
)

where � is the elasticity of substitution between di¤erenti-
ated labor types in the production function.
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4.2 The basic model estimation
First, the model has been estimated for one country, without panel di-
mension, in order to illustrate the Bayesian analysis of this new keyne-
sian models. The model is estimated on the simulated data using the
following parameters values:

� �p �w � ! 
 
y 
�
0.18 0.66 0.75 0.7 0.7 1.6 0.27 1.4

�a �g �r �a �m �g ��
0.9 0.9 0.82 0.0096 0.0014 0.04 0.18

The other parameters are set as in other standard studies � = 0:99, � =
0:36, �� = 6 and � = 6. Estimating the model on the simulated data for
100 periods, by the methodology explained previously, gives the posterior
distributions of the parameters of interest. The estimation shows that
the parameters values of the data-generating process are inside the 95%
con�dence interval constructed from the posterior distribution. The 95%
con�dence interval is the highest density region (HDR) with a 95% level
of the posterior distribution. The results obtained are:

param. prior mean prior prior stdev post.mean 95% HDR
� 0.5 uniform 0.2887 0.3505 0.0000 0.6520
! 0.5 uniform 0.2887 0.7905 0.6363 0.9960
�p 0.6 beta 0.1 0.6090 0.5186 0.7414
�w 0.7 beta 0.1 0.7265 0.6310 0.8230

 1 normal 0.5 1.0559 0.3425 1.6811

� 1.5 normal 0.25 1.4377 1.3146 1.5689

y 0.125 normal 0.25 0.3044 0.1639 0.4356
� 0.4 gamma 0.2000 0.1737 0.1602 0.1860
�a 0.5 uniform 0.2887 0.9274 0.8938 0.9593
�g 0.5 uniform 0.2887 0.8886 0.8615 0.9159
�r 0.5 uniform 0.2887 0.8273 0.8082 0.8475
��a 0.5 uniform 0.2887 0.0083 0.0054 0.0110
��g 0.5 uniform 0.2887 0.0423 0.0375 0.0470
�"m 0.5 uniform 0.2887 0.0013 0.0012 0.0015
�� 0.5 uniform 0.2887 0.1433 0.0470 0.2339

Table 1: Estimation results for the basic model for one country

The prior choice is due to a prior thought about parameters values.
We know a priori that �; !; �a; �g; and �r between 0 and 1, but we do not
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have any idea about the distribution of the parameters between 0 and 1,
for this reason we specify uniform priors for these parameters. However,
theoretical values about the rigidity parameters give values between 0.4
and 0.7. As a result, we specify a beta distribution between 0 and 1, with
a mode near to the theoretical values. The other parameters of elasticity
and policy are normally distributed around the theoretical values.
These results in table 1, with the posterior distributions shape in

appendix 6.1, give the mean of the posterior distribution, but also the
uncertainty about the parameter. Larger HDR or more �at distributions
re�ect more uncertainty about that parameter. The presence of more
than one mode of the posterior increase also the uncertainty about the
parameters possible values. The estimation results say that we have
more uncertainty about the indexation degree parameters (! and �),
the calvo parameters of prices (�p) than the other parameters.
The MCMC diagrams show also if the Metropolis-Hastings draws are

stable. This is the case for all the parameters since the draws graphs
are stable almost after the �rst 20,000 draws, the rest 20,000 draws are
more stable. In order to verify the presence of other modes, we drawn
3 di¤erent sequences from the posterior distribution. The blue line in
the MCMC diagrams represents the graph for all the sequences together,
while the red line is the graph of the Within series (i.e: the di¤erence
between the draws of each sequence and the mean of each sequence).
Here, to check the presence of more than one mode, we launch three
sequences of draws from the posterior parameters. Almost, for all the
parameters, the red and the blue lines converge to the same value. As
a result, we can conclude that posterior distributions have one mode,
except for the Calvo parameter of prices rigidity (�p), the indexation
degree of wages (�) and the standard error of the mark-up shock (�),
where we observe two modes of the posterior distributions. This states
that these parameters still have some uncertainty.

4.3 Estimation of the model in a panel approach

In this section, we discuss the e¤ect of the data pooling on posterior
distributions estimation. We do this by simulating data for three coun-
tries from the model restricting some parameters to have identical values
across countries and di¤erentiating the other parameters. We will as-
sume that the identical parameters are those related to the households,
since if countries are located in the same region, households may have
many common habits such as wage indexation �, consumption elasticity
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�, and the elasticity of disutility of labor8. In order to take into account
the shocks correlations across countries, we assume, as explained in the
methodology previously, that each shock (") is composed of two com-
ponents: a domestic shock denoted by

�
"l
�
and a common shock ("c).

The data are obtained by a stochastic simulation of the model using the
following parameters values:

Identical parameters values:
� 
 �
0.7 1.6 0.18

Country 1:
�p1 �w1 !1 
y1 
�1
0.66 0.75 0.7 0.27 1.4

�a1 �g1 �r1 �la1 �lm1 �lg1 �l�1
0.9 0.9 0.82 0.003 0.002 0.01 0.05

Country 2:
�p2 �w2 !2 
y2 
�2
0.72 0.75 0.7 0.25 1.35

�a2 �g2 �r2 �la2 �lm2 �lg2 �l�2
0.9 0.9 0.75 0.004 0.002 0.015 0.18

Country 3:
�p3 �w3 !3 
y3 
�3
0.62 0.7 0.7 0.3 1.45

�a3 �g3 �r3 �la3 �lm3 �lg3 �l�3
0.9 0.82 0.7 0.004 0.0025 0.02 0.06

Common shocks standard deviation:
�ca �cm �cg �c�
0.008 0.005 0.03 0.08

The common shocks identi�cation is a problem in calculating the like-
lihood function, estimating the common shocks standard deviation im-
poses a big problem of identi�cation. The likelihood function is very
�at. In order to avoid this problem we estimate only the total shock
standard deviation.
In the estimation process, we give the same priors for parameters

across countries. We assume that the parameters concerning households
are identical across countries, assuming that households have the same
behavior in these countries. The other parameters, even if some of them
have similar values, are assumed to be di¤erent and have their proper
distributions.

8This fact can be more illustrated by empirical works. Unfortunately, till now we
cannot �nd estimated structural DSGE models for a panel of countries.

19



param. prior mean prior prior stdev post.mean 95% HDR
� 0.5 uniform 0.2887 0.6528 0.4386 0.8511

 1 normal 0.5 1.5288 0.9556 2.1107
� 0.4 gamma 0.2000 0.1596 0.1542 0.1650
!1 0.5 uniform 0.2887 0.7264 0.6341 0.8272
�p1 0.6 beta 0.1 0.6609 0.6334 0.6865
�w1 0.7 beta 0.1 0.7450 0.6792 0.8186

�1 1.5 normal 0.25 1.4543 1.3130 1.5947

y1 0.125 normal 0.25 0.3071 0.1608 0.4560
�a1 0.5 uniform 0.2887 0.9053 0.8751 0.9312
�g1 0.5 uniform 0.2887 0.8720 0.8506 0.8971
�r1 0.5 uniform 0.2887 0.8446 0.8337 0.8557
!2 0.5 uniform 0.2887 0.6439 0.5423 0.7338
�p2 0.6 beta 0.1 0.7236 0.7009 0.7532
�w2 0.7 beta 0.1 0.7502 0.6951 0.8098

�2 1.5 normal 0.25 1.3126 1.2325 1.4013

y2 0.125 normal 0.25 0.1781 0.0936 0.2500
�a2 0.5 uniform 0.2887 0.9097 0.8875 0.9297
�g2 0.5 uniform 0.2887 0.8905 0.8680 0.9137
�r2 0.5 uniform 0.2887 0.7693 0.7601 0.7782
!3 0.5 uniform 0.2887 0.6278 0.5224 0.7343
�p3 0.6 beta 0.1 0.6232 0.5985 0.6522
�w3 0.7 beta 0.1 0.6823 0.5684 0.7689

