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Abstract

Even if its roots are much older, random sets theory has been considered as
an academic area, part of stochastic geometry, since Matheron [7]. Random
sets theory was first applied in some fields related to engineering sciences
like geology, image analysis and expert systems (see Goutsias et al. [4]),
and recently in non-parametric statistics (Koshevoy et al. [5]) or also (see
Molchanov [9]) in economic theory (for instance in finance and game the-
ory) and in econometrics (for instance in linear models with interval-valued
dependent or independent variables). We apply in this paper random sets
theory to decision making. Our main result states that under a kind of vNM
condition decision making for an arbitrary random set lottery reduces to de-
cision making for a single-valued random set lottery, and the latter set is the
set-valued expectation of the former random set. Through experiments in a
laboratory, we observe consistency of decision making for ordering random
sets with fixed act and varied random sets.
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1. Introduction

Suppose that the set over which an agent has to make a choice can expand
or restrict in a random manner. How does this agent behave? The idea that a
set can be random is caught by the mathematical notion of random set. It was
mainly used in integral geometry where random set is considered as a pointed
process. But since the eighties it has been used in statistics (see Vitale [11],
Koshevoy at al. [5], Molchanov [7]). For instance, in signal treatment, if you
take a grid of pixels, some of these pixels may be randomly colored in black
and white, and so the resulting picture is a random set. In inference statistics,
a random set is a confidence region for an estimated parameter. Recently,
random sets have been used in econometrics and finance (see Molchanov [9]).

We study in this paper the risk evaluation of random set lotteries. It
turns out that decision theory considers a particular random set lotteries
of the form of constant maps or, equivalently, single-valued random sets
lotteries. Namely, Savage addressed his theory to such random set lotteries.
Specifically, the space-state is a single-valued random set within the Savage
approach.

Ellsberg, having criticized the Savage axioms, considered a lottery with a
non single-valued random set. Recall that in his experiment, there is an urn
which contains red, blue and yellow balls, such that the red balls constitute
one third and there is no prior information about the proportion of the blue
balls.

Let us explain how to model such an urn as a random set. For that we
consider a two elements probability space Ω = {ω1, ω2} with the Boolean al-
gebra 2Ω and a distribution P (ω1) = 1

3
, P (ω2) = 2

3
. Consider a 3-dimensional

vector space R
3 and denote its basis vectors by r = (1, 0, 0), b = (0, 1, 0) and

c = (0, 0, 1). Then a random set R sends ω1 to the point r and ω2 to the
segment [b, c] := {αb + (1 − α)c 0 ≤ α ≤ 1}.

Such a random set is not single-valued random set since, either with
probability 1

3
it might be a vector r, or with probability 2

3
it might be the

segment [b, c].

In the Ellsberg paradox, a Decision Maker (DM) has to compare four
”lotteries”: A - to get $100 if he will pick a red ball; B - to get $100 if he
picks a blue ball; C - to get $100 if he picks red or yellow ball, and D - to
get $100 if he picks blue or yellow ball.
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Experiments report that people prefer A to B rather than B to A, and
D to C rather than vise versa.

In terms of the random set R, DM has to compare the following linear
function on R

3, which is specified by the values at vectors r, b and c by:

u1(r) = $100, u1(y) = $0, u1(b) = $0;
u2(r) = $0, u2(y) = $100, u2(b) = $0;
u3(r) = $100, u3(y) = $0, u3(b) = $100;
u4(r) = $0, u4(y) = $100, u4(b) = $100.

(1)

The main purpose of this paper is to present a theory of decision making
for non-constant random sets.

2. More explanations about random sets lotteries

Let us explain in more detail what is a random set and a random set
lottery in a general case. Let us consider a customary set up for decision
theory. There are a state space S endowed with σ-field of measurable set S,
the space X of measurable functions on S with respect to S, the dual space
X∗ identified with the set of signed measures on S, and the space F(X∗) of
closed subsets of X∗ endowed with the fit-to-hit topology. For a finite set S,
we get the following data: X ∼= R

S ∼= X∗, and F(X∗) is the space of closed
subsets of R

S endowed with the fit-to-hit topology (see Matheron [7]).

We accept the point of view of mathematicians, and a random set is
a probability space (Ω,A, P ) and a measurable mapping R : Ω → F(X∗)
(with respect to A). A random set lottery is a pair (R, x) constituted from a
random set R and an act x ∈ X. We will define more precisely this concept
latter.

We study the preferences of DM on the set of random lotteries.

Knightian’s decision theory: Consider the most closed situation stud-
ied in the literature, the Knightian decision theory. For that on has to con-
sider a constant random set IdM sending every ω ∈ Ω to the same convex
closed set M ⊂ X∗, IdM(ω) = M , ω ∈ Ω. For such a convex subset M ⊂ X∗,
the lotteries are specified by acts x ∈ X. A Knightian’s DM orders acts by
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the rule x �M y if, for any µ ∈ M , there holds
∫

S
x(s)µ(ds) ≤

∫

S
y(s)µ(ds).

