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Abstract

In this paper, we study the effects of collaterals on business cycles
and growth in monetary economies with credit market imperfections. We
consider an endogenous growth model with a partial cash-in-advance con-
straint and inelastic labor supply. We assume that the share of consump-
tion purchases paid with credit depends positively on the collateral avail-
able to the agent. In this framework, we find that money is no longer su-
perneutral in the long run and short-run fluctuations, either deterministic
or stochastic, can arise. On the one side, the monetary policy can enhance
the growth rate and welfare, on the other side, reduce the macroeconomic
volatility. Second, the sensitivity to collaterals alters the effectiveness of
monetary policy in terms of welfare and stability. Finally, indeterminacy
becomes more likely as long as the credit market is less sensitive to col-
laterals.
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1 Introduction
The US subprime crisis has become the focus of economists’ attention in the
last few years because of its dramatic effects on the global economy. As well
known, subprime loans are offered to consumers with a poor credit history
or insufficient collateral at high interest rates. Whenever the subprime credit
market has expanded rapidly, the rate of defaults has increased, resulting in
sharp decline in house prices and the crisis happened.
In the view of the subprime crisis, we address the stability issue, stressing

the role of collaterals, in a monetary economy with credit market imperfections.
The role of collaterals is usually introduced through a credit constraint imposed
on agents; an individual can borrow as long as the repayment does not exceed
the market value of his collateral (Kiyotaki and Moore (1997), Kiyotaki (1998),
and Cordoba and Ripoll (2003)). We depart from these models by considering
a framework in which the collateral is introduced through a partial cash-in-
advance constraint in the spirit of Grandmont and Younès (1972). Namely, we
assume that agents pay a part of their consumption purchases in cash while the
remainder is financed with credit. Further, the amount of credit depends on the
collateral available to the agent.
Within this framework, our objective is to provide the conditions that make

the equilibrium indeterminate and allow for self-fulfilling revisions in expecta-
tions to be consistent with rational expectations.
In this line of research, several papers showed that a partial cash-in-advance

constraint promotes the occurrence of multiple equilibria. In one-sector mon-
etary models, Carlstrom and Fuerst (2003) considered partial cash-in-advance
with transaction cost. They assume that the fraction of consumption purchases
paid cash is endogenously chosen by agents. Subsequently, this fraction is as-
sumed to be constant in Bosi and Magris (2003). In the latter, a small departure
from the traditional Ramsey-Cass-Koopmans model (that is, the share of con-
sumption purchases requiring CIA is below certain threshold which is very small)
is sufficient to make the equilibrium indeterminate, for any value of the elas-
ticity of intertemporal substitution. In addition, when the share is above this
threshold, indeterminacy arises only when the elasticity of intertemporal substi-
tution is sufficiently low. However, the inclusion of investment in the liquidity
constraint modifies the range of parameters values giving rise to indeterminacy
(Bosi and Dufourt, 2008).1

Moreover, we are close to cash-credit models pioneered by Lucas and Stokey
(1987). Following this literature, we refer to goods purchased with money as
"cash goods" and goods purchased with credit as "credit goods".
In precise, this paper is an extension of Bosi and Magris (2003) model. We

assume that the fraction of consumption goods paid with credit (the credit
share) depends positively on the capital-consumption ratio. That is, if the
value of agent’s capital is high relative to his current consumption, he can easily

1Abel (1985) showed that, whenever both the consumption and investment expenditures
are subject to the CIA constraint, the equilibrium is always locally unique.
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support the repayments of the credit. So, this agent has incentive to pay more
with credit and less in cash and the credit share increases. We show that
this specification has important implications on the effect of money on growth,
the choice of an optimal monetary policy that maximizes the welfare and the
stability properties of the economic system.
First, money is not neutral in our model. An increase in the monetary

growth lowers the return of money, leading agents to substitute cash by capital.
Hence, higher rate of money growth is associated with a larger capital stock and
a higher growth rate. In addition, agents are willing to pay more with credit
due to the increase in the capital-consumption ratio.
Our first result says that the choice for the means of payment depends on

the opportunity cost of holding money. Such a result is similar to the results
obtained previously. Lucas and Stokey (1987) showed that an increase in the
nominal interest rate leads agents to substitute against cash goods. After that,
for an economy with capital formation and credit-goods production, Aiyagari
and Eckstein (1995) and Aiyagari, Braun and Eckstein (1998) showed that the
nominal interest rate determines the price of credit good relative to the price
of cash good. Subsequently, in Ireland (1994) and Hromcova (2003), agents can
use the costly financial intermediary as an alternative to cash. These papers
showed that, as the economy grows, it is cheaper to buy via intermediaries and
so money is relatively less used.
Second, when the credit sensitivity to collaterals increases, the positive im-

pact of monetary policy on the growth rate becomes stronger only when the
elasticity of intertemporal substitution in consumption is sufficiently weak. In
this case, under a high sensitivity to collaterals, agents can avoid the opportu-
nity cost of holding money by accumulating more capital and then paying their
consumption with credit.
Third, when the sensitivity to collateral is low, indeterminacy arises for low

values of the elasticity of intertemporal substitution in consumption. This case
appears to be consistent with the results found in Bosi and Magris (2003).
Finally, indeterminacy becomes more and more likely to emerge as long as

the sensitivity of credit market to collaterals is lower: agents are willing to pay
more with credit to avoid the opportunity cost of holding money and, thus, the
share of cash good decreases. In Bosi and Magris (2003), the indeterminacy
region widens continuously as the share of consumption purchases paid cash
lowers.
This paper is organised as follows. In section 2, we present the model and

derive the intertemporal equilibrium. Section 3 is devoted to the analysis of the
steady state and the comparative statics. Section 4 studies the local stability
and the occurrence of local bifurcations. In section 5, we provide a numerical
example. Finally, section 6 concludes.
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2 The model
This paper considers an endogenous growth model with partial cash-in-advance
constraint and inelastic labor supply. The economy is populated by a large
number of identical infinitely-lived agents acting under perfect foresight. There
is also a representative firm. The main feature of this model is that consumers
are allowed to make their purchases of consumption goods by using money or
credit. Therefore, only a part of the consumption goods is subject to the cash-
in-advance requirement. This framework is an extension of Bosi and Magris
(2003) model. While they assume that a constant share of the consumption
goods are paid in cash previously accumulated, we assume that this share is
endogenously determined.

