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Abstract
This article focuses on a new concept of quadratic variation for processes taking values in a Banach space

B and a corresponding covariation. This is more general than the classical one of Métivier and Pellaumail.
Those notions are associated with some subspace χ of the dual of the projective tensor product of B with
itself. We also introduce the notion of a convolution type process, which is a natural generalization of the
Itô process and the concept of ν̄0-semimartingale, which is a natural extension of the classical notion of
semimartingale. The framework is the stochastic calculus via regularization in Banach spaces. Two main
applications are mentioned: one related to Clark-Ocone formula for finite quadratic variation processes;
the second one concerns the probabilistic representation of a Hilbert valued partial differential equation of
Kolmogorov type.

[2010 Math Subject Classification: ] 60G22, 60H05, 60H07, 60H15, 60H30, 26E20, 35K90 46G05

Key words and phrases Calculus via regularization, Infinite dimensional analysis, Tensor analysis,
Clark-Ocone formula, Dirichlet processes, Itô formula, Quadratic variation, Stochastic partial differential
equations, Kolmogorov equation.

1 Introduction and motivations

The notion of covariation and quadratic variation are fundamental in stochastic calculus related to
Brownian motion and semimartingales. However, they also play a role in stochastic calculus for non-
semimartingales.

In the whole paper a fixed strictly positive time T > 0 will be fixed. Given a real continuous process
X = (Xt)t∈[0,T ], there are two classical definitions of quadratic variation related to it, denoted by [X].
The first one, inspired to [23], says that, when it exists, [X]t is a continuous process being the limit, in

probability, of
∑n−1
i=0 (Xti+1∧t − Xti∧t)

2 where 0 = t0 < t1 < . . . < tn = T is element of a sequence of

subdivisions whose mesh maxn−1
i=1 (ti+1 − ti) converges to zero. The second one, less known, is based on

stochastic calculus via regularization; it characterizes [X] as the continuous process such that [X]t is the

limit in probability for every t ∈ [0, T ], when ε → 0, of 1
ε

∫ t
0
(Xs+ε −Xs)

2ds, t ∈ [0, T ]. In all the known
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examples both definitions give the same result. We will use here the second formulation, which looks
operational and simple. If [X] exists than X is said finite quadratic variation process. A real process
X such that [X] ≡ 0 is called zero quadratic variation process; we also say in this case that X has a
zero quadratic variation. If X is a (continuous) semimartingale, [X] is the classical bracket. Consequently,
if W is the real Brownian motion then [W ]t = t.

In Section 5 we remind a suitable notion of quadratic variation for a process X with values in a
Banach space B, [17, 14]. This has significant infinite dimensional applications but it also has motivations
in the study of real stochastic processes with finite quadratic variation, even for Brownian motion and
semimartingales.

Indeed, the class of real finite quadratic variation processes is quite rich even if many important fractional
type processes do not have this property. Below we enumerate a list of such processes. All the considered
processes will be continuous for simplicity. A survey of stochastic calculus via regularization which focuses
on covariation is [45].

1. A bounded variation process has zero quadratic variation.

2. A semimartingale with decomposition S = M + V , M being a local martingale and V a bounded
variation process is a finite quadratic variation process with [S] = [M ].

3. A fractional Brownian motion X = BH , 0 < H < 1 has finite quadratic variation if and only if H ≥ 1
2 .

If H > 1
2 , it is a zero quadratic variation process.

4. An important subclass of finite quadratic variation processes is constituted by Dirichlet processes,
which should more properly be called Föllmer-Dirichlet, since they were introduced by H. Föllmer
[24]; they were later further investigated by J. Bertoin, see [2]. An a (Ft)-Dirichlet process admits
a (unique) decomposition of the form X = M + A, where M is an (Ft)-local martingale and A is
a zero quadratic variation (such that A0 = 0 a.s.). In this case [X] = [M ]. It is simple to produce
Dirichlet processes X with the same quadratic variation as Brownian motion. Consider for instance
X =W +A where W is a classical Brownian motion and A has zero quadratic variation. In general
we postulate that A0 = 0 a.s. so that the mentioned decomposition is unique.

5. Another interesting example is the bifractional Brownian motion, introduced first by [29]. Such a
process X depends on two parameters 0 < H < 1, 0 < K ≤ 1 and it is often denoted by BH,K . If
HK > 1

2 then BH,K has zero quadratic variation. If K = 1, that process is a fractional Brownian
motion with parameter H. A singular situation produces when HK = 1

2 . In that case X is a
finite quadratic variation process and [X]t = 21−Kt. That process is neither a semimartingale nor a
Dirichlet process, see [40]. In particular not all the finite quadratic variation processes are Dirichlet
processes.