The ordering �M is not a total ordering.

Given M ⊂ X∗, we consider different completions of �M , alike Savage
type, naive Choquet type, or a Choquet type.

Savage decision theory: DM has to consider the subset M ⊂ X∗

as the DM state space, and an act is a functional x ∈ X1, and thus the
mapping x : M → R is well-defined. Savage’s DM has to choose a measure
Π on M and the ordering x �M,Π y is defined by

∫

M
(
∫

S
x(s)µ(ds))Π(dµ) ≤

∫

M
(
∫

S
y(s)µ(ds))Π(dµ). The ordering �M,Π is total, additive, and it extends

≺M , that is:

x �M y ⇒ x ≺M,Π y (2)

Naive Choquet decision theory: the state of spaces is a subset M ⊂
X∗, an act is a functional x ∈ X, and thus the mapping x : M → R is well-
defined. DM has to choose a subset of measure N ⊂ M and the ordering
x �M,N y is defined by minµ∈N(

∫

S
x(s)µ(ds)) ≤ minµ∈N(

∫

S
y(s)µ(ds)). The

ordering �M,N is total, comonotone additive, and it extends �M , that is:

x ≺M y ⇒ x ≺M,N y (3)

Choquet-type DM: The state of space is M . DM chooses a convex
closed set C from the set PM(M) of closed subsets of the set of measures
on M . Then the ordering x �M,C y on X is defined by:

min
Π∈C

∫

M

(

∫

S

x(s)µ(ds))Π(dµ) ≤ min
Π′∈C

∫

M

(

∫

S

y(s)µ(ds))Π′(dµ) (4)

The ordering �M,C is total, comonotone additive, and it extends �M .

For a general random set lottery (R, x) we can expect that a DM makes a
decision for each pair (R(ω), x) according to his type, and then ”aggregates”
it over Ω due to probability distribution P on A. Such an aggregation can

1The space X is a subset the total space of acts on M , that is the set of functions
from M to R. Thus, we consider the restriction of an ordering of DMs of Savage’s or
Choquet’s-types to X∗ ×X. An important feature of any act of X is that, for any subset
M ⊂ X∗, it belongs to the set of acts for M .
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be defined directly for a specific single set random lottery corresponding to
the set-valued expectation of the random set R,

E(R) :=

∫

Ω

R(ω)P (dω). (5)

The random set expectation E(R) is a closed convex subset of X∗.

For example, for the random set from the Ellsberg paradox, the expecta-
tion set is the segment [1

3
r + 2

3
b, 1

3
r + 2

3
g].

The Knightian ordering x ≻R y holds if, for any µ ∈ E(R), we have

∫

S

x(s)µ(ds) ≥

∫

S

y(s)µ(ds) (6)

Now we explain our main result on an example of the Savage-type DM.
The Savage-type evaluation of a random set lottery R can be considered

as two possible completions of the Knightian DM, for each R(ω), and for the
expectation E(R), respectively.

For the latter case, a DM chooses a distribution Π on the expectation set
E(R), and this leads to the ordering x ≻R,Π y if there holds

∫

E(R)

(

∫

S

x(s)µ(ds))Π(dµ) ≥

∫

E(R)

(

∫

S

y(s)µ(ds))Π(dµ) (7)

In the former case, for each ω ∈ Ω, a DM make choice of a distribution
Πω in R(ω). Then the order is defined from

∫

Ω
(
∫

µ∈R(ω)

∫

S
F (s)µ(ds))Πω(dµ))P (dω) ≥

∫

Ω
(
∫

µ∈R(ω)

∫

S
G(s)µ(ds))Πω(dµ))P (dω)

(8)

Our main result (Theorem 1) states, that for measurable (wrt A) family
Πω, ω ∈ Ω, and if, for every fixed act x, DM’s ordering satisfies a kind of vNM
setting with respect to the space of random sets, there exists an expectation
measure E(Π), such that there holds

∫

Ω

(

∫

µ∈R(ω)

∫

S

x(s)µ(ds))Πω(dµ))P (dω) =

∫

E(R)

(

∫

S

x(s)µ(ds))E(Π)(dµ)

(9)
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Analogous commutations take place for naive Choquet and Choquet type
DM’s.

This result means that under vNM setting with respect to random sets
and a given act, decision making for a random set can be performed for the
set-valued expectation of the random set.

Here is an example of a non single-valued random set lottery with ex-
pectation set being parallelogram. Namely, there is an urn which contains
red, green, yellow and blue balls. There are 1

3
either red or green balls and

2
3

either yellow or blue. The prizes are: red - $100, yellow - $60, blue - $40,
and green - $20.

As a random set lottery it is set as follows. Consider a 4 elements set
S = {r, g, y, b}. Then X ∼= R

4 and X∗ ∼= R
4.

Consider the following measures in X∗, r = (1, 0, 0, 0), g = (0, 1, 0, 0),
y = (0, 0, 1, 0), b = (0, 0, 0, 1), A = (1

3
, 0, 2

3
, 0), and B = (0, 1

3
, 0, 1

3
).