�3 1.5 normal 0.25 1.4281 1.3261 1.5156

y3 0.125 normal 0.25 0.1888 0.1198 0.2606
�a3 0.5 uniform 0.2887 0.8969 0.8713 0.9176
�g3 0.5 uniform 0.2887 0.7749 0.7436 0.8072
�r3 0.5 uniform 0.2887 0.7749 0.7686 0.7801

Table 2a: Estimation results for the model parameters in a panel approach
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param. prior mean prior prior stdev post.mean 95% HDR
�a1 0.5 uniform 0.2887 0.0038 0.0029 0.0048
�g1 0.5 uniform 0.2887 0.0078 0.0052 0.0105
�m1 0.5 uniform 0.2887 0.0016 0.0013 0.0021
��1 0.5 uniform 0.2887 0.0488 0.0470 0.2339
�a2 0.5 uniform 0.2887 0.0038 0.0028 0.0047
�g2 0.5 uniform 0.2887 0.0149 0.0126 0.0172
�m2 0.5 uniform 0.2887 0.0020 0.0017 0.0022
��2 0.5 uniform 0.2887 0.0598 0.0408 0.0823
�a3 0.5 uniform 0.2887 0.0042 0.0032 0.0051
�g3 0.5 uniform 0.2887 0.0165 0.0147 0.0184
�m3 0.5 uniform 0.2887 0.0027 0.0023 0.0031
��3 0.5 uniform 0.2887 0.0529 0.0396 0.0643

Table 2b: Estimation results for the shocks variance in a panel approach

What we can observe from the estimation results in table 2a and
2b, that we gain more precision about some parameters. First, for the
restricted parameters to be identical across countries �; 
 and �, the
95% HDR are shorter than in the estimation for the basic model. But
also, some other non-restricted parameters become more precise than
in the basic model results, like the Calvo parameter of prices rigidity
�p for all the countries, the parameter associated to the output gap in
the monetary rule 
y and the autoregressive parameters �a, �g and �r.
Even if these parameters are not restricted across countries, we could
gain more accuracy about these parameters from the interaction between
parameters in a DSGE model.
Looking on the MCMC draws diagram, we see some di¤erences be-

tween total draws of three chains of Markov and the Within of the
MCMC draws. This means the presence of more than one mode of
the posterior distribution for some parameters. After looking at the
posteriors shape, in appendix 6.2, we observe that the Calvo rigidity
parameters and the indexation degree parameters have more than one
mode. However, these di¤erences are small for most of the parameters
or converge to the same values as the Within of the draws. Even if the
posterior distribution has several modes, they are closed to eachother.
As a result, pooling the model for three countries increases the precision
about parameters.
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4.4 Estimation of the model in a panel approach
with heterogeneity

4.4.1 Shocks heterogeneity across countries

In this case we assume a shocks heterogeneity in autoregressive para-
meters � and in rigidity parameters of the DGP across countries. The
heterogeneity across countries is also represented by reducing the com-
mon shocks weight in the total shocks. The simulated data in this case
show more heterogeneity than the simulated data section 4.3. The pa-
rameters values used in simulation are:

Identical parameters values:
� 
 �
0.7 1.6 0.18

Country 1:
�p1 �w1 !1 
y1 
�1
0.66 0.75 0.7 0.27 1.4

�a1 �g1 �r1 �la1 �lm1 �lg1 �l�1
0.9 0.9 0.82 0.0066 0.007 0.03 0.12

Country 2:
�p2 �w2 !2 
y2 
�2
0.72 0.75 0.65 0.3 1.3

�a2 �g2 �r2 �la2 �lm2 �lg2 �l�2
0.9 0.9 0.75 0.006 0.007 0.02 0.1

Country 3:
�p3 �w3 !3 
y3 
�3
0.6 0.7 0.8 0.3 1.3

�a3 �g3 �r3 �la3 �lm3 �lg3 �l�3
0.82 0.82 0.75 0.006 0.0045 0.025 0.06

Common shocks standard deviation:
�ca �cm �cg �c�
0.003 0.0005 0.01 0.06

By assuming the same assumptions on priors and identical parame-
ters as in last case, we obtain the following estimation results:
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param. prior mean prior prior stdev post.mean 95% HDR
� 0.5 uniform 0.2887 0.4755 0.1948 0.7726

 1 normal 0.5 1.2928 0.4954 2.0137
� 0.4 gamma 0.2000 0.1698 0.1580 0.1847
!1 0.5 uniform 0.2887 0.6848 0.4711 0.8974
�p1 0.6 beta 0.1 0.6347 0.5562 0.7291
�w1 0.7 beta 0.1 0.7590 0.6834 0.8464

�1 1.5 normal 0.25 1.5891 1.3826 1.8117

y1 0.125 normal 0.25 0.3325 0.1244 0.5416
�a1 0.5 uniform 0.2887 0.8782 0.8117 0.9482
�g1 0.5 uniform 0.2887 0.8659 0.8367 0.8948
�r1 0.5 uniform 0.2887 0.8404 0.8235 0.8582
!2 0.5 uniform 0.2887 0.6486 0.5139 0.7995
�p2 0.6 beta 0.1 0.7151 0.6617 0.7662
�w2 0.7 beta 0.1 0.7078 0.6132 0.8019

�2 1.5 normal 0.25 1.3338 1.2305 1.4420

y2 0.125 normal 0.25 0.3036 0.1437 0.4519
�a2 0.5 uniform 0.2887 0.8827 0.8275 0.9495
�g2 0.5 uniform 0.2887 0.8817 0.8551 0.9114
�r2 0.5 uniform 0.2887 0.7665 0.7454 0.7862
!3 0.5 uniform 0.2887 0.6187 0.3978 0.8696
�p3 0.6 beta 0.1 0.6351 0.5697 0.7036
�w3 0.7 beta 0.1 0.6286 0.5168 0.7402

�3 1.5 normal 0.25 1.3110 1.1732 1.4413

y3 0.125 normal 0.25 0.2469 0.0634 0.4188
�a3 0.5 uniform 0.2887 0.6646 0.5324 0.7948
�g3 0.5 uniform 0.2887 0.7820 0.7372 0.8302
�r3 0.5 uniform 0.2887 0.7595 0.7428 0.7745

Table 3a: Estimation results for the model parameters with shocks
heterogeneity
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param. prior mean prior prior stdev post.mean 95% HDR
�a1 0.5 uniform 0.2887 0.0078 0.0035 0.0140
�g1 0.5 uniform 0.2887 0.0287 0.0248 0.0324
�m1 0.5 uniform 0.2887 0.0067 0.0059 0.0074
��1 0.5 uniform 0.2887 0.1070 0.0336 0.1902
�a2 0.5 uniform 0.2887 0.0071 0.0041 0.0102
�g2 0.5 uniform 0.2887 0.0220 0.0190 0.0249
�m2 0.5 uniform 0.2887 0.0076 0.0067 0.0086
��2 0.5 uniform 0.2887 0.1100 0.0552 0.1659
�a3 0.5 uniform 0.2887 0.0204 0.0069 0.0345
�g3 0.5 uniform 0.2887 0.0247 0.0209 0.0282
�m3 0.5 uniform 0.2887 0.0051 0.0046 0.0057
��3 0.5 uniform 0.2887 0.1660 0.0983 0.2365

Table 3b: Estimation results for the shocks variance with shocks
heterogeneity

What we notice from this estimation is that we loose some of the
gain in precision obtained by pooling the data for three countries. The
loose is notably in the parameter of indexation degrees � and !. The
policy parameters 
� and 
y have more risk using this DGP than the
DGP of more homogenous data. However, we can rather conclude that
the estimation still more precise than the basic model with one country.
We can also notice that the posterior distributions, in appendix 6.3, of
the policy parameters are multi-mode. This fact is also obvious in the
MCMC diagram of the Metropolis-Hastings draws. What we can con-
clude from these results that pooling the data can bring more precision
if the data exhibit su¢ cient homogeneity in their dynamics. However, if
this homogeneity does not exist, the posteriors will be less informative.

4.4.2 Hetrogeneity of monetary policy with a misspeci�cation
of identical parameters

The purpose of this case demonstration is to examine the consequences
of a misspeci�cation assuming identical parameters of monetary policy,
while the data are simulated by the model using heterogenous monetary
rule parameters. We use exactly the parameters used in the last case of
shocks heterogeneity, with an additional source of heterogeneity using
di¤erent monetary policy rules. The monetary policy parameters have
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the following values:

Parameter 
� 
y
Country 1 1.4 0.27
Country 2 1.3 0.25
Country 3 1.7 0.4

The estimation results are the following:

param. prior mean prior prior stdev post.mean 95% HDR
� 0.5 uniform 0.2887 0.4308 0.0323 0.7675

 1 normal 0.5 1.1073 0.4671 1.7292
� 0.4 gamma 0.2000 0.1922 0.1714 0.2118

� 1.5 normal 0.25 1.5179 1.3975 1.7215

y 0.125 normal 0.25 0.4091 0.2118 0.5809
!1 0.5 uniform 0.2887 0.6744 0.5176 0.8218
�p1 0.6 beta 0.1 0.6810 0.6051 0.7555
�w1 0.7 beta 0.1 0.7074 0.6060 0.8009
�a1 0.5 uniform 0.2887 0.8901 0.8402 0.9400
�g1 0.5 uniform 0.2887 0.8842 0.8619 0.9068
�r1 0.5 uniform 0.2887 0.8213 0.7981 0.8441
!2 0.5 uniform 0.2887 0.7287 0.5786 0.8806
�p2 0.6 beta 0.1 0.7322 0.6591 0.8131
�w2 0.7 beta 0.1 0.6482 0.5093 0.7847
�a2 0.5 uniform 0.2887 0.8219 0.7688 0.8762
�g2 0.5 uniform 0.2887 0.8569 0.8273 0.8863
�r2 0.5 uniform 0.2887 0.7522 0.7213 0.7814
!3 0.5 uniform 0.2887 0.6990 0.5404 0.8712
�p3 0.6 beta 0.1 0.7233 0.6559 0.7927
�w3 0.7 beta 0.1 0.6671 0.5432 0.7834
�a3 0.5 uniform 0.2887 0.8596 0.7835 0.9342
�g3 0.5 uniform 0.2887 0.8531 0.8243 0.8820
�r3 0.5 uniform 0.2887 0.7323 0.7008 0.7644

Table 4a: Estimation results for the model parameters with misspeci�cation
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param. prior mean prior prior stdev post.mean 95% HDR
�a1 0.5 uniform 0.2887 0.0075 0.0036 0.0115
�g1 0.5 uniform 0.2887 0.0315 0.0275 0.0353
�m1 0.5 uniform 0.2887 0.0063 0.0055 0.0070
��1 0.5 uniform 0.2887 0.1312 0.0503 0.2161
�a2 0.5 uniform 0.2887 0.0081 0.0037 0.0121
�g2 0.5 uniform 0.2887 0.0230 0.0201 0.0260
�m2 0.5 uniform 0.2887 0.0073 0.0064 0.0082
��2 0.5 uniform 0.2887 0.1212 0.0138 0.2102
�a3 0.5 uniform 0.2887 0.0111 0.0034 0.0207
�g3 0.5 uniform 0.2887 0.0275 0.0235 0.0310
�m3 0.5 uniform 0.2887 0.0039 0.0034 0.0044
��3 0.5 uniform 0.2887 0.4033 0.2045 0.6194

Table 4b: Estimation results for the shocks variance with misspeci�cation

The restricction on policy parameters imply an uncertainty increase
for some parameters. The uncertainty about parameters measured by
the size of the HDR is larger for the indexation degree of wages (�).
The uncertainty increases also for the policy parameters with respect
to the policy parameters of country 2 and 3. This is due to the fact
that prior�s mean is closer to the true value of the policy parameters in
country 1 than in countries 2 and 3. We can also notice the presence of
more than one mode of the posterior distributions or �at posteriors for
the indexation degree parameters.
To conclude this point, a misspeci�ed restriction on parameters of

identical parameters across countries, while they are really di¤erent in-
creases the uncertainty, according the prior�s mean.

4.5 Pooling e¤ect of short data
What we want to show here is the gain of pooling data small samples.
Since we are using bayesian estimation, the priors weight is more impor-
tant than in the previous cases. To illustrate this point we will compare
between the estimation of the basic model over a short simulated data
sample (40 periods) for one country, and the estimation over the pooled
data for three countries9. This will clarify the gain from pooling the
data in a panel dimension, with short data samples.

9We took the �rst 40 observations of the same simulated data of the previous
cases.
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4.5.1 The basic model estimation with short data

In this case, we estimated the same model as in section 4.2 over a shorter
data sample (40 periods). For a short sample, the contribution of priors
in posteriors determination is more important in this estimation than
in that obtained in section 4.2. This is actually the contribution of
Bayesian econometrics in short data samples problems. For this reason
any error of speci�cation of priors will a¤ect the results of the posterior
distributions. The results obtained by the estimation of the basic model
over 40 periods are the following:

param. prior mean prior prior stdev post.mean 95% HDR
� 0.5 uniform 0.2887 0.0066 0.0000 0.159
! 0.5 uniform 0.2887 0.6086 0.3162 0.9539
�p 0.6 beta 0.1 0.5789 0.4478 0.7073
�w 0.7 beta 0.1 0.7507 0.6282 0.8672

 1 normal 0.5 1.0897 0.3668 1.8271

� 1.5 normal 0.25 1.5972 1.3775 1.8317

y 0.125 normal 0.25 0.4441 0.2297 0.6829
� 0.4 gamma 0.2000 0.1565 0.1332 0.1827
�a 0.5 uniform 0.2887 0.9536 0.9273 0.9847
�g 0.5 uniform 0.2887 0.8498 0.8027 0.8968
�r 0.5 uniform 0.2887 0.8456 0.8218 0.8701

Table 5a: Estimation results for the model parameters for short data
samples

param. prior mean prior prior stdev post.mean 95% HDR
��a 0.5 uniform 0.2887 0.0071 0.0048 0.0094
��g 0.5 uniform 0.2887 0.0436 0.0357 0.0513
�"m 0.5 uniform 0.2887 0.0014 0.0011 0.0017
�� 0.5 uniform 0.2887 0.1360 0.0413 0.2254

Table 5b: Estimation results for the variance shocks for short data samples

The comparison between the posteriors of the basic model estimation
for 100 periods and for 40 periods (in appendix 6.1 and 6.5,respectively)
can tell us how much the priors contribute in the posteriors determina-
tion. For the shorter data sample, the posteriors shapes are closed to
the priors shapes. Specially, the parameters of nominal rigidity �p and
�w and the parameter of the elasticity of work in the utility function
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, they have closed shapes to the prior distributions. Since the priors
of the indexation degree parameters (� and !) are non-informative, the
posterior of ! is �at with a 95% HDR over a big part of the prior�s re-
gion. However, the posterior of � has a smaller standard deviation, but
the mean and the HDR of the posterior are too far from the parame-
ter�s value used in the data generating process. The parameters of the
auto-regressive process, who have non-informative priors, have posteri-
ors with many modes. This is also due to the uniform prior distribution
speci�ed to these parameters.

4.5.2 Estimation of the model in a panel approach with short

data samples

For this case, we want to show the e¤ect of pooling the data on the
posterior distributions. The objective here is to illustrate the gain that
can be obtained by pooling the data of some countries which have some
similar characteristics. We will use the data simulated by the panel-
model of section 4.3, but only for 40 periods.
The estimation results are the following:
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param. prior mean prior prior stdev post.mean 95% HDR
� 0.5 uniform 0.2887 0.6133 0.2848 0.9558

 1 normal 0.5 1.1769 0.4785 1.8686
� 0.4 gamma 0.2000 0.1580 0.1411 0.1782
!1 0.5 uniform 0.2887 0.8488 0.7083 0.9999
�p1 0.6 beta 0.1 0.6402 0.6026 0.6805
�w1 0.7 beta 0.1 0.7252 0.6386 0.8141

�1 1.5 normal 0.25 1.4604 1.2757 1.6324

y1 0.125 normal 0.25 0.2655 0.0734 0.4398
�a1 0.5 uniform 0.2887 0.875 0.8392 0.9386
�g1 0.5 uniform 0.2887 0.8578 0.8181 0.9039
�r1 0.5 uniform 0.2887 0.8444 0.8169 0.8685
!2 0.5 uniform 0.2887 0.6762 0.5314 0.8162
�p2 0.6 beta 0.1 0.7151 0.6849 0.7446
�w2 0.7 beta 0.1 0.7066 0.6237 0.7928

�2 1.5 normal 0.25 1.3799 1.2403 1.5145

y2 0.125 normal 0.25 0.1548 -0.0161 0.3268
�a2 0.5 uniform 0.2887 0.8665 0.8162 0.9155
�g2 0.5 uniform 0.2887 0.8669 0.8250 0.9068
�r2 0.5 uniform 0.2887 0.7704 0.7337 0.8022
!3 0.5 uniform 0.2887 0.6378 0.4261 0.8342
�p3 0.6 beta 0.1 0.6045 0.5581 0.6564
�w3 0.7 beta 0.1 0.6670 0.5413 0.7826

�3 1.5 normal 0.25 1.6217 1.3660 1.8402

y3 0.125 normal 0.25 0.2664 0.0262 0.5216
�a3 0.5 uniform 0.2887 0.8687 0.8073 0.9365
�g3 0.5 uniform 0.2887 0.7090 0.6140 0.8082
�r3 0.5 uniform 0.2887 0.7814 0.7473 0.8137

Table 6a: Estimation results for the model parameters for short data
samples in a panel approach
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param. prior mean prior prior stdev post.mean 95% HDR
�a1 0.5 uniform 0.2887 0.0020 0.0000 0.0034
�g1 0.5 uniform 0.2887 0.0070 0.0025 0.0114
�m1 0.5 uniform 0.2887 0.0013 0.0005 0.0021
��1 0.5 uniform 0.2887 0.0452 0.0159 0.0711
�a2 0.5 uniform 0.2887 0.0047 0.0031 0.0063
�g2 0.5 uniform 0.2887 0.0090 0.0031 0.0063
�m2 0.5 uniform 0.2887 0.0017 0.0012 0.0023
��2 0.5 uniform 0.2887 0.0584 0.0365 0.0819
�a3 0.5 uniform 0.2887 0.0055 0.0037 0.0074
�g3 0.5 uniform 0.2887 0.0181 0.0145 0.0219
�m3 0.5 uniform 0.2887 0.0026 0.0020 0.0031
��3 0.5 uniform 0.2887 0.0512 0.0247 0.0757

Table 6b: Estimation results for the shocks variance for short data samples
in a panel approach

These results show how pooling the data for some countries may
update the researcher�s belief on parameters distribution. We notice
through the comparison of posteriors relative to priors in appendix 6.5
and appendix 6.6, that the posteriors obtained by the estimation over
the pooled data are more informative. The posteriors have also less inac-
curacy using the panel approach than the basic model estimation for one
country. The results show that the distribution of � includes it�s value
used in data simulation. The distribution of ! is less �at and covers a
smaller region than in one-country estimation, that means less inaccu-
racy. The posterior distributions of the rigidity parameters are also more
di¤erent from priors than those of one-country estimation. Similarly, the
posteriors of the policy parameters are also more informative using the
panel approach. Concerning the autoregressive process parameters, the
posteriors in a one-country estimation are multi-mode, which is due the
non-informative priors speci�cation. However, using the panel approach
most of the autoregressive parameters posteriors have one mode.
These results give an interesting conclusion, for countries who have

short data samples available, the bayesian estimation in a panel approach
can give a better update about parameters distributions than separate
estimation. This result is constrained by the presence of some likely
dynamics across countries. A heterogeneity across countries could also
increase the risk of parameters.

30



5 Conclusion

The Bayesian analysis in economics has known many recent develop-
ments. The contribution of this paper is not only to explain the Bayesian
methodology of estimation, but also to apply this analysis in a panel ap-
proach. We presented in the core of this paper some illustrations for the
panel approach. We presented how the panel approach can update the
researcher�s belief about parameters possible values assuming the same
prior distributions across countries.
The main results of this paper state that accuracy about parameters

and about policy choice depends on the form of the prior probability
distribution in a Bayesian analysis. Non-informative priors speci�cation
for some parameters imply some �at posteriors or highly risk posteriors.
In the context of short data samples, the prior choice has a big role in the
posterior determination, since the likelihood distribution is not enough
informative to update the parameters distibution.
However, under similarity of some dynamic characteristics among a

panel of countries, estimating a DSGE model in a panel approach using
the pooled data can reduce the importance of the prior distribution. We
have seen that the posteriors are more informative in a panel dimension
estimation than in one-country dimension. This is due to the use of
more available information from other countries data.
In general, passing to a panel dimension reduces the inaccuracy of

parameters. It reduces also the bayesian risk of the policy parameters
and thus reduces the risk of the policy choice. This result is available if
the data have some similar dynamics across countries. Otherwise, if the
dynamic characteristics across countries do not satisfy some homogeneity
criteria, the posteriors may be less informative since posteriors may be
�at or have many modes.
If some parameters are supposed to be identical in the estimation

process, these parameters can absorb information from other countries
data, if the parameters are really identical. However, if this restriction
of identical parameters across countries is a speci�cation error, i.e: pa-
rameters have a large heterogeneity across countries, then the posteriors
obtained would be either less informative with �at distribution or with
many modes.
To conclude this paper, we found that estimating a DSGE model

using Bayesian analysis for a panel of countries can be more informa-
tive about parameters distribution than one-country dimension. This
speci�cation must be done with a big attention about dynamic char-
acteristics similarity. Any error of speci�cation of identical parameters
restriction may drive to a non-informative posterior distributions and to
some identi�cation problems. We showed in section 4.4.2 how a speci�-
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cation of a common monetary policy, while the data are simulated with
models containing di¤erent monetary policies, increases the uncertainty
of the monetary policy parameters choice and also the uncertainty of
other parameters.
In a panel approach, researchers are used to deal with random or

�xed speci�c e¤ects in the models, supposing that parameters are iden-
tical across countries. This point is interesting to test using the Bayesian
analysis. However, in DSGE models, the assumption of identical para-
meters may be very restrictive and may introduce a speci�cation error.
This point will be left for further research in Bayesian analysis.
This paper is a methodology illustration in a panel approach. It gave

a more clear vision on the Bayesian analysis under some speci�cations.
For future research, it will be interesting to study the Bayesian estima-
tion of DSGE models on real data of a panel of countries in the same
region. Some Central Eastern Europe countries, since they have short
data problems, may be interesting to study.
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6 Appendix

6.1 The basic model estimation results

MCMC univariate diagram of the Metropolis-Hastings draws:
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MCMC multivariate diagram of the Metropolis-Hastings draws
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6.2 Estimation results of the model in a Panel ap-
proach

MCMC univariate diagram of the Metropolis-Hastings draws:
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6.3 Estimation results of the model in a panel ap-
proach with heterogeneity

MCMC univariate diagram of the Metropolis-Hastings draws:
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6.4 Estimation results of the model in a panel ap-
proach with heterogeneity of the monetary pol-
icy with a misspeci�cation of restriction

MCMC univariate diagram of the Metropolis-Hastings draws:
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Priors (light lines) and posteriors (dark lines):
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6.5 Estimation results of the basic model for one
country with short data sample

Priors (light lines) and posteriors (dark lines):
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6.6 Estimation results of the model in a panel ap-
proach with short data samples

Priors (light lines) and posteriors (dark lines):
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