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Abstract 

 

Ehrmann et al. (2003) proposed an IRF in the frame of Markov-

Switching structurally VARs. Their IRF provides insights on the 

dynamics within the regime in which the shock occurs. We propose an 

IRF that captures the global response of the system and illustrate its 

use with examples.  
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Introduction 

Impulse-response functions (IRF hereafter) provide a global picture of what happens in 

a system hit by an exogenous shock within a given horizon. With nonlinear 

specifications, the analysis reaches the richer field of asymmetries (see for instance 

Hamilton, 1989, Tong, 1990, Terasvirtä, 1995 among many others). However, while 

widely explored in the frame of threshold representations with the seminal article by 

Koop et al. (1996) on Generalized IRFs, they are much less studied in Markov-

Switching Vectoriel AutoRegressions (MS-VAR hereafter).  

Up to now, two paths have been followed in the MS-VAR literature to question state 

asymmetry. The first one consists in calculating exact IRFs (EIRF hereafter) in very 

simple specifications (only the constant or the intercept is regime-dependent; e.g. 

Krolzig & Toro, 1998, Artis et al., 2004, Ang & Bekaert, 2002). In this framework, the 

computation of IRFs is straightforward and with no cost. These IRFs are somehow 

different from the ones posed by the traditional VAR literature insofar as they study 

the impact of a change in regime or a variable and not of an identified structural 

shock. Furthermore, working with such model specification implies strong 

assumptions concerning state, sign and size asymmetries. The second approach was 

proposed by Ehrmann et al. (2003) in fully-parameterized MS-VARs and deals more 

specifically with the problem of state asymmetry. They proposed a regime-dependent 

IRF (RD-IRF hereafter) to study the response of the system conditionally to the regime 

in which the shock occurs. As they assume there is no more change in regime in the 

wake of the shock, their IRF provides insights on the dynamics at stake within the 

regime in which the shock occurs but cannot be considered as a general tool for MS-

VARs evaluation.  

In this paper, we propose a more general IRF that captures the global response of the 

system in the wake of an identified shock, whatever the states visited in the wake of 

the shock. It allows not only to deal with state asymmetry by investigating the possible 

different impact of a shock depending on the regime in which it occurs but also to 

calculate the unconditional response of the system to this shock.  

The paper is organised as follows. First, we present the econometric context. Second, 

we present the EIRF and discuss their relations with the RD-IRF proposed by 

Ehrmann et al. (2003). Third, we illustrate the discussion with simple examples and 

conclude.  
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1 The model: the structural MS-VAR  

The general standard MS-VAR is:  

1
t t

p

t s i,s t-i t

i

Y Y u

=

= µ + Φ ⋅ +∑  (1) 

with { } Tt
ttY
=
=1  a set of k variables, tu  iid gaussian with a variance-covariance matrix 

tsu,Ω . st  ∈ { 1, 2, … S } is modeled as an unobserved one-order Markov chain of S 

regimes, with fixed transition probabilities ijp :  

ijttttt pisjsPksisjsP ======= −−− )(),...,( 121   with  { } 1,...1

1

=∈∀ ∑
=

S

j

ijpSi  

Every parameter is regime-dependent. Each regime is then characterized by its own 

propagation system. The set of unknown parameters, { }1, , ,, ,..., , ,j j p j u j ijpΘ = µ Φ Φ Ω  

[ ]Sj ,1∈∀ , [ ]1,1 −∈∀ Si  is estimated by TΘ̂ . 

For the identification of shocks, we can use the Choleski approach (see e.g. Weise, 

1999 or Ehrmann et al., 2003) or the semi-structural approach. If tst t
Du ε⋅=  and tε  

gaussian with an identity variance-covariance matrix, we solve for each regime:  

'
, ttt sssu DD ⋅=Ω  (2) 

where 
ts

D  is not necessarily lower triangular and 
tsu,Ω  is provided by estimation.  

2 Impulse-response functions  

2.1 The common framework  

We use the following equation from (1) and (2):  

1
h h h

p

h s i,s h-i s h

i

Y Y D

=

= µ + Φ ⋅ + ⋅ ε∑  (3) 
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At h = 0, we suppose a constant value Y  for the Yh−i. To assess state asymmetry, we 

suppose the regime (e.g. s1 = j) and that a unit shock occurs at h = 1. Then, from 

equation (3), we have:  

1 1

1

ˆˆˆ
p

j i, j j

i

Y Y D

=

 
= µ + Φ ⋅ + ⋅ ε 

  
∑  

with probability 1. This response will be the same for both the IRFs of this paper since 

independent of their respective definition. From h = 2 to H, the forecast horizon, the 

regime is no longer observable. We then have to perform an inference on both sh and 

Yh conditionally to s1.  

2.2 Exact Impulse-Response Function (EIRF) 

Knowing s1, every possible path of the system (SH) is computed, with its associated 

probability from the Markov chain:  

1 2 1 1 2 1
ˆ ˆˆ2, ( , ,..., , ) ( ,..., ; )h h T ij h Th P s j s i s k s p P s i s k s− −∀ ≥ = = = Θ = ⋅ = = Θ  

Conditionally to each possible path, s1 and ε1, the optimal forecast of Y is calculated:  

2 1 1 1 1 2 1 1

1

ˆ ˆˆ2, [ ,..., ; , , ] ˆ [ ,..., ; , , ]
h h

p

h h T s i,s h h T

i

h E Y s s s E Y s s s− −
=

∀ ≥ ε Θ = µ + Φ ⋅ ε Θ∑  (4) 

One then deduces the shocked trajectory as the mean of all possible responses 

weighted by their own probability:  

2

1 1 2 1 1 2 1

1 1

ˆ ˆ ˆ2, [ , , ] ... [ ,..., ; , , ] ( ,..., , )

h

S S

h T h h T h T

s s

h E Y s E Y s s s P s s s

= =

∀ ≥ ε Θ = ε Θ ⋅ Θ∑ ∑  (5) 

As the framework is nonlinear, the same is done without shock at date 1 to calculate 

the baseline (ε1 = )1(0 ×k ). EIRF is the difference between the shocked trajectory and the 

baseline:  

1 1 1 1 1
ˆ ˆ ˆ2, ( , , , ) [ , , ] [ ,0 , ]Y T h T h Th EIRF h s E Y s E Y s∀ ≥ ε Θ = ε Θ − Θ  (6) 
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Deriving the unconditional response of the system to a shock is straightforward. The 

main properties of this IRF are derived by Karamé & Olmedo (2007)1  

2.3 RD impulse-response functions  

Ehrmann et al. (2003) developed their RD-IRF by assuming there is no change in 

regime in the wake of the shock: 2,h∀ ≥   

[ ] [ ]ThhhThhhTY sssYEsssYEshIRFRD Θ===−Θ====Θ− −−
ˆ,0,...ˆ,,...)ˆ,,,( 1111111 εε  (7) 

It is straightforward that RD-IRF is a special case of EIRF, due to the extra 

assumption of no change in regime, which amounts to choosing one particular path 

among all possible.  

3 Illustration  

Suppose a bivariate MS-VAR with two regimes (table 1). The coefficients are quite 

different across regimes, implying two well differentiated regimes. The probabilities of 

remaining in regime 1 and 2 are respectively 0.9 and 0.6, which is usual in the 

literature and provides a clear sample split. Hence, regime 1 is prevailing and 

switching from the minor regime 2 is quite easy. The identification constraint assumes 

the responses of both variables to the second shock to display the same magnitude2. 

We deliberately choose short-run dynamics in both regimes. For simplicity, we 

suppose only one lag and no interaction between the variables of the system to fully 

understand the mechanisms at stake. The dynamics is stationary in regime 1 and we 

suppose two alternatives for regime 2. In case I, the variables display a stationary 

dynamics in regime 2 while in case II, the variables display respectively a unit-root 

and an explosive dynamics in regime 2 (Hall et al., 1999). This allows covering all 

possible cases. The Karlsen (1990) criterion concludes that the representation is 

globally stationary in both cases, while in case II, the dynamics in regime 2 is not 

(table 2).  

                                              

1 They demonstrate that under the assumption of fixed transition probabilities (FTP), EIRF does not depend 

either on the starting values Y  before the shock or on the history of shocks. Besides, the model implies 

sign and size symmetry. Their properties are more general when the FTP assumption is relaxed.  

2 The whole parameterization (including the identification scheme) is neutral in the analysis since it is used 
to calculate both IRF.  
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Table 1: Parameters for MS-VAR(1)  
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g
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0.006

1.601

 
 
 

 








9.00
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0.174 0.03
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− 
 − 

 






−

28.034.0

28.031.0
 

Case I: 








1.00

09.0
 

R
e
g
im

e
 2
 

3.232

5.660

 
 
 

 

Case II: 








05.10

01
 

0.199 0.452

0.452 1.481

− 
 − 

 






−

18.020.1

18.04.0
 










6.01.0

4.09.0
 

 

Table 2: Global stationarity and stationarity by regime 

  Stationarity by regime Global stationarity 

 
 

Largest eigenvalue in 

each regime  

Largest eigenvalue of the 

Karlsen companion matrix 

Regime 1 0.9 
Case I 

Regime 2 0.9 
0.73 

Regime 1 0.9 
Case II 

Regime 2 1.05 
0.89 

 

Figure 1 presents the IRFs when shocks occur in regime 1 for both cases since the 

parameterization is the same. We can see that both IRFs are quite close. This is 

because a possible change in regime has a low probability when the shock occurs in 

the prevailing regime. RD-IRF is just more (resp. less) persistent than EIRF, because 

persistence is less (resp. more) important in the other regime.  
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Figure 1: IRF (the shock occurs in regime 1, cases I and II) 
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Figure 2: IRF (the shock occurs in regime 2, case I) 
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Figure 3: IRF ((the shock occurs in regime 2, case II, globally stationary example) 
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Figure 2 presents the calculated IRFs when shocks occur in regime 2 for case I. We 

can see that the differences between both IRFs are greater than in regime 1. This is 

due to the fact that change in regime has a higher probability of occurrence than in 

regime 1 and then highly influences the calculation of EIRFs in this case. In case II 

(figure 3), RD-IRFs capture the explosive dynamics within regime as expected while 

EIRFs display the global stationary pattern of the system due to the prevailing 

stationary regime.  

Conclusion  

This paper derived EIRF, an evaluation tool for identified shocks in structural MS-VAR 

framework. EIRF allows understanding of the dynamics of the whole system in 

presence of potential state asymmetry while RD-IRF allows understanding of the 

dynamics at stake within each regime in response to a shock. There is then no 

ambiguity between these tools that can be viewed as complementary. The extension of 

this tool to time-varying transition probabilities or its properties as regards the other 

kinds of asymmetries are left for further research.  
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