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Abstract 

 
We transpose the Generalized Impulse-Response Function 

(GIRF) developed by Koop et al. (1996) to Markov-Switching 

structural VARs. As the algorithm displays an exponentially 

increasing complexity as regards the prediction horizon, we 

use the collapsing technique to easily obtain simulated 

trajectories (shocked or not), even for the most general 

representations. Our approach encompasses the existing IRFs 

proposed in the literature and is illustrated with an applied 

example on gross job flows.  
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1 Introduction 

In the Nineties, main macroeconomic time series (GDP, interest rates, 

unemployment...) were found nonlinear, underlining the need to replace linear 

representations by nonlinear ones to model economic relations. Models like threshold 

autoregressions (Tong 1990, Terasvirta 1995) or Markov-switching vector 

autoregressions (MS-VAR hereafter) (Hamilton 1989, Krolzig 1997) have encountered a 

huge success in modelling processes characterized by nonlinear dynamics. With these 

specifications and the introduction of economically-identified shocks, the analyst 

reaches the richer investigation field of state-, sign- or size asymmetries in the 

economic and financial mechanisms1, which is not possible in the linear frame.  

A simple and popular tool for dynamics investigation in applied macroeconomics, and 

particularly the structural VAR literature, is the impulse-response function (IRF 

hereafter). Indeed, it provides a global picture of what happens in a system hit by an 

exogenous shock within a given horizon. Potter (2000) and Koop et al. (1996) 

generalized the traditional linear IRF approach and derived the formal requirements 

for IRF in nonlinear representations: history- and shock- dependencies. With these 

seminal articles, generalized IRFs (GIRF hereafter) are widely employed in the frame of 

threshold representations, particularly to examine the three kinds of asymmetries (e.g. 

Weise 1999 among many others). However, this issue is less developed in the MS-VAR 

literature.  

Up to now, Ehrmann et al. (2003) propose a regime-dependent IRF to study the 

response of the system conditionally to the regime in which the shock occurs and with 

no change in regime afterwards. Karamé (2010) generalizes their approach to whatever 

visited states in the wake of the shock. These approaches are very close to the 

traditional linear literature on IRF since they are based on several steps ahead 

predictions. However, they are unable to question sign or size asymmetries issues 

(Karamé 2011). Camacho & Perez-Quiros (2011) propose an IRF based on a one-step 

ahead prediction since it partially uses the updating step on regime probabilities of the 

Hamilton filter. It is able to examine the three kinds of asymmetries but fails to fulfil 

all the requirements defined by Koop et al. (1996), particularly shock-dependence.  

The present paper fully transposes the approach developed by Koop et al. (1996) to 

structural MS-VAR. As GIRF calculation displays an exponentially increasing 

                                              

1 See Hamilton (1989), Beaudry & Koop (2003), Engel & Hamilton (1990), Sensier et al. (2002) and Sichel 
(1994) among many others.  
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complexity as regards the prediction horizon, we use the collapsing technique as the 

practical solution to obtain simulated trajectories (shocked or not) even for the most 

general representations. We then show that our GIRF encompasses the existing IRFs 

in the literature.  

The paper is organised as follows. First, we present the econometric context. Second, 

we present the algorithm to calculate the GIRF. At last, we illustrate this new tool with 

an applied example based on aggregate gross job flows.  

2 The Markov-switching structural VAR  

Our standard MS-VAR is:  
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µ , { }S,...j 1∈∀ , { }11 −∈∀ S,...i  is the set of unknown 

parameters estimated by TΘ̂ .  

In the nonlinear empirical literature, several attempts have been made to identify 

economically interpretable shocks (e.g. Krolzig & Toro 1998, Ehrmann et al. 2003 or 

Camacho & Perez-Quiros 2011 among others). Karamé (2010) extends this approach 

by supposing tst t
Du ε⋅=  with tε  iid gaussian N (0,I) and solving:  

'DD
ttt ss

u
s ⋅=Ω  (2) 

ts
D  is not necessarily triangular2. The same set of restrictions across the regimes is 

assumed to identify the shocks but this can be relaxed.  

                                              

2 See Davis & Haltiwanger (1999) for an example.  
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3 A generalized impulse-response function  

3.1 Assumptions and initialization of the algorithm  

As in Koop et al. (1996), four assumptions are necessary to run the exercise.  

1. The dynamic nonlinear model and its parameters are known3.  

2. An identified shock [ ] 1=itε  (the ith column of an identity matrix for shock i) occurs 

at date t. Otherwise, ),N(ht 1
0=+ε  if h > 0.  

3. We draw A subsamples from the data for the initial lagged values of the system 

variables a
t:pty

1−−  (a = 1,… A) at the beginning of the recursion. We also need the 

current regime probability );yjs(P a
t:

a
t Θ=

1
4. To assess state asymmetry, initial 

conditions can be drawn from ‘homogeneous’ regimes, i.e. subsamples selected with 

a rule such as 
{ }

);yis(PMax);yjs(P a
t:

a
t

S...i

a
t:

a
t Θ==Θ=

∈
1

1
1

.  

4. B sequences of future shocks b
hte +  iid Gaussian N (0, NI ) (h = 0,… H, b = 1,… B) hit 

the system at each date. Combined with the model prediction, it provides the 

‘realization’ of system variables5.  

3.2 The algorithm  

We first predict the system variables using:  

htj

p
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i
khtj,kj
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ht:pthththt
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j,i
htŷ +  depends on the current regime for parameters and on the previous regime for 

lagged variables i
khty −+  that will be defined soon. Simulated variables for this trajectory 

are obtained with:  

                                              

3 Uncertainty on parameters estimation can also be taken into account by repeating the following algorithm 
for a large number of draws in the estimated parameters joint distribution.  

4 Practically, we randomly draw an observation number from [ ]T,p 1+ . Initial values a
t:pty 1−−  are the 

corresponding p previous observations. The probability of the current regime is initialized with the 

estimated filtered probability )ˆ;ys(P T
a

t:
a
t Θ1

.  

5 As in the usual VAR or the threshold approaches, boostrap can be used in the non-gaussian case.  
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Every iteration multiplies the inference on system variables by S. The collapsing 

technique (Kim 1994, Karamé 2011) circumvents this problem by averaging 
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It replaces a S²-gaussian mixture representation by an S-Gaussian mixture. Thus, we 

only handle S inferences on variables that constitute the input for the next prediction 

step (figure 1).  

Collapsing requires probabilities calculated with a filter à la Hamilton6. For h  ≥ 1, 

knowing )isjs(Pp̂ hthtij === −++ 1
 and );yis(P a
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, we calculate prior joint 

probabilities for hts +  and 
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We form the joint and the marginal densities: 
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The probabilities needed for the collapsing operation are updated, providing the 

filtered probabilities needed as input for the next iteration:  

                                              

6 See also Hamilton (1994) or Krolzig (1997).  

7 We do not apply this step for h  = 0 since the current probabilities )ˆ;ys(P T
a

t:
a
t Θ1

 is supposed at 

initialization. This assumption is made to encompass existing IRF.  
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The simulated trajectories (conditionally to initial values and future shocks) are 

obtained as:  
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These steps are repeated until horizon H for the shocked trajectory and the baseline, 

and for all possible combinations of a and b.  

3.3 The output  

For a sufficiently large number of repetitions, the GIRF is obtained from the shocked 

trajectory { }H
h

b
ht:t

a
t:ptt

b,a
ht ;e,y,y

0
1

=
+−−+ Θε  and the baseline { }H

h

b
ht:t

a
t:pt),N(t

b,a
ht ;e,y,y

0
11

0
=

+−−+ Θ=ε  

as: ,H,...h 0=∀  

∑
=

+−−++−−+−− 










 Θ=−





 Θ≈Θ

B

b

b
ht:t

a
t:pt),N(t

b,a
ht

b
ht:t

a
t:ptt

b,a
ht

a
t:ptty ;e,y,y;e,y,y

B
);y,,h(GI

1

11111
0

1 εεε  

State asymmetry can be illustrated using: ,H,...h 0=∀   

{ }

{ }∑

∑

=
∈

=
∈

−−







 Θ==Θ=







 Θ==Θ=⋅Θ

≈Θ=
A

a

a
t:

a
t

S...i

a
t:

a
t

A

a

a
t:

a
t

S...i

a
t:

a
t

a
t:ptty

a
tty

);yis(PMax);yjs(P

);yis(PMax);yjs(P);y,,h(GI

);js,,h(GI

1

1
1

1

1

1
1

11

1

1ε
ε  

with )x(1  an indicator function taking the value 1 if x is verified and 0 otherwise. One 
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One has thus to compare );,h(GI ty Θε  with αεα /);,h(GI ty Θ  to assess sign and/or size 

asymmetries of structural shocks.  
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3.4 Relation with existing IRFs  

Previous IRFs can be expressed as special cases of ours. In Erhmann et al. (2003), 

there is no iteration on probabilities (there is no more change in regime). In Karamé 

(2010), the probabilities are initialized to 1 or 0, evolve but are not updated. Karamé 

(2011) show there is no need for drawing future shocks and initial values for these two 

IRFs. Furthermore, the use of collapsing renders the calculation of the Karamé’s IRF 

instantaneous. Camacho & Perez-Quiros (2011) randomly draw initial conditions but 

set all future shocks to 0. Updating probabilities is then only possible at the date of 

the shock. Afterwards, their approach amounts to a naïve approach.  

4 Illustration 

We want to show that choosing an IRF is not neutral as regards the conclusions. We 

reproduce the Davis & Haltiwanger (1999) article on US manufacturing gross job flows 

(from Davis et al. 2006, figure 2) by replacing the linear structural VAR representation 

with a general bivariate MS structural VAR with two lags and two regimes (table 1). 

The dynamic coefficients are quite different, implying two well differentiated regimes. 

The probabilities of remaining in regime 1 and 2 are 0.95, which is usual in the 

literature. Regime 1 is prevailing and switching from the minor regime 2 is quite easy 

(figure 3). Following the Davis & Haltiwanger preliminary approach, we assume the 

responses of both creation and destruction to an allocation shock have the same 

magnitude8. We then identify the second shock as an aggregate shock. We compare 

our GIRF to the ones provided by Erhmann et al. (2003), Karamé (2010) and Camacho 

& Perez-Quiros (2011). Simulation parameters for initial values and future shocks are 

set respectively to A = 500 and B = 500, which allows to reach stable results.  

IRFs deliver qualitatively the same message (figure 4). However, the linear IRF and the 

Camacho & Perez-Quiros IRF significantly over-estimate the magnitude and the 

persistence in the responses of job flows in our example.  

5 Conclusion  

We propose a generalized IRF for MS structural VARs verifying the requirements 

derived by Koop et al. (1996). As the complexity of the algorithm exponentially 

increases with the forecast horizon, we simulate the model using the collapsing 

technique. We show that our GIRF encompasses the existing IRFs and that 

                                              

8 The whole parameterization (including the identification scheme) is neutral in the analysis since it is used 
to calculate all IRFs.  
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conclusions can be influenced by the retained IRFs. Future research may use this tool 

to provide a formal statistical test for asymmetries.  
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Figure 1: The collapsing technique  
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Figure 3: Smoothed probabilities (regime 2) 
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Figure 4: IRF 9 (with the GIRF 95% empirical confidence bands) 

                                              

9 C & PQ (2011) and EEV (2003) stand for the IRF proposed respectively by Camacho & Perez-Quiros (2011) and 
Erhmann et al. (2003).  
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