A function x(r) = 100, x(g) = 20, x(y) = 60, x(b) = 40.
Consider the following random set. Set Ω = {ω1, ω2} and P (ω1) = 1

3
,

P (ω2) = 2
3
. Then define the random set R(ω1) = [r, g], R(ω2) = [y, b] being

random segments ([r, g] := {αr + (1 − α)g 0 ≤ α ≤ 1}).
The expectation of the random set R, is the parallelogram E(R1) =

1
3
[r, g]+ 2

3
[y, b] with following vertices A = 1

3
r+ 2

3
y, C = 1

3
r+ 2

3
b, D = 1

3
g+ 2

3
y,

and B = 1
3
g + 2

3
b.

To state our main result we need some technical preparations.

3. Random sets

Let S be a state space and let X be the set of measurable functions on S
wrt σ-field of measurable set S. Then the dual space X∗ is identified with the
set of signed measures on S. We let F(X∗) denote the set of closed convex
subsets of X∗, K(X∗) denote the set of compact subsets of X∗, and G(X∗)
denote the set of open subsets of X∗.

A mapping R : Ω → F(X∗) is measurable if, for any compact set K ∈
K(X∗) and any finite collection of open sets Gi ∈ G(X∗), i = 1, . . . , k, the
set {ω : R(ω) ∩ K = ∅, R(ω) ∩ G1 6= ∅, . . . , R(ω) ∩ Gk 6= ∅} belongs to A.
Moreover, the values P{ω : R(ω)∩K = ∅, R(ω)∩G1 6= ∅, . . . , R(ω)∩Gk 6= ∅}
form a probability distribution on the σ-algebra σF of subsets of F(X∗)
spanned by the sets of the form {F ∈ F(X∗) : F ∩ K = ∅, F ∩ G1 6=
∅, . . . , F ∩ Gk 6= ∅}, K ∈ K(X∗) and Gi ∈ G(X∗), i = 1, . . . , k, k = 1, . . ..
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However, capacity functionals are usually of use in random set theory (see
Appendix).

Definition 1. Let (Ω,A, P ) be a probability space, then a measurable map
R : Ω → F(X∗) is said to be a random set.

For a finite set S, the space of measurable functions X is the Euclidean
space R

S, the dual space of signed measure, X∗ is the set of linear functionals
on R

S and is isomorphic to R
S (non-canonically). The set F(RS) is the set

of closed subsets of R
S, and the corresponding σ-algebra is the fit-to-hit

topology, that is in the above defined σ-algebra σF we have to consider usual
closed, open and compact sets in R

S (see Matheron [7] or Molchanov [8]).
For a random closed set R, we can consider its set-valued expectation

E(R) ⊂ X∗. The expectation E(R) is a convex set. The set-valued expecta-
tion can be defined in two ways and we will demonstrate them.

For compact convex random sets we can, following to the Aumann inte-
gration ([1]), define the set of selections

R := {r(ω) ∈ R(ω) | r is measurable wrt A}.

For a finite S, the set R is the collection of random vectors of R
S, which, for

each ω, belongs to R(ω). Then, for a convex and compact-valued random
set R, the Aumann expectation is the set of expectations of such random
vectors,

E(R) := {

∫

Ω

r(ω)P (dω) |r ∈ R} (10)

There is another implicit definition of the expectation via support func-
tions. Namely, the expectation of a random set R is a convex closed set E(R)
given implicitly via a support function taking the following form

φE(R)(q) =

∫

Ω

φR(ω)(q)P (dω), q ∈ X, (11)

where φA(q) = supa∈A q(a) denotes the support function to a set A ⊂ X∗

(For a finite set S, and a subset A ⊂ R
S and a vector q ∈ R

S, the value q(a)
is the usual scalar product. )
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Note, that due to Lyapunov’s theorem, for compact convex random sets,
this definition of the set-valued expectation coincides with the Aumann in-
tegration.

Here are some examples of random sets and expectations.

1. The simplest example of a random set is a random vector in X∗, its
usual expectation is a vector and it coincides with the set-valued ex-
pectation.

2. The constant random set IdM which sends Ω to some fixed convex
closed set M ⊂ X∗ has the set valued expectation E(IdM) = M .

3. Let D be a random vector in R
S, then the random interval [0, D] is a

random set. Expectations of such a random segment E([0, D]) is called
zonoid and such sets are of importance in Statistics and Finance (see
Koshevoy et al. [5]).

4. DM and Random sets lotteries

Definition 2. A random set lottery is a pair (R, x) where R is a convex
closed set, R : Ω → F(X∗), and x ∈ X is a act.2

We assume that DM has a weak order preference. We assume also that
the unit ball is compact in X∗ (that is the case for a finite S), we are then able
to endow the space of random sets with the weak-topology wrt the Hausdorff
distance.

Consider a constant random set, IdM(ω) = M for some convex closed
M ⊂ X∗.

In such a case, a DM faces a problem to compare elements of X given a
set M ⊂ X∗.

Then there are the following recipes:

• A Knightian DM constructs the ordering on X defined by x �M y if,
for any µ ∈ M , there holds

∫

S
x(s)µ(ds) ≤

∫

S
y(s)µ(ds). The ordering

�M is not a total ordering.

• A Savage-type DM has to consider M as the new state of space, and
choose a measure Π on M . Then the ordering x �M,Π y is defined by
∫

M
(
∫

S
x(s)µ(ds))Π(dµ) ≤

∫

M
(
∫

S
y(s)µ(ds))Π(dµ). The ordering �M,Π

is total, additive, and it extends �M .

2It could occur that X ⊂ (X∗)∗, but we are interested in acts from X.
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• A Naive Choquet-type DM has to consider M as the new state space
and choose a subset of measure N ⊂ M . Then the ordering x �M,N

y is defined by minµ∈N(
∫

S
x(s)µ(ds)) ≤ minµ∈N(

∫

S
y(s)µ(ds)). The

ordering �M,N is total, comonotone3 additive, and it extends �M .

• A Choquet DM chooses a convex closed set C from the set PM(M) of
closed subsets of the set of measures on M . Then the ordering x �M,C y
on X is defined by minΠ∈C

∫

M
(
∫

S
x(s)µ(ds))Π(dµ) ≤

minΠ′∈C

∫

M
(
∫

S
y(s)µ(ds))Π′(dµ). The ordering �M,C is total, comono-

tone additive, and it extends �M .

• A strong Knightian DM constructs the ordering on X defined by x ≺s
M

y if there holds maxµ∈M

∫

S
x(s)µ(ds) ≤ minµ∈M

∫

S
y(s)µ(ds). The or-

dering ≺s
M is not a total ordering, and is stronger than �M .

For a general random set R, we can either reduce the problem to the
constant random set with the expectation set E(R) or perform an aggregation
of DMs on each R(ω), ω ∈ Ω.

Since Knightian decision theory, for a given single-valued random set IdM ,
offers a non total ordering of acts of X, the aggregation can be performed
for the unanimity case. Namely, we have:

Proposition 1. Let R : Ω → F(X∗) be a random convex set, and let x and
y be acts such that, for every ω ∈ Ω, there holds x �R(ω) y. Then x �E(R) y.

Proof. Assume firstly, that R is a random convex compact set. In such a
case, due to Aumann integration, we have that every element of E(R) takes
the form E(r) for some selections r ∈ R. Since x and y are linear functionals
on X∗ and, for every ω ∈ Ω, there holds x �R(ω) y, we obtain that there
holds x(E(r)) ≤ y(E(r)), and the proposition follows.

For a closed random set R, we can use the second definition of the expec-
tation. There are two cases: either for all q there holds Arg maxm∈R(ω) q(m)
belongs to R(ω), and then the same line of arguments as above yields the
proposition, or, for some q, the latter set is empty. In the latter case, for
such a q, choose a sequence mi(ω) ∈ R(ω) so that there holds lim q(mi(ω)) =
maxm∈R(ω)q(m). For each element of the sequence, there holds x(mi(ω)) ≤

3Functions f and g are said to be comonotone, if ArgmaxAf = ArgmaxAg and
ArgminAf = ArgminAg, for any closed set A of the support of X∗.
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y(mi(ω)), and therefore x(
∫

Ω
mi(ω)P (dω)) ≤

∫

Ω
y(mi(ω)P (dω)). That im-

plies the proposition.

For the total orderings like Savage-type or Choquet-type, an aggregation
is possible under an analogue of vNM setting for a fixed x.

Suppose that a DM has a total ordering on the set of random set lotteries
(R, x), and suppose that, given x, the preference satisfies vNM setting, that
is under standard continuous assumptions (there is a Hausdorff metric on
random sets wrt capacity functionals, see Appendix), there holds

(R1, x) � (R2, x), (Q1, x) � (Q2, x) ⇒
(αR1 + (1 − α)Q1, x) � (αR2 + (1 − α)Q2, x)

(12)

for any 0 ≤ α ≤ 1, and αR1 + (1− α)Q1 is the random set being the convex
combination of two mappings. (Similarly like in probability theory, we can
consider random sets on universal state space Ω and algebra A.)

For the cases of the Savage-type, the Choquet-type and naive Choquet-
type DMs, for each ω, choose a measure Πω on the set of measures on R(ω),
a subset Πω from the set of measures on R(ω), and a subset N(ω) ⊂ R(ω),
respectively, such that the corresponding functions are measurable wrt A.

Then under the vNM setting, the Savage-type DM evaluates the pair
(R, x) as

∫

Ω

(

∫

µ∈R(ω)

∫

S

x(s)µ(ds))Πω(dµ))P (dω); (13)

the Choquet-type DM as

∫

Ω

( min
Πω∈C

∫

R(ω)

(

∫

S

x(s)µ(ds))Πω(dµ)))P (dω); (14)

the naive Choquet-type DM evaluates this pair as

∫

Ω

( min
µ∈N(ω)

∫

S

x(s)µ(ds))P (dω). (15)

To evaluate pairs (R, x) and (R′, y) the choice of a measure on a subset
in identical sets has to be the same, that is, for ω and ω′ ∈ Ω, there holds
R(ω) = R′(ω′).