A simple link from real valued processes to Banach valued processes is the following. Let 0 < τ ≤ T .
Let X = (Xt, t ∈ [0, T ]) be a real continuous process, that we naturally prolongate for t ≤ 0 setting
Xt = X0 and Xt = XT if t ≥ T . The process X(·) defined by X = X(·) = {Xt(u) := Xt+u;u ∈ [−τ, 0]},
constitutes the τ -memory of process X. The natural state space for X is the non-reflexive separable space
B = C([−τ, 0]). X(·) is the so called window process associated with X (of width τ > 0). If X is a
Brownian motion (resp. semimartingale, diffusion, Dirichlet process), then X(·) will be called window
Brownian motion (resp. window semimartingale, window diffusion, window Dirichlet process).

If X =W is a classical Wiener process, X = X(·) has no natural quadratic variation, in the sense of
Dinculeanu or Métivier and Pellaumail, see Subsection 5.2. However it will possess a more general quadratic
variation called χ-quadratic variation, which is related to a specific sub-Banach space χ of (B⊗̂πB)

∗.
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A first natural application of our covariational calculus is motivated as follows. If h ∈ L2(Ω), the
martingale representation theorem states the existence of a predictable process ξ ∈ L2(Ω× [0, T ]) such that

h = E[h] +
∫ T
0
ξsdWs. If h ∈ D1,2 in the sense of Malliavin calculus, see for instance [34, 31], the celebrated

Clark-Ocone formula says ξs = E [Dm
s h|Fs] where Dm is the Malliavin gradient. So

h = E[h] +

∫ T

0

E [Dm
s h|Fs] dWs. (1)

A.S. Ustunel [48] obtains a generalization of (1) when h ∈ L2(Ω), making use of the predictable projections
of a Wiener distributions in the sense of S. Watanabe [51].
A natural question is the following: is Clark-Ocone formula robust if the law of X =W is not anymore the
Wiener measure but X is still a finite quadratic variation process even not necessarily a semimartingale? Is

there a reasonable class of random variables h for which a representation of the type h = H0 +
′′
∫ T
0
ξsdX

′′
s ,

H0 ∈ R, ξ adapted? Since X is a not a semimartingale, previous integral has of course to be suitably
defined, in the spirit of a limit of Riemann-Stieltjes non-anticipating sum. We decided however to interpret
the mentioned integral as a forward integral in the regularization method, see Section 3. We denote it as∫ T
0
ξsd

−Xs.
So let us suppose that X0 = 0, [X]t = t and τ = T for simplicity. We look for a reasonably rich class of
functionals G : C([−T, 0]) −→ R such that the r.v. h := G(XT (·)) admits a representation of the type

h = G0 +

∫ T

0

ξsd
−Xs, (2)

provided that G0 ∈ R and ξ adapted process with respect to the canonical filtration of X. The idea is to
express h = G(XT (·)) as u(T,XT (·)) or in some cases

h = G(XT (·)) = lim
t↑T

u(t,Xt(·)),

where u ∈ C1,2 ([0, T [×C([−T, 0])) solves an infinite dimensional partial differential equation, and (2) holds

with ξt = Du(t, η)({0}), t ∈]0, T [. At this point we will have h = u(0, X0(·)) +
∫ T
0
ξsd

−Xs, recalling that
Du : [0, T ]× C([−T, 0]) −→ (C([−T, 0])∗ =M([−T, 0]). This is the object of Section 7.3. A first step in
this direction was done in [16] and more in details in Chapter 9 of [15].

A second interesting application concerns convolution processes, see Section 5.3. Consider H and U two
separable Hilbert spaces and a C0-semigroup (etA) on H, see Sections 2.2 for definitions and references. Let
W be an U -values Q-Wiener process for some positive bounded operator Q on U . Let σ = (σt, t ∈ [0, T ])
and b = (bt, t ∈ [0, T ]) two suitable predictable integrands, see Section 2.3 for details. An H-valued
convolution process has the following form:

Xt = etAx0 +

∫ t

0

e(t−r)AσrdWr +

∫ t

0

e(t−r)Abrdr, t ∈ [0, T ], (3)

for some x0 ∈ H. Convolution type processes are an extension of Itô processes, which appear when A
vanishes. Mild solutions of infinite dimensional evolution equations are in natural way convolution processes.
They have no scalar quadratic variation even if driven by a one-dimensional Brownian motion. Still it can
be proved that they admit a χ-quadratic variation for some suitable space χ, see Proposition 5.21.
Another general concept of processes that we will introduