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Abstract 

 

We propose a methodology extending the structural VAR approach to 

nonlinear Markov-Switching framework. We present the exact IRFs and 

discuss their properties as regards the different types of asymmetries (sign, 

size, state) and assumptions on transition probabilities. We propose a 

statistical methodology for discriminating some asymmetric properties of the 

system.  
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Introduction 

In the Nineties, main macroeconomic time series (GDP, interest rates, unemployment, 

inflation, exchange rates, ...) were found nonlinear, underlining the need to replace 

linear representations by nonlinear ones to model economic relations. Models like 

threshold autoregressions (e.g. Tong 1990, Terasvirta 1995) or Markov-Switching 

vector autoregressions (MS-VAR hereafter) (e.g. Hamilton 1989, Krolzig 1997) have 

then encountered a formidable success in modelling processes characterized by 

nonlinear dynamics. With these specifications, the analyst reaches the richer 

investigation field of asymmetries in the economic and financial mechanisms1.  

A simple and popular tool for dynamics investigation in applied macroeconomics and 

particularly the structural VAR literature is impulse-response functions (IRF 

hereafter). Indeed, it provides a reasonable picture of what happens to a system hit by 

an exogenous shock within a given horizon. With the seminal article by Koop et al. 

(1996), Generalized IRFs (GIRF hereafter) are widely employed in the frame of 

threshold representations. One is then able to investigate the difference in the 

variables response to a shock as regards (i) the state of the system at the date the 

shock occurs, (ii) the size of the shock and (iii) the sign of the shock.  

Concerning this problematic in the MS-VAR framework, two issues are at stake. The 

first one consists in interpreting the studied shock. On the one hand, the literature 

considers the response to a change in regime or to a change in a variable and not to 

an identified structural shock (Krolzig 2006). On the other hand, papers use the 

Choleski approach to identify “structural” shocks (e.g. Weise 1999, Erhmann et al. 

2003). We propose to extend the identification of structural shocks to the use of short-

term restrictions in the nonlinear framework, that is more in line with the traditional 

structural VARs literature and less restrictive than Choleski. The second question is 

the specification of the nonlinear model: with fixed or time-varying transition 

probabilities? With regime-dependent dynamics? We show this point is crucial 

because it induces strong untested restrictions on the asymmetric behaviour of the 

variables.  

In this paper, we propose a methodology extending the structural VAR approach to 

MS-VAR. In the first section we present the econometric framework. In the second 

section, we describe the identification of structural shocks with short-term 

                                              

1 See Hamilton (1989), Beaudry & Koop (2003), Engel & Hamilton (1990), Sensier et al. (2002) and Sichel 
(1994) among many others. 
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restrictions. In the third section, we present EIRF and study their asymmetric 

properties (sign, size, state) as regards the specification choices of the model. We then 

present a simple testing methodology for determining some asymmetric properties of 

the system.  

1 The MS-VAR  

Our standard MS-VAR is:  

1
t t

p

t s i,s t-i t

i

Y Y u

=

= µ + Φ ⋅ +∑  (1) 

with { } Tt
ttY
=
=1  a set of k variables, tu  iid gaussian with a variance-covariance matrix 

tsu,Ω . st  ∈ { 1, 2, … S } is modeled as an unobserved one-order Markov chain of S 

regimes, with fixed transition probabilities ijp :  
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Every parameter is regime-dependent. Each regime is then characterized by its own 

propagation system. { }1, , ,, ,..., , ,j j p j u j ijpΘ = µ Φ Φ Ω , [ ]Sj ,1∈∀ , [ ]1,1 −∈∀ Si  is the set of 

unknown parameters estimated by TΘ̂ . 

With time-varying transition probabilities (TVTP hereafter) (Filardo 1994), transition 

probabilities are assumed to depend on the observed lagged values of the system 

variables:  

1 2 1 1 1 1( , ,..., ) ( , ) ( )t t t t t t t ij tP s j s i s k z P s j s i z p z− − − − − −= = = = = = =   still with  

[ ] 1)(,1

1

1 =∈∀ ∑
=

−

S

j

tij zpSi  

where 1tz −  is the information set containing some delayed variables of Y affecting the 

transition probabilities at each date. This modification enables for instance to question 

the determinants of transition probabilities (e.g. Garcia & Schaller 2002 for the 

influence of monetary policy on recessions). 
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2 The identification of structural shocks 

In the nonlinear empirical literature, several attempts have been made to identify 

economically interpretable shocks. For Krolzig (2006), the shock investigated 

corresponds to a change in regime or to a change in the system variable. Weise (1999) 

or Ehrmann et al. (2003) (among others) recursively identify shocks through a 

Choleski decomposition, respectively in a threshold VAR and in a MS-VAR. In these 

latter cases, it simply consists in Choleski decomposition regime by regime.  

In traditional VAR’s, the residual terms are generally correlated (their variance-

covariance matrix Ωu is not diagonal) and ut can not be considered as economically 

interpretable innovations. Structural VARs introduce some general assumptions 

provided by economic theory in order to disentangle the structural shocks εt from the 

residuals estimated from the reduced-form. The relation between the residuals and the 

economic shocks is supposed of the following form:  

t tu D= ⋅ ε  (2) 

where εt has an identity variance-covariance matrix2. From the variance of the 

processes, one deduces:  

'DDu ⋅=Ω   

This equality can be considered as a nonlinear system. D contains k² unknown 

parameters. Ωu is an estimated symmetric matrix that provides k (k + 1)/2 non-

redundant equations. The system is then under-identified. One has then to assume at 

least k (k – 1)/2 restrictions to make this system just-identified or over-identified. 

Choleski is a particular case where D is lower triangular: the shocks are ordered from 

the most important one (that affects all variables when it occurs) to the less important 

one (that only affects the last variable of the system when it occurs. That amounts to 

k (k − 1)/2 “no instantaneous response” restrictions in the system. It seems natural to 

us to identify the shocks in the spirit of the traditional VAR methodology rather than 

in the Choleski approach that appears more restrictive. Let’s suppose:  

                                              

2 It is a convention. This assumption can be relaxed by normalizing the k diagonal elements of D to unity, 

considering a diagonal variance matrix Ωε with k unknown parameters and making shocks with a 
magnitude of one standard-error. We adopt this presentation to draw a parallel with the Choleski 
approach that can be viewed as a particular case where D is lower triangular.  
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tst t
Du ε⋅=  (3) 

We have to solve a nonlinear just-identified system in the S regimes:  

'
, ttt sssu DD ⋅=Ω   

The resolution is conducted regime by regime through a numerical method consisting 

in minimizing: 





 


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
 ⋅−Ω⋅
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 


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'
'
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with respect to the k (k + 1)/2 unknown parameters and the k (k – 1)/2 short-term 

restrictions in 
ts

D , not necessarily zeros and not necessarily in a lower triangular 

form. Our approach clearly embeds the S Choleski decompositions. Furthermore, we 

suppose the same set of short-term restrictions across the regimes to identify the 

structural shocks but this can be relaxed.  

3 Impulse-response functions  

We use the following equation from (1) and (3):  

1
h h h

p

h s i,s h-i s h

i

Y Y D

=

= µ + Φ ⋅ + ⋅ ε∑  (3) 

At h = 0, we suppose a constant value Y  for the Yh−i. To assess state asymmetry, we 

suppose the regime (e.g. s1 = j) and that a unit shock occurs at h = 1. Then, from 

equation (3), we have:  

1 1

1

ˆˆˆ
p

j i, j j

i

Y Y D

=

 
= µ + Φ ⋅ + ⋅ ε 

  
∑   

with probability 1.  

From h = 2 to H, the forecast horizon, the regime is no more observable. An inference 

has to be performed on both sh and Yh conditionally to s1. Knowing s1, one can obtain 

from the Markov chain:   
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1 2 1 1 2 1
ˆ ˆˆ2, ( , ,..., , ) ( ,..., ; )h h T ij h Th P s j s i s k s p P s i s k s− −∀ ≥ = = = Θ = ⋅ = = Θ  

Conditionally to each possible path, s1 and ε1, the optimal forecast of Y is calculated:  

2 1 1 1 1 2 1 1

1

ˆ ˆˆ2, [ ,..., ; , , ] ˆ [ ,..., ; , , ]
h h

p

h h T s i,s h h T

i

h E Y s s s E Y s s s− −
=

∀ ≥ ε Θ = µ + Φ ⋅ ε Θ∑  (4) 

One then deduces the shocked trajectory as the mean of all possible responses 

weighted by their own probability:  

2

1 1 2 1 1 2 1

1 1

ˆ ˆ ˆ2, [ , , ] ... [ ,..., ; , , ] ( ,..., , )

h

S S

h T h h T h T

s s

h E Y s E Y s s s P s s s

= =

∀ ≥ ε Θ = ε Θ ⋅ Θ∑ ∑  (5) 

As the framework is nonlinear, the same is done without shock at date 1 (ε1 = )1(0 ×k ) to 

calculate the baseline. The EIRF is the difference between the shocked trajectory and 

the baseline:  

1 1 1 1 1
ˆ ˆ ˆ2, ( , , , ) [ , , ] [ ,0 , ]Y T h T h Th EIRF h s E Y s E Y s∀ ≥ ε Θ = ε Θ − Θ  (6) 

Krolzig (2006) provides a simple way to calculate these EIRF, without limitations by 

horizon length.  

As previously, EIRF can be interpreted as forecast-errors due to the occurrence of the 

unanticipated shock. Consequently, calculating forecast-error variance decomposition 

conditionally to the regime in which the shock occurs is straightforward.  

4 Asymmetric properties of EIRF and a testing methodology  

The asymmetric properties of the EIRF depend on the assumptions on the transition 

probabilities and on the specification of the model. They appear more clearly as 

equation (6) can be re-written under the FTP assumption: 2,h∀ ≥  

{ }
2

1 1

2 1 1 2 1 2 1

1 1

ˆ( , , , )

ˆ ˆ ˆ... [ ,..., ; , , ] [ ,..., ; ,0, ] ( ,..., , )

h

Y T

S S

h h T h h T h T

s s

EIRF h s

E Y s s s E Y s s s P s s s

= =

ε Θ =

ε Θ − Θ ⋅ Θ∑ ∑
 (7) 

It is obvious from equation (7) that the EIRF does not depend on innovations history, 

i.e. the introduction of the same sequence of innovations in the shocked and baseline 

trajectories. Indeed, the regime’s distribution is invariant to the history of innovations 
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since there is no possible feedback from the system’s variables to the transition 

probabilities and then to the forecast of the state of the system. As a first direct 

consequence, there is no need to simulate innovations’ history to provide EIRF, as in 

Koop et al. (1996).  

Suppose a FTP MS-VAR model where only the intercept 
ts

µ  is regime-dependent (or a 

MSI-VAR along Krolzig 1997). It is obvious from equation (7) that the EIRF does not 

depend on 
ts

µ  and consequently neither on st nor s1:  

)ˆ,,,()ˆ,,,(, 1111 TYTY jshEIRFishEIRFji Θ==Θ=≠∀ εε  

In this case, the system displays the same responses whatever the state in which the 

shock occurs.  

On the other hand, the existence of other types of asymmetries (in the sign and in the 

size of shock) for all variables of the system can not be investigated in a general FTP 

representation such as equation (1) since it can be deduced from equation (7) that the 

response is linear in the value of the shock:  

)ˆ,,,()ˆ,,,( 1111 TYTY shEIRFshEIRF Θ⋅=Θ⋅ ελελ .  

Consequently, the use of a general FTP model as in equation (1) allows the possibility 

of state asymmetry in the system variables and imposes the presence of both sign and 

size symmetries.  

All the previous remarks do not stand any more for TVTP models, i.e. if transition 

probabilities can display a feedback effect from the variables of the system to the state 

of the system. In that case, equation (7) and its implications stand no more. The EIRF 

does depend on the innovations’ history, such as GIRF in threshold models through 

the transition function. Random draws on the history of innovations should then be 

simulated in that case. The TVTP model allows investigating for the three kinds of 

asymmetries (in sign, size and state).  

This opens the way for a very simple strategy for discriminating between the different 

kinds of asymmetries through models testing. Since there is no problem of nuisance 

parameters in this case (Hansen 1992), likelihood ratio tests can be considered as χ2 

distributed. Hence:  
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• the acceptation of a general FTP model (as in equation 1) against a general 

TVTP model amounts to accept the null assumption of size and sign symmetry 

in the responses of all the system variables.  

• the rejection of a simple FTP model (with only state-dependent intercept) 

against a general FTP model (as in equation 1) amounts to reject the null 

assumption of state symmetry in the responses of all the system variables.  

Such an approach can then lead to choose a specification more congruent to the data 

properties.  
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