11



Definition 3. A collection of measures Πω, ω ∈ Ω is measurable wrt A, if,
for any Borel set A ⊂ X, the function Πω(A) is A-measurable.

Consider the case of a finite state space S.

Theorem 1. Let S be finite, the mapping Πω sending Ω to measures on X
is measurable, and a selection N(ω) ⊂ R(ω) is a random set. Then we have
the following commutations:

• Savage type DM: there exists a measure ΠR on the expectation E(R)
such that there holds

∫

Ω
(
∫

µ∈R(ω)

∫

S
x(s)µ(ds))Πω(dµ))P (dω) =

∫

µ∈E(R)

∫

S
x(s)µ(ds))ΠR(dµ)

(16)

• Choquet type DM: there exists a set of measure ΠE of the set of mea-
sures C(E(R)) on the expectation set E(R) such that there holds

∫

Ω
(minΠω∈C

∫

R(ω)
(
∫

S
x(s)µ(ds))Πω(dµ)))P (dω) =

minΠE∈C(E(R))

∫

E(R)
(
∫

S
x(s)µ(ds))ΠE(dµ)

(17)

• naive Choquet type DM: there exists a subset N(E) of the expectation
E(R) such that there holds

∫

Ω

( min
µ∈N(ω)

∫

S

x(s)µ(ds))P (dω) =

∫

Ω

( min
µ∈N(E)

∫

S

x(s)µ(ds)) (18)

Proof. The simplest case is the naive Choquet type DM. in such a case,
N(E) is the expectation of the random set N(ω), ω ∈ Ω. For other cases,
we consider the following construction of measures on the sum of sets. Let
A and B be two subsets of X∗ which are domains of measures µ and ν on
the corresponding algebras in A and B. Then consider the product measure
µ × ν on the product A × B endowed with the product algebra. Consider
the sum mapping π : A × B → A + B. The direct image π∗(µ × ν) defines
a measure on A + B. For any 0 ≤ α ≤ 1, the same construction defines a
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measure on αA + (1 − α)B for the mapping πα : A × B → αA + (1 − α)B,
πα(a, b) = αa + (1 − α)b. Because of this construction, given a measurable
mapping ω → Πω, we obtain a measure Π(P ) supported on the expectation
set E(R). For this measure Π(P ) the claimed equality holds.

Analogous construction for set of measures (as in the Choquet case) de-
fines the set of measure ΠE of the set of measures on E(R). For this set ΠE

the claimed equality holds.

5. Experiment

We propose the following tests at the Experimental Laboratory of the
University of Paris 1 (France) in order to understand the distribution of
types of DMs which have to compare the random set lotteries (see Appendix
for details). In other words, we tried through these experiments to reveal
the consistency of DM with ordering random sets with fixed act and varied
random sets.

Here are the tests we propose. Let us remark that in all tests the potential
gain or loss are expressed in terms of ECU (Experimental Currency Unit)
with 10 ECU = EUR 1.

Tests B1 and B2. B1: An urn contains white and black balls in un-
known proportion. Withdrawing a black ball DM gains ECU 100, otherwise
zero. B2: An urn contains white and black balls also in unknown proportion,
but withdrawing a black ball DM gains ECU 1000, otherwise zero.

We ask for money evaluation for EUR 1 for the former random set lottery
and EUR 10 for the latter one.

For both lotteries, the state space S = {s} is a singleton, then X ∼= R, the
dual space is X∗ ∼= R, and consider R = Id[0,1] the single segment random
set, and x = 100 for the former one and y = 1000 for the latter one.

The results show that 44 participants from 85 have a behavior differ-
ent from the Savage- or Choquet-types, since only 35 accepted the money
evaluation for both and 6 rejected for both.

This makes us think that 50% of the population is not SEU or CEU
decision makers.

Test C. There are two urns. Urn 1 contains white and black balls in un-
known proportion. Withdrawing a black ball DM gains ECU 1000, otherwise
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zero. Urn 2 also contains white and black balls in unknown proportion, but
withdrawing a black ball DM gains ECU 90, otherwise ECU 10.

These lotteries can be modeled in two ways. Either the same random set
and two different acts or two different random set and the same act.

For modeling with the same random set, consider S = {s1, s2} is a two-
elements set, then X ∼= R

2, the dual space is X∗ ∼= R
2, and consider R =

Id[(0,1),(1,0)] the single segment random set, and x((0, 1)) = 1000, x((1, 0)) = 0
for the former lottery and y((0, 1)) = 90, and y((1, 0)) = 10 for the latter
one.

Note, that the acts x and y are comonotone and 58.8% prefer y to x.
One another hand, we can model these lotteries differently. Namely,

consider a singleton S = {s}, then X ∼= R, the dual space is X∗ ∼= R.
For the former one we set R = Id[0,1] the single segment random set, and

u = 1000, and for the latter one we have another single segment random set
R′ = Id[ 1

100
, 9

100
].

From such a point of view, 58.8% prefer R′ to R.

Test D. The urn 1 is the same as in Test C, but gains are EUR 95 for
the black ball and ECU 5 for the white ball; the urn 2 is identical to that in
Test C.

These urns can be presented by the same function u = 100 and different
random sets R1 = Id[0.05,0.95] and R2 = Id[0.1,0.9] for the former and lat-
ter lotteries, or with the same single segment random set R = Id[(0,1),(1,0)],
and different acts f((0, 1)) = 95, x((1, 0)) = 5 for the former lottery and
y((0, 1)) = 90, and y((1, 0)) = 10 for the latter one.

For that case, 80% prefer the former one to the latter.

Test E. Case 1. An urn contains red, green, yellow and blue balls. There
are 1

3
either red or green balls and 2

3
either yellow or blue. The gains are:

red - ECU 100, yellow - ECU 60, blue - ECU 40, and green - ECU 20.
Case 2. Urn 1 contains 1

3
black balls to which we assign the gain ECU

100 and 2
3

white balls we assigned the gain ECU 60. Urn 2 also contains
also 1

3
black balls but to which assign the gain ECU 20 and 2

3
white balls we

assigned the gain ECU 40.
In the second case, urn 1 or urn 2 is chosen randomly.
For consider a 4 elements set S = {r, g, y, b}. Then X ∼= R

4 and X∗ ∼= R
4.

Consider the following measures in X∗, r = (1, 0, 0, 0), g = (0, 1, 0, 0),
y = (0, 0, 1, 0), b = (0, 0, 0, 1), A = (1

3
, 0, 2

3
, 0), and B = (0, 1

3
, 0, 1

3
).
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A function x(r) = 100, x(g) = 20, x(y) = 60, x(b) = 40.
Consider the following two random sets. Set Ω = {ω1, ω2}. Then, for

P1(ω1) = 1
3
, P1(ω2) = 2

3
, define the random set R1(ω1) = [r, g], R1(ω2) =

[y, b]. Another random set is R2 := Id[A,B].
RS-expected utility for the case 1: 1

3
[20, 100] + 2

3
[40, 60] = [100

3
, 220

3
].

RS-expected utility for the case 2: [1
3
20 + 2

3
40, 1

3
100 + 2

3
60] = [100

3
, 220

3
].

Now, consider the expectation of first random R1, E(R1) = 1
3
[r, g]+ 2

3
[y, b]

is the parallelogram with vertices A = 1
3
r + 2

3
y, C = 1

3
r + 2

3
b, D = 1

3
g + 2

3
y,

and B = 1
3
g + 2

3
b.

Thus, R2 = Id[A,B] is a diagonal of IdE(R1), that is the second lottery
corresponds to the smallest set, and there holds minR1

x = minR2
x and

maxR1
x = maxR2

x.
In the experiment, 15.3% are indifferent between these random sets lot-

teries, and 50% prefer R1 to R2.
Thus, this multidimensional random set shows a difference from the uni-

variate DM behavior wrt inclusion of sets.

6. Conclusion

The question we address is to know whether the concept of random sets
could be useful in decision theory. The answer to this question seems to be
positive. Indeed we show, see theorem 1, that under vNM setting wrt random
sets and a given act, decision making for a random set can be performed for
the set-valued expectation of the random set.
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Appendix

Appendix A. Capacity functionals

A random set R gives rise to the following capacity (or hitting) functional

TR(K) = P ({ω : R(ω) ∩ K 6= ∅}),

defined for K ranging over closed subsets of R
n.

The following properties of this capacity functional are easy to check.
1) TR is upper semi-continuous on F , that is T (Kn) → T (K) with Kn ↓

K.
2) The functionals given by

S1(K; K1) = TR(K ∪ K1) − TR(K)
· · ·

Sm(K; K1, . . . , Km) = Sm−1(K; K1, . . . , Km−1) − Sm−1(K ∪ Km; K1, . . . , Km−1)

are non-negative for all m ≥ 1 and K, Ki ∈ F .

Example 1. Let R = (−∞, X] be a random set in R
1, where X is a random

variable. Then TR(K) = P({X > inf K}) for K ∈ F .

Example 2. Let R = {X} be a random singleton in R
n. Then TR(K) =

P(X ∈ K) is the probability distribution of X.

It is not difficult to prove that the capacity functional TR is additive if
and only if R is a random singleton. Moreover, in this case Sm vanishes at
K = K1 ∩ . . . ∩ Km, m ≥ 1 (the inclusion-exclusion formula for additive
measures).

Example 3. Let R = B1(X) be the unit ball with random center X. Then
TR(K) = P(X ∈ (K + B1(0)), where A + B = {a + b | a ∈ A, b ∈ B}, A,
B ⊂ R

n. Note that this functional does not satisfy additivity.