2.1 Consumers

The lifetime utility function of a representative agent is given by

∞X
t=0

βtu (ct) (1)

where β ∈ (0, 1) stands for the discount factor, ct is the consumption demand
and the instantaneous utility function u verifies the following basic assumption.

Assumption 1. The single-period utility function u (c) is twice continuously
differentiable for all positive values of c and satisfies, for any c > 0, u0 (c) > 0,
u00 (c) < 0, limc→0 u

0 (c) = +∞ and limc→+∞ u0 (c) = 0.

In each period t, the household’s portfolio is constituted by the stock of
capital kt and the amount of money balances Mt. S/he is subject to a usual
budget constraint

pt (ct + kt+1 −∆kt) +Mt+1 ≤Mt + ptrtkt + ptwtlt + τ t (2)

for t = 0, 1, . . ., where ∆ ≡ 1 − δ ∈ [0, 1] and δ is the depreciation rate of
capital, τ t ≡Mt+1 −Mt are nominal lump-sum transfers "helicoptered" by the
monetary authority, r is the real interest rate on capital and w is the real wage.
For simplicity, labor supply is assumed to be inelastic, namely, lt ≡ 1 for every
t ≥ 0.
In addition, the representative household faces a partial cash-in-advance

constraint.
In the spirit of Grandmont and Younès (1972), we assume that a share of

purchases is paid cash, while the rest on credit. In a way, we are also close to
Lucas and Stokey (1987), an economy with a cash and a credit good.
We define credit share the fraction of consumption good paid on credit. We

further assume that the amount of disposable credit depends on the collaterals
the household is endowed with. More precisely, the individual’s capital stock
relative to her/his consumption habits matters in order to open a credit line.
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Formally, the credit share is given by

γ

µ
k

c

¶
≡ credit good
credit good + cash good

An augmented version of the partial cash-in-advance considered by Bosi and
Magris (2003) and Carlstrom and Fuerst (2003), is now provided in order to
take into account the role of collaterals:

[1− γ (kt/ct)] ptct ≤Mt (3)

for t = 0, 1, . . .
Introducing an endogenous credit share in a model of capital accumulation

is the added value of our paper. We notice that the velocity of money becomes
endogenous as well and, therefore, variable: v (k/c) ≡ [1− γ (k/c)]−1. In this
sense, our formulation overcomes one of the main criticisms addressed to the
cash-in-advance models: the implausibility of a constant velocity of money.2

The credit function verifies some reasonable restrictions.

Assumption 2. The credit share γ (k/c) is twice continuously differentiable
and satisfies γ (k/c) ∈ [0, 1], γ0 (k/c) ≥ 0, γ00 (k/c) ≤ 0 for every k/c ≥ 0.

In Assumption 2, γ ∈ [0, 1] simply means that credit and money velocity
are non-negative; γ0 ≥ 0 captures the role of collaterals relative to consump-
tion habits: the higher the ratio, the larger the credit; and γ00 ≤ 0 reconciles
smoothness and the existence of an upper bound (γ ≤ 1).
The representative agent maximizes (1) subject to (2) and (3), that is the

infinite-horizon Lagrangian function

∞X
t=0

£
βtu (ct) + λtBt + μtCt

¤
(4)

with respect to the consumption path ((ct)
∞
t=0) and the saving path (capital and

balances: (kt,Mt)
∞
t=1), where

Bt ≡ Mt + ptrtkt + ptwtlt + τ t − pt (ct + kt+1 −∆kt)−Mt+1

Ct ≡ Mt − [1− γ (kt/ct)] ptct

are non-negative implicit constraints.
Deriving (4) with respect the demand for balances and capital gives the

portfolio arbitrage, while deriving with respect to the demand for capital and
consumption the intertemporal arbitrage, the consumption smoothing over time.

2MIU models are immunized against this criticism: the functional equivalence highlighted
by Feenstra (1986) between CIA and MIU, no longer holds with a Cash-When-I’m-Done
(CWID) timing or a CIA timing and strictly positive elasticity of substitution between con-
sumption and real balances (see Carlstrom and Fuerst, 2003).
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Deriving (4) with respect to the costate variables λt, μt, we recover the con-
straints, now binding.
More precisely, after eliminating the multipliers, we get a sequence of Euler

equations

u0 (ct)

u0 (ct+1)
=

β

πt+1

It+1 − γ0 (xt+1)πt+1
1− γ0 (xt)πt

1− γ0 (xt)πt + (It − 1) [1− γ (xt) + γ0 (xt)xt]

1− γ0 (xt+1)πt+1 + (It+1 − 1) [1− γ (xt+1) + γ0 (xt+1)xt+1]

(5)

for t = 0, 1, . . ., where xt ≡ kt/ct is the key argument of the credit function,
while πt+1 ≡ pt+1/pt and It ≡ (∆+ rt)πt denote the gross rates of inflation
and nominal interest, respectively.
A positive marginal utility implies binding budget constraints: Bt = 0 for

t = 0, 1, . . ., while the augmented CIA constraints are also binding (Ct = 0
for t = 0, 1, . . .) under a sequence of strictly positive interest rates: It > 1,
t = 0, 1, . . .
We observe that positive interest rates are necessary to the existence of a

monetary equilibrium. Under no uncertainty, when balances are dominated by
a capital asset, the opportunity cost of holding money induces agents to keep
in the pockets the minimal amount of money for transaction purposes. As a
consequence, the liquidity constraint becomes binding.
Eventually, a rational household takes into account the initial endowments

M0, k0 ≥ 0 and the transversality condition:
lim

t→+∞
βtu0 (ct) (kt+1 +Mt+1/pt) = 0 (6)

2.2 Firms

On the production side, there is a continuum of identical firms participating to
competitive markets. The representative firm rents capital and labor in order
to produce the good under constant (private) returns to scale. External effects
of capital intensity spill over the other firms. Technology is rationalized by a
Romer-type (1986) production function.

Assumption 3. F (K,L) ≡ Ak̄1−sKsL1−s, s ∈ (0, 1)

The TFP (Ak̄1−s) is affected by productive externalities of average capital
intensity k̄.
Each producer is price-taker and determines the demand for inputs to max-

imize the profit.
The assumption of a representative household and a representative firm im-

plies at equilibrium k̄ = k = K/L and first order conditions for profit maxi-
mization reduce to

rt = sA (7)

wt = (1− s)Akt (8)
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We notice that the equilibrium interest rate is constant over time as usual
in the endogenous growth literature à la Romer.

2.3 Monetary authority

Money supply follows a simple rule. Lump-sum money is "helicoptered" to
consumers:

τ t =Ms
t+1 −Ms

t (9)

and the rate of money growth is kept constant over time by the monetary
authority: Ms

t+1 = μMs
t for t = 0, 1, . . .

2.4 General equilibrium

The economy under study is a system of three markets: money, labor and goods.
The money market clears when the demand for real balances mt ≡ Mt/pt,

supported by the liquidity constraint, equals the amount supplied by the mon-
etary authority:

mt = [1− γ (xt)] ct =Ms
t /pt (10)

The dynamic version of (10):

μ = πt+1
ct+1
ct

1− γ (xt+1)

1− γ (xt)
(11)

highlights the decomposition of the nominal growth in inflation and real growth.
In the labor market, the demand lt is determined by profit maximization

(8), while, for simplicity, the supply is supposed to be inelastic: lt = 1.
By the Walras’ law the good market clears too. The equilibrium is obtained,

by replacing (9), (7) and (8) in the representative agent’s budget constraint (2).

ct + kt+1 −∆kt = rtkt + wtlt = Akt

Dividing by kt both the sides, we obtain the growth rate:

gt+1 ≡
kt+1
kt

= ∆+A− 1

xt
(12)

In order to compute the intertemporal equilibrium, let us introduce an ex-
plicit utility function, very usual in the endogenous growth literature.

Assumption 4. The instantaneous utility function is given by:

u (c) ≡ ln c iff σ = 1

u (c) ≡ c1−1/σ/ (1− 1/σ) iff σ 6= 1 (13)

where σ > 0 is the constant elasticity of intertemporal substitution.3

Replacing (12) in (5) and (11), we obtain the dynamic system of a CIA
economy with collaterals. Formally:

3The CES preferences rationalized by (13), satisfy the Assumption 1.
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Definition 1 An intertemporal equilibrium with perfect foresight is a sequence
(xt, πt)

∞
t=0 that satisfies (i) the initial conditions (M0, k0), (ii) the transitional

dynamics:³
∆+A− 1

xt

´
xt
xt+1

=

µ
β

πt+1

It+1−γ0(xt+1)πt+1
1−γ0(xt)πt

1−γ0(xt)πt+(It−1)[1−γ(xt)+γ0(xt)xt]
1−γ0(xt+1)πt+1+(It+1−1)[1−γ(xt+1)+γ0(xt+1)xt+1]

¶σ
³
∆+A− 1

xt

´
xt
xt+1

= μ
πt+1

1−γ(xt)
1−γ(xt+1)

(14)
for t = 0, 1, . . ., where It = (∆+ r)πt and r = sA, and (iii) the transversality
condition (6).

3 Steady state
Growth is regular at the steady state:4

g ≡ kt+1
kt

=
ct+1
ct

=
mt+1

mt

Dropping the time index in (14) and solving the system gives the stationary
state (x, π). The balanced growth factor is obtained from (12):

g = ∆+A− 1
x

(15)

Replacing

(x, π) =

µ
1

∆+A− g
,
μ

g

¶
in (14) gives the Euler equation of steady state, that is, a sort of modified golden
rule where money is no longer superneutral because of the market imperfection
γ0 > 0:

g =

⎡⎣β g
μ

∆+ r − γ0
³

1
∆+A−g

´
g
μ − γ0

³
1

∆+A−g

´
⎤⎦σ (16)

Introducing the elasticities of credit share is an appropriate way of taking
into account the role of collaterals in the effectiveness of monetary policy. More
precisely, we define the first and second-order elasticities of credit share: ε1 (x) ≡
xγ0 (x) /γ (x) ∈ [0, 1) and ε2 (x) ≡ xγ00 (x) /γ0 (x) < 0. Equation (16) becomes:

g =

"
β
g

μ

∆+ sA− γε1 (∆+A− g)
g
μ − γε1 (∆+A− g)

#σ
(17)

The equilibrium existence requires the term into the brackets to be positive:
γ0 < min {g/μ,∆+ r} or γ0 > max {g/μ,∆+ r}. The existence of a monetary

4 In the long run, an unbalanced growth should violate either the positivity of variables or
the transversality condition. Notice, however, that growth rates may be unbalanced along the
transition path.
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equilibrium requires also I > 1 and, therefore, g/μ = 1/π < ∆+ r. Then, the
positivity of g becomes equivalent to γ0 < 1/π or γ0 > ∆ + r. For simplicity,
we assume the first inequality as sufficient condition in a neighborhood of the
steady state.

Assumption 5. πγ0 (x) < 1 < I.

Eventually, the balanced growth path (mt, kt, ct) = (m0, k0, c0) g
t must sat-

isfy the transversality condition: limt→+∞ βtu0 (ct) (kt+1 + πmt+1) = 0. Sub-
stituting the path and solving the limit, we obtain a parametric restriction:
β < g1/σ−1, or, equivalently:

σ lnβ < (1− σ) ln g (18)

We notice that (18) is verified in the case of a logarithmic utility (σ = 1).

3.1 Comparative statics

Since money is no longer superneutral, we want to understand the mechanism
of monetary policy and the long-run impact on growth and welfare. In the next
section, we will analyze also the short-run effects of the rule on the business
cycles and the sense of a stabilization policy.
Differentiating equation (16) w.r.t. μ and g gives the impact of the monetary

rule on the growth rate:

εgμ ≡
dg

dμ

μ

g
=

µ
1 +

1

σ

1− πγ0

πγ0
− xgε2

I − 1
I − πγ0

¶−1
> 0 (19)

where εgμ is the elasticity of the growth factor with respect to the monetary
policy. This elasticity is positive under Assumption 5.
The higher the monetary growth (μ), the higher the inflation (π) and the

opportunity cost of holding money (I). Savers will keep more capital and less
money in the portfolio. The capital growth rate will increase. In addition,
when the capital/consumption ratio goes up, consumption purchases are more
collateralized, agents are willing to substitute the cash by credit, the credit share
increases and the need for money lowers.
Elasticity (19) can be rewritten as follows:

εgμ =

µ
1 +

1

σ

1− γε1π/x

γε1π/x
− xgε2

I − 1
I − γε1π/x

¶−1
> 0 (20)

and, ceteris paribus, the impact of collaterals on the effectiveness of monetary
policy is captured by the following derivatives:

∂εgμ
∂ε1

> 0 iff σ < − 1

xgε2

1

I − 1

µ
I − γε1π/x

γε1π/x

¶2
∂εgμ
∂ε2

> 0
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The first derivative can be interpreted as follows. Given the second-order
moment (ε2), the higher the sensitivity to collaterals (ε1), the larger the impact
of money growth on the growth rate (εgμ), when households find hard smoothing
consumption over time (sufficiently low σ). A weaker elasticity of intertemporal
substitution makes more difficult to elude the CIA constraint through higher
savings: in this case, a higher sensitivity to collaterals can free individuals from
the burden of the constraint and promotes capital accumulation.
The second derivative is interpreted as follows: households prefer a higher

capital/consumption ratio under a faster monetary growth, and the flatter the
credit share (the higher and closer to zero ε2), the sharper their response. To
understand the point, fix a value x of the ratio and the slope γ of the credit
share in x. The flatter the credit share around x, the steeper the credit share
on the right of x. Rational households moves on the right and accumulate more
capital to enjoy the easier credit.

3.2 Optimal monetary growth

Maximizing a welfare functionW is equivalent to maximizing the utility function
under the assumption of representative agent. Along the balanced growth path:

W ≡
∞X
t=0

βtu (ct) =
u (c0)

1− βg1−1/σ

provided that β < g1/σ−1, that is, the transversality condition (18) holds.

Proposition 2 The optimal (welfare-maximizing) monetary policy is given by

μ∗ =
[β (∆+A)]

σ

∆+A

µ
1 +

1− s

γε1

A

∆+A− [β (∆+A)]σ

¶
(21)

The higher the sensitivity to collaterals, the lower the optimal monetary
growth rate:

∂μ∗

∂ε1
= −1− s

γε21

A

∆+A

[β (∆+A)]
σ

∆+A− [β (∆+A)]σ
< 0 (22)

Proof. We notice that, at the steady state, c0 = (∆+A− g) k0. Then

W = V (g) ≡ u ((∆+A− g) k0)

1− βg1−1/σ

Deriving w.r.t. g gives

V 0 (g) =

∙µ
1− 1

σ

¶
βg−1/σ

1− βg1−1/σ
− 1

∆+A− g

c0u
0 (c0)

u (c0)

¸
V (g)

Using (13), we obtain

V 0 (g) =

µ
βg−1/σ

1− βg1−1/σ
− 1

∆+A− g

¶µ
1− 1

σ

¶
V (g)

10



and, therefore, V 0 (g) > 0 iff5

g < [β (∆+A)]σ ≡ g∗ (23)

Defining the welfare as a function of the monetary policy:

W (μ) ≡ V (g (μ))

we obtain, according to (19), W 0 (μ) > 0 iff V 0 (g) > 0, that is, iff (23) holds.
Welfare is maximized by g−1 (g∗), where g−1 is a well-defined function from the
monotonicity of g (see (19)). More explicitly:

μ∗ =
g∗ − βg∗1−1/σ (∆+ sA− γε1 (∆+A− g∗))

γε1 (∆+A− g∗)

and, replacing (23), we obtain (21). Deriving (21) w.r.t. ε1 gives (22).
The existence of an interior solution results from the trade-off between the

initial consumption c0 and the growth rate g.
Renouncing to consume today, raises individual saving, capital accumulation

and, finally, the growth rate.
On the one side, too low growth rates supported by a slow monetary growth,

are inefficient. But, on the other side, a fast monetary expansion can imply
capital overaccumulation, which requires an excessively low level of initial con-
sumption.

4 Local dynamics
In order to characterize the stability properties of the steady state and the
occurrence of local bifurcations, we proceed by linearizing the dynamic system
(23)-(15) around the steady state (x, π) defined by (16)-(??) and computing
the Jacobian matrix J , evaluated at this steady state. Local dynamics are
represented by a linear system (dxt+1/x, dπt+1/π)

T
= J (dxt/x, dπt/π)

T . In
the following, we exploit the fact that the trace T and the determinant D of J
are the sum and the product of the eigenvalues, respectively. As highlighted by
Grandmont, Pintus and de Vilder (1998), the stability properties of the system,
that is, the location of the eigenvalues with respect to the unit circle, can be
better characterized in the (T,D)-plane.
More explicitly, we evaluate the characteristic polynomial P (z) ≡ z2−Tz+D

at −1 and 1. Along the line AC, one eigenvalue is equal to 1, i.e. P (1) =
1 − T + D = 0. Along the line AB, one eigenvalue is equal to −1, i.e.
P (−1) = 1 + T + D = 0. On the segment [BC], the two eigenvalues are
complex and conjugate with unit modulus, i.e. D = 1 and |T | < 2. Therefore,
inside the triangle ABC, the steady state is a sink, i.e. locally indeterminate

5Notice that the transversality condition ensures the convergence of the welfare series and
is equivalent to (βg)σ < g. Therefore, (23) is equivalent to (βg)σ < g < [β (∆+A)]σ . The
existence of a nonempty range for g requires g < ∆+A, which is satisfied by (15).
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(D < 1 and |T | < 1 +D). It is a saddle point if (T,D) lies on the right sides
of both AB and AC or on the left sides of both of them (|1 +D| < |T |). It
is a source otherwise. A (local) bifurcation arises when an eigenvalue crosses
the unit circle, that is, when the pair (T,D) crosses one of the loci AB, AC or
[BC]. (T,D) depends on the structural parameters. We choose and vary a pa-
rameter of interest and we observe how (T,D) moves in the (T,D)-plane. More
precisely, according to the changes in the bifurcation parameter, a transcritical
bifurcation (generically) occurs when (T,D) goes through AC, a flip bifurca-
tion (generically) arises when (T,D) crosses AB, whereas a Hopf bifurcation
(generically) happens when (T,D) goes through the segment [BC].
Linearizing system (23)-(15) and taking in account the elasticities of credit

share, gives

[σε2 (A1 +B1)− 1]
dxt+1
x

+ σB2
dπt+1
π

= [σε2 (A2 +B1)− C1]
dxt
x
+ σ (A2 +B2)

dπt
π

(1 + C2)
dxt+1
x
− dπt+1

π
= (C1 + C2)

dxt
x

where, under Assumption 5:6

A1 ≡
γε1

π
x

I − γε1
π
x

> 0

A2 ≡
γε1

π
x

1− γε1
π
x

> 0

B1 ≡
γε1 (I − 1)− γε1

π
x

[1− γ (1− ε1)] (I − 1) + 1− γε1
π
x

B2 ≡
[1− γ (1− ε1)] I − γε1

π
x

[1− γ (1− ε1)] (I − 1) + 1− γε1
π
x

C1 ≡ ∆+A

g
> 1

C2 ≡ γε1
1− γ

> 0 (26)

Since xt and πt are variables independently non-predetermined, the equilib-
rium is locally determinate if and only if the steady state is a source, while local
indeterminacy requires a saddle point or a sink.
The Jacobian matrix is given by:

J =

∙
σε2 (A1 +B1)− 1 σB2

1 + C2 −1

¸−1 ∙
σε2 (A2 +B1)− C1 σ (A2 +B2)

C1 + C2 0

¸
6Assumption 5 can be equivalently written:

0 < 1− γε1
π

x
< I − γε1

π

x
(24)

and implies also

[1− γ (1− ε1)] (I − 1) + 1− γε1
π

x
> 0 (25)
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while the trace and determinant by:

T (σ) = 1 +D (σ)−
¡
1
σ +A2

¢
(1− C1)− ε2 (A1 −A2)

1
σ −B2 (1 + C2)− ε2 (A1 +B1)

(27)

D (σ) = − (A2 +B2) (C1 + C2)
1
σ −B2 (1 + C2)− ε2 (A1 +B1)

(28)

In the spirit of Grandmont, Pintus and de Vilder (1998), we apply the geo-
metrical method and we characterize the locus Σ ≡ {(T (σ) ,D (σ)) : σ ≥ 0} ob-
tained by varying the intertemporal substitution in consumption in the (T,D)-
plane.
The following lemma provides technical results to prove the main proposi-

tion.

Lemma 3 (i) Σ is linear with origin (T (0) ,D (0)) = (C1, 0), endpoint

(T (∞) ,D (∞)) =
µ
1 +D (∞) + ε2 (A2 −A1)−A2 (C1 − 1)

ε2 (A1 +B1) +B2 (C2 + 1)
,

(A2 +B2) (C1 + C2)

ε2 (A1 +B1) +B2 (C2 + 1)

¶
(29)

and slope

S =

∙
1 +

[A2 −A1 − (C1 − 1) (A1 +B1)] ε2 − (C1 − 1) (A2 +B2 +B2C2)

(A2 +B2) (C1 + C2)

¸−1
=

∙
2− C1 +

A2 −A1 − (C1 − 1) (A1 +B1)

(A2 +B2) (C1 + C2)

¡
ε2 − εC2

¢¸−1
where

εB2 ≡ εC2 −
4 (A2 +B2) (C1 + C2)

A2 −A1 − (A1 +B1) (C1 − 1)

εC2 ≡ − (C1 − 1)
A2C2 + (A2 +B2) (C1 − 1)

A2 −A1 − (A1 +B1) (C1 − 1)

are the critical points such that the line Σ goes through the vertices B and C,
respectively.
(ii) Under Assumption 5, D0 (σ) < 0, that is, the point (T (σ) ,D (σ)) moves

downwards in the (T,D)-plane when σ goes up.

Proof. The origin and the endpoint are obtained taking the limit of (27) and
(28) as σ approaches 0 from above and +∞ from below, respectively. The slope
is obtained computing T 0 (σ), D0 (σ) and the ratio S = D0 (σ) /T 0 (σ).
Moreover

D0 (σ) = − [D (σ) /σ]2

(A2 +B2) (C1 + C2)
< 0

because C1 + C2 > 0 and, under Assumption 5,

A2 +B2 =
I − γε1

π
x

1− γε1
π
x

1− γ (1− ε1)

[1− γ (1− ε1)] (I − 1) + 1− γε1
π
x

> 0 (30)
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(see equations (24) and (25) in the previous footnote).
As in the case of comparative statics, Assumption 5 plays a key role in order

to characterize the local dynamics.

Proposition 4 Let Assumption 5 holds and

σF ≡ 1 + C1
(A2 + 2B2) (1 + C1 + 2C2) + (A1 +A2 + 2B1) ε2

(31)

σH ≡ 1

B2 (1− C1)−A2 (C1 + C2) + (A1 +B1) ε2

where σF and σH are solutions of D (σ) = −T (σ) − 1 and D (σ) = 1, respec-
tively.
(i) If A2−A1−(C1 − 1) (A1 +B1) < 0 or (A2−A1−(C1 − 1) (A1 +B1) > 0

and εC2 < ε2 < 0), then the steady state is a saddle point for 0 < σ < σF and
a source for σF < σ. The system generically undergoes a flip bifurcation at
σ = σF .
(ii) If A2 −A1 − (C1 − 1) (A1 +B1) > 0 and ε2 < εB2 , then the steady state

is a saddle point for σ < σF and a sink for σF < σ. The system undergoes a
flip bifurcation at σ = σF .
(iii) If A2−A1− (C1 − 1) (A1 +B1) > 0 and εB2 < ε2 < εC2 , then the steady

state is a saddle point for σ < σF , a source for σF < σ < σH and a sink
for σH < σ. The system generically undergoes a flip bifurcation and a Hopf
bifurcation at σ = σF and σ = σH , respectively.

Proof. (C1, 0), the origin of Σ, lies on the T -axis, on the right of the line AC.
Consider the endpoint (29). Since Assumption 5 holds, (24) holds as well

and

A2 −A1 =
(I − 1) γε1 πx¡

I − γε1
π
x

¢ ¡
1− γε1

π
x

¢ > 0
Then, according to (30), D (∞) > 0 ⇔ ε2 (A1 +B1) + B2 (C2 + 1) > 0 ⇔
D (∞) > T (∞)− 1. This implies that Σ never crosses the line AC (the eigen-
values never cross +1 and there is no room for saddle node, transcritical or
pitchfork bifurcations).
Focus now on the impact of ε2 on the location of Σ. When ε2 (< 0) increases,

Σ rotates clockwise around the origin (C1, 0) iff ∂S/∂ε2 < 0, where

∂S

∂ε2
= −A2 −A1 − (C1 − 1) (A1 +B1)

(A2 +B2) (C1 + C2)
S2 (32)

(1) If A2 − A1 − (C1 − 1) (A1 +B1) < 0, then ∂S/∂ε2 > 0 and Σ rotates
counterclockwise around (C1, 0). We notice that S (−∞) = 0+ and 0 < εC2 <
εB2 . If 0 < S

¡
εC2
¢
, then S (ε2) ∈

¡
0, S

¡
εC2
¢¢
for every ε2 < 0. If S

¡
εC2
¢
< 0,

then S (ε2) /∈
¡
S
¡
εC2
¢
, 0
¢
for every ε2 < 0. In both the cases, Σ never crosses

the triangle. Indeed:
(1.1) if S ∈ (0, 1), then D0 (σ) < 0 and Σ∩AC = ∅ prevent Σ from entering

ABC (Σ is a segment included in the cone {(T,D) : D ≤ min {0, T − 1}});
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(1.2) if S /∈ (0, 1), since the line including Σ intersects D = 1 on the right of
C, it can not cross the triangle.
In both the cases (1.1) and (1.2), there is room for a flip bifurcation when Σ

crosses the line AB below A. More precisely, the steady state is a saddle point
for σ < σF and a source for σF < σ. The system undergoes a flip bifurcation
at σ = σF .
(2) If A2 − A1 − (C1 − 1) (A1 +B1) > 0, then ∂S/∂ε2 < 0 and Σ rotates

clockwise around (C1, 0). We notice that S (−∞) = 0− and εB2 < εC2 < 0.
(2.1) When ε2 < εB2 , the steady state is a saddle point for σ < σF and a

sink for σF < σ. The system generically undergoes a flip bifurcation at σ = σF .
(2.2) When εB2 < ε2 < εC2 , the steady state is a saddle point for σ < σF ,

a source for σF < σ < σH and a sink for σH < σ. The system generically
undergoes a flip bifurcation and a Hopf bifurcation at σ = σF and σ = σH ,
respectively.
(2.3) When εC2 < ε2 < 0, then the steady state is a saddle point for σ < σF

and a source for σF < σ. The system undergoes a flip bifurcation at σ = σF .
In all these cases, the existence of bifurcations requires positive critical val-

ues: σF , σH > 0. Cases (1) and (2.3) correspond to case (i) in the proposition.
Cases (2.1) and (2.2) correspond to cases (ii) and (iii), respectively.

Figure 1: case (i) Figure 2: case (iii)

Case (i) of Proposition 4 is closer to Bosi and Magris (2003) (set ε2 = 0 with
a constant credit share). This case shows that, when collaterals matter, cycles
of period two appear for sufficiently low elasticity of intertemporal substitution
in consumption. The intuition is given as follows.
Assume that kt increases from the value of steady state. Then, the income

Akt increases as well. If the intertemporal substitution σ is weak, the income
effect prevails and raises the current consumption ct. If the intertemporal sub-
stitution is sufficiently weak, the response in terms of ct exceeds the increase of
(∆+A) kt and, according to the budget constraint, kt+1 = (∆+A) kt − ct de-
creases. Thus, an increase of kt is followed by a decreases of kt+1 and two-period
cycles arise.
This mechanism can be reinforced by a sensitivity to collaterals: when kt

goes up, xt and the credit share also move up. The positive effect on the current
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consumption adds to the income effect entailing a deeper fall of kt+1. In this
case (i), cycles of period two are compatible with lower values of intertemporal
substitution and, in a way, more plausible. Equation (31) captures a sort of
trade-off between the critical value of intertemporal substitution in consumption
(σF ) and the sensitivity of credit share to collaterals (ε1). The impact of the
second-order elasticity is characterized in the following corollary.

Corollary 5 In case (i) of Proposition (4), the indeterminacy range (0, σF )
shrinks with ε2 (< 0) iff A1 +A2 + 2B1 > 0.

Proof. Simply, notice that
∂σF
∂ε2

= −A1 +A2 + 2B1
1 + C1

σ2F

and ∂σF /∂ε2 < 0 iff A1 +A2 + 2B1 > 0.
Corollary 5 states that the range where supercritical cycles occur (σF ,+∞)

widens, if, plausibly, A1 + A2 + 2B1 > 0. In this case, given ε1, increasing ε2
makes the credit share flatter and, thus, steeper on the right of x. Increasing
kt, moves xt on the right of x. On the right, the credit share is now higher and
households prefers to consume more. The mechanism described above takes
place and kt+1 decreases more. In other terms, given ε1, the closer ε2 to zero,
the lower the critical value of flip bifurcation σF : because of the additional effect
of ε2, cycles becomes compatible with lower values and, so, more plausible values
of intertemporal substitution.
In Bosi and Magris (2003), the additional effects due to the elasticities of

credit share were not taken in account. These effects amplify the traditional
bifurcation mechanism which generates period-doubling cycles through a flip
bifurcation when the intertemporal substitution is sufficiently weak.
We observe that, in case (i), when the flip bifurcation is subcritical, the cycle

is unstable and there is room for indeterminacy around the saddle point which
is now stable.
Assume that households anticipate an increase in kt+1 from the steady state

k. Because of the income effect (Akt+1), they expect also an increase in their
future consumption ct+1. Under a large substitution effect, the consumption
smoothing pushes up also ct (see the Euler equation in (5)). But, since kt is
a predetermined variable, this violates the current budget constraint: kt+1 =
(∆+A) kt − ct. Conversely, a self-fulfilling increase of kt+1 becomes possible
only if ct decreases, which happens only if a sufficiently weak intertemporal
substitution makes the consumption smoothing difficult.
If the flip bifurcation is supercritical, the cycle arises around a source and

is stable. A new kind of indeterminacy occurs: multiple equilibria converge to
the cycle and there is room for sunspot equilibria around this attractor.

5 A numerical example
Let us consider an explicit formulation of credit share: γ (x) ≡ η0 + η1x

ε, with
ε ∈ [0, 1], η0, η1 ≥ 0. We obtain as required: ε1 = εη1x

ε/ (η0 + η1x
ε) ∈ [0, 1]
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and ε2 = ε− 1 ≤ 0.
The steady state is defined by (17). We calibrate the TFP parameter A in

order to get a plausible growth rate, that is we express A as an inverse function
of g:

A =

h
g
μ − ε1γ (∆− g)

i
g1/σ − [∆− ε1γ (∆− g)]β g

μ

γε1g1/σ + (s− ε1γ)β
g
μ

(33)

In addition, we require the model restrictions to be satisfied.
(i) Essential restrictions:
x = 1/ (∆+A− g) > 0 (positivity of quantities),
π = μ/g > 0 (positivity of prices),
0 < γ < 1 (credit share),
β < g1/σ−1 (transversality condition),
I = (∆+ sA)μ/g > 1 (monetary equilibrium).
(ii) Optional restrictions:
π ≥ 1 (positive inflation),
g > 1 (growth),
0 < 1− (∆+A− g) γε1μ/g (Assumption 5).
In the following, for simplicity, we focus on the (locally) isoelastic case:

η0 = 0 implies ε1 = ε.
We set some preliminary parameters according to quarterly data: β = 0.99,

∆ = 0.94574. In the spirit of Mankiw, Romer and Weil (1992), capital imbeds
the human capital and we fix s = 2/3. For simplicity, we set also γ = 1/2: cash
and credit good weight the same.

5.1 Comparative statics

Fix now: ε = 0.5 (intermediate sensitivity to collaterals), μ = g = 1.01 (mone-
tary growth accompanies growth), σ = 1 (logarithmic utility). Applying formula
(33), we calibrate A = 0.11134, to implement a quarterly growth rate of 1%.
We notice that the essential and optional restrictions are satisfied: x =

21.24 > 0, π = 1 ≥ 1, 0 < γ = 0.5 < 1, β = 0.99 < g1/σ−1 = 1, I = 1.0200 > 1,
g = 1.01 > 1, 0 < 1− (∆+A− g) γεμ/g = 0.98823.
To compute the effectiveness of monetary policy, we apply (20),

dg

dμ

μ

g
=

∙
1 +

1

σ

1− γε (∆+A− g)μ/g

γε (∆+A− g)μ/g
+

(1− ε) g

∆+A− g

I − 1
I − γε (∆+A− g)μ/g

¸−1
and we obtain:

dg

dμ

μ

g
= 0.011741 > 0 (34)

The impact of a monetary acceleration is positive (money is non-superneutral),
but extremely weak: increasing by 1% the monetary growth factor, raises by
about 0.01% the growth factor.
An interesting question is whether a higher sensitivity to collaterals lowers

the effectiveness of monetary policy. The answer is positive.
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Indeed, if we increase ε from 0.5 to 0.9, living the other parameters un-
changed, and we recompute the TFP parameter that ensures 1% of growth:
A = 0.11105, we get

dg

dμ

μ

g
= 0.0046039 > 0

that is, less than half the impact in (34).
Therefore, there is a very little role to play for monetary policy when collat-

erals and social inequalities matters in the credit market.
In general, the impact of a monetary growth on economic growth remains

extremely weak and one may wonder if the gain in terms of growth could justify
high inflation rates.

5.2 Optimal monetary policy

In the two scenarios ε = 0.5 and ε = 0.9, the optimal growth factors g∗ ≡
(β (∆+A))

σ are respectively given by g∗ = 1.0465 and g∗ = 1.0462 and the
corresponding optimal monetary rules by μ∗ = 14.878 and μ∗ = 8.6753 (see (21)
and (22)).
These unrealistic values depend on the very small impacts of μ on the growth

factor: passing from g = 1.01 to g∗ requires a large injection of balances.

5.3 Local dynamics

Let us show the impact of intertemporal substitution on local dynamics. We
provide two parametrizations corresponding to the source and the saddle case.
In the following, fix μ = g = 1.01 and ε = 0.5.
Before computing the Jacobian matrix and the eigenvalues, we need to find

blocks (26). Under the assumption of isoelastic credit share, blocks and the
Jacobian matrix simplify to:

A1 =
γε (∆+A− g)μ/g

I − γε (∆+A− g)μ/g

A2 =
γε (∆+A− g)μ/g

1− γε (∆+A− g)μ/g

B1 =
γε [I − 1− (∆+A− g)μ/g]

1 + (1− γ) (I − 1) + γε [I − 1− (∆+A− g)μ/g]

B2 =
(1− γ) I + γε [I − (∆+A− g)μ/g]

1 + (1− γ) (I − 1) + γε [I − 1− (∆+A− g)μ/g]

C1 =
∆+A

g

C2 =
γε

1− γ
(35)
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(where I = (∆+ sA)μ/g) and

J =

∙
σ (ε− 1) (A1 +B1)− 1 σB2

1 + C2 −1

¸−1 ∙
σ (ε− 1) (A2 +B1)− C1 σ (A2 +B2)

C1 + C2 0

¸
(36)

respectively.

5.3.1 Equilibrium uniqueness (source)

In order to find equilibrium determinacy, we require sufficiently high intertem-
poral substitution effects. In this respect, we set σ = 1.
A calibrated TFP parameter implements the 1% growth rate (quarterly):

A = 0.11134 according to formula (33).7

Using (35) and (36), we get

J =

∙
0.90517 6.1638
−0.18886 9.2458

¸
with eigenvalues λ1 = 1.0472, λ2 = 9.1038. Both the eigenvalues are explosive,
the steady state is a source and the jump variables adjust: (xt, πt) = (x, π)
for t = 0, 1, . . . Shocks on the fundamentals are neutralized by the rational
expectations.

5.3.2 Equilibrium multiplicity (saddle)

It is known that small elasticities of intertemporal substitution promote indeter-
minacy in CIA models with capital accumulation (Cooley and Hansen (1989)).
Fixing σ = 1/3, we calibrate the TFP parameter to maintain a quarterly

growth rate of 1%: A = 0.14128.8

Still using (35) and (36), we obtain

J =

∙
1.091 6 −0.41169
0.061087 −0.61753

¸
with eigenvalues λ1 = −0.60269 and λ2 = 1.0767.
We observe that convergence to the steady state is non-monotonic (−1 <

λ1 < 0). When λ1 approaches −1, a flip bifurcation arises (σ = σF ).

5.3.3 Collaterals and macroeconomic volatility

Let us focus on the case (i) of Proposition (4) and assume the credit share to
be isoelastic. We fix μ = g = 1.01 and we calibrate the TFP parameter as a

7The essential and optional restrictions hold because the parametrization is the same than
in the first case of the comparative statics.

8Even in this case, the essential and optional restricitons hold: x = 12.984, π = 1 ≥ 1,
0 < γ = 0.5 < 1, β = 0.99 < g1/σ−1 = 1.0201, I = 1.0399 > 1, g = 1.01 > 1, 0 <
1− (∆+A− g) γεμ/g = 0.98075.
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function of (ε, σF ):

A (ε, σF ) ≡

h
g
μ − εγ (∆− g)

i
g1/σF − [∆− εγ (∆− g)]β g

μ

γεg1/σF + (s− εγ)β g
μ

(37)

that is, given the degree of sensitivity to collaterals and the critical value of
intertemporal substitution, we set A to implement g = 1.01.
Using (35) and (37), we represent the implicit equation (31), with ε2 = ε−1,

in the (ε, σF )-plane. In other terms, we plot the behavior of the critical value
σF as a function of the degree of sensitivity to collaterals ε.

10.50

0.5

0

epsilon

sigma F

epsilon

sigma F

Figure 3: Sensitivity to collaterals and indeterminacy range

For a given ε, the vertical segment between the axis of abscissas and the
downward-sloped curve represent the indeterminacy range (0, σF ) of Proposition
(4). According to our parametrization, the indeterminacy range shrinks with
the degree of sensitivity to collaterals of the credit market. In other terms, the
greater the role of collaterals, the less likely the macroeconomic volatility.
Our paper can contribute to shed a light on the underlying mechanism of

the subprime crisis. Indeed, concerning this sort of financial earthquake, the
credit in the U.S. was not sufficiently collateralized in the past decade (low ε)
and the risk of macroeconomic volatility (endogenous business cycles due to
self-fulfilling prophecies) is now significant (high σF ).

6 Conclusion
In the view of the US subprime crisis that hit the global economy in the last
few years, we studied the role of collaterals in the emergence of endogenous fluc-
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tuations. We considered a monetary one-sector model with endogenous growth
where agents are subject to a partial cash-in-advance constraint. In this frame-
work, we assume that the share of consumption purchases paid with credit
depends positively on the collateral available to the individual. Our main re-
sults are as follows. Money is no longer neutral; an increase in the monetary
growth leads to a higher growth in the economy, and more willingness to make
the consumption purchases with credit rather than cash. Second, the sensitiv-
ity of credit market to collaterals enhances the effectiveness of monetary policy.
Third, the endogenous fluctuations become more and more likely to occur as
long as the sensitivity of credit market with respect to collateral is lower, that
is, agents can more easily get credit and so pay more in credit and less in cash.
The later result is consistent with the findings of Bosi and Magris (2003) which
is considered as a particular case of our framework.
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