Example 4. Let wt, t ≥ 0, be a Wiener process and let R be its set of zeros
R = {t ≥ 0 : wt = 0}. Then TR([a, b]) = 1 − 2/π arcsin

√

a/b.
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Choquet’s theorem (see the below result due to Matheron [7]) states that
a capacity functional which satisfies conditions 1) and 2) determines uniquely
the distribution of a random closed set:

Result 1 (Matheron [7]). Let T : F(Rn) → [0, 1]. There exists a unique
random closed set R in R

n with the capacity functional T such that P(R∩K 6=
∅) = T (K) iff T satisfies conditions 1) and 2).

The hitting functional is well-known as well as another functional, the
containment functional, which takes the following form tR(K) = P({ω :
R(ω) ⊂ K}), K ∈ F . This functional is upper semi-continuous and has non-
positive functions Sm, these functions are similar to Sm where ∪ is replaced
by ∩. Specifically, the following holds: 2’)

S1(K; K1) = tR(K ∩ K1) − tR(K)
· · ·

Sm(K; K1, . . . , Km) = Sm−1(K; K1, . . . , Km−1) − Sm−1(K ∩ Km; K1, . . . , Km−1)

are non-positive for all m ≥ 1 and K, Ki ∈ F .

The following result is due to Vitale [11]:

Result 2 (Vitale [11]). Let t : F → [0, 1]. There exists a unique random
closed compact set R in R

n with the capacity functional t such that P(R ⊂
K) = t(K) iff t satisfies conditions 1) and 2’).

For any random singleton R, we have TR = tR, and vice versa. The
difference TR − tR is called uncertainty.

Note (see Matheron [7]) that a random closed set R is convex if and only
if its hitting functional T is C-additive, that is if

TR(K ∪ K ′) + TR(K ∩ K ′) = TR(K) + TR(K ′)

for all convex compacts K and K ′ such that K ∪ K ′ is a convex compact.

In short, to set a random convex compact R is equivalent to setting a
measurable map from a probability space to the set of convex compact of R

n,
or else to set the hitting functional TR, or to set the containment functional
tR, or a probability distribution on the σ-algebra σF

4.

4The relation between the probability distribution on σF of a random set R and the
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Appendix B. The Experiment

Before we present the results, let us introduce the data set.

Appendix B.1. The data set

The experiments were made at the Experimental Economics Laboratory
of the University of Paris I Pantheon-Sorbonne. 85 individuals (mostly stu-
dents) have participated to the experiment.

The individuals are randomly selected from the Lab data base. The
figure of 85 is mainly a consequence of our budget of about EUR 2000. The
individuals got an email from the Lab to participate in an experiment.

For 10 minutes, we explain to the individuals through a PowerPoint doc-
ument the purpose of our study. The individuals know that the choice they
will make will determine their final gain in such a way that we expect them
to particpate in the tests seriously. In all tests the potential gain or loss are
expressed in terms of ECU (Experimental Currency Unit) with 10 ECU =
EUR 1. Each participant has an initial endowment of 160 ECU (that is,
EUR 16).

We explain to the individuals that the experiment includes five tests B1,
B2, C, D, E and that in all but two (tests B1 and B2) the tests require the
choice between two situations: situation 1 and situation 2. We explain to
the individuals that they can choose either situation 1, or situation 2 or they
can be indifferent to both options. B1 and B2 are different from the tests C,
D and E in the sense that the individuals have to say whether they agree to
bet respectively EUR 1 and EUR 10. There are also two other tests named
”Example” and ”Test A”. The purpose of the Example test is to permit the
individuals to get familiar with the computer sessions and the test A is a
control test. The results of neither tests are reported here.

It is usual in experimental economics to provide some financial incentives
to the individuals in order to avoid a random choice from them (some papers
show however that is there is no need to do so). As we said above, in order to

containment functional tR for an empirical random set Rµ : (2N , 22
N

, µ) → F(∆(N)) ⊂
F(RN ) is known as the Möbious transform. Here N is a finite set, ∆(N) is the simplex
{x ∈ R

N |xi ≥ 0,
∑

i∈N xi = 1}, and Rµ(A) = ∆(A) = {x ∈ R
N |xi ≥ 0,

∑

i∈A xi = 1},
A ⊆ N .
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incite the individuals to answe the questions seriously, we explain them from
the beginning that that the computer will randomly choose one test among
the five tests other than B1 and B2 and that they will play the game that is
included in this test. Their gain or loss in this game will be added to their
initial endowment of EUR 16 in order to have their final payment (which is
of course never negative). Moreover the individuals always have to play test
B1 and B2. Their gain or loss in the two games is also added to their initial
endowment.

Appendix B.2. Some informations about the participants

The first table provides some information about the status of the indi-
viduals (student or not).

Table 1.

Status Frequency Percent

Student 79 92.94
Non student 6 7.06

Total 85 100

The second table provides some information about the distribution of the
data set according to the gender of the individuals.

Table 2.

Sex Frequency Percent

F 40 47.06
M 45 52.94

Total 85 100

The third and fourth tables provide some information about the distri-
bution of the data set according to the age of the individuals. In the fourth
table the ”young” category includes the subjects under 25.

Table 3. Age

Mean SD Min Max

24.97 6.69 18 52
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Table 4.

Age Category Frequency Percent

Young 58 68.24
Old 27 31.76

Total 85 100

Tables 5 and 6 provide some information about the distribution of the
data set according to the PSC of the father and of the mother in three cate-
gories respectively: executive/employee or blue collar worker/unemployed or
retired.

Table 5.

PSC of Frequency Percent

the father

Executive 45 52.94
Employee

or Blue collar 25 29.41
Unemployed
or Retired 15 17.65

Total 85 100

Table 6.

PSC of Frequency Percent

the mother

Executive 19 22.35
Employee

or Blue collar 41 48.24
Unemployed
or Retired 25 29.41

Total 33 100

Finally we provide in table 7 the distribution of the data set according to
whether the individual found the experiment interesting or not (”Interest”
variable).

Table 7.

Interest Frequency Percent

No 4 4.71
Yes 81 95.29

Total 85 100
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Appendix B.3. The results

Table 8 includes the answers of the participants concerning the tests B1,
B2, C, D and E.
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Table 8.

Obs Test-B1 Test-B2 Test-C Test-D Test-E

1 Yes No 1 1 1
2 Yes No 1 1 2
3 Yes Yes 1 3 3
4 Yes Yes 1 3 3
5 Yes No 1 2 1
6 Yes No 1 1 1
7 Yes Yes 1 2 1
8 Yes No 1 1 1
9 Yes No 2 3 1
10 Yes No 2 1 1
11 No No 2 3 1
12 Yes No 1 1 2
13 Yes No 1 1 3
14 Yes Yes 2 1 1
15 Yes No 2 1 2
16 No No 1 3 2
17 No No 2 1 1
18 Yes Yes 1 1 2
19 Yes No 1 1 3
20 Yes Yes 1 1 1
21 Yes No 1 1 1
22 Yes No 1 1 3
23 Yes No 1 1 2
24 No No 2 1 1
25 Yes No 1 1 1
26 Yes Yes 2 1 3
27 Yes Yes 1 1 2
28 Yes Yes 1 1 1
29 Yes No 1 1 3
30 Yes No 2 1 1
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Obs Test-B1 Test-B2 Test-C Test-D Test-E

31 Yes No 1 1 1
32 Yes No 1 1 2
33 Yes No 1 2 1
34 Yes Yes 1 1 1
35 Yes No 2 1 1
36 Yes No 1 2 2
37 Yes Yes 2 1 1
38 Yes Yes 1 2 1
39 Yes No 2 1 2
40 Yes No 1 3 3
41 Yes Yes 1 1 1
42 Yes No 1 1 1
43 Yes No 2 1 1
44 Yes Yes 1 1 3
45 Yes No 2 1 2
46 Yes No 2 1 2
47 Yes No 1 1 1
48 Yes No 2 1 2
49 Yes No 2 1 1
50 Yes No 2 1 2
51 Yes No 1 1 2
52 Yes Yes 2 1 2
53 Yes No 2 1 1
54 No Yes 2 1 3
55 Yes Yes 3 3 2
56 Yes Yes 1 1 1
57 Yes Yes 1 1 2
58 Yes Yes 1 3 1
59 Yes Yes 1 1 2
60 Yes No 3 1 3
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Obs Test-B1 Test-B2 Test-C Test-D Test-E

61 Yes Yes 1 1 2
62 Yes No 1 2 3
63 No Yes 2 1 1
64 Yes No 1 1 2
65 Yes Yes 2 1 1
66 Yes Yes 1 1 1
67 Yes No 1 1 1
68 No No 2 1 2
69 Yes No 1 1 1
70 Yes Yes 1 1 2
71 Yes Yes 1 1 2
72 Yes No 1 1 1
73 No Yes 2 3 1
74 Yes Yes 1 1 3
75 No No 2 1 1
76 Yes Yes 2 1 2
77 No Yes 1 1 1
78 Yes Yes 1 1 2
79 Yes Yes 2 1 2
80 Yes No 2 1 1
81 Yes No 2 3 2
82 Yes No 2 1 2
83 Yes Yes 2 1 1
84 Yes No 2 1 1
85 No Yes 1 2 1
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Table 9 provides the frequency of the answers to the tests.

Table 9.

Test-B1 Frequency Percent

Answer=Yes 74 87.06
Answer=No 11 12.94

Total 85 100
Test-B2 Frequency Percent

Answer=Yes 35 41.18
Answer=No 50 58.82

Total 85 100
Test-C Frequency Percent

Answer=1 50 58.82
Answer=2 3 38.82
Answer=3 2 2.35

Total 85 100
Test-D Frequency Percent

Answer=1 68 80
Answer=2 7 8.24
Answer=3 10 11.76

Total 85 100
Test-E Frequency Percent

Answer=1 43 50.29
Answer=2 29 34.12
Answer=3 13 15.29

Total 85 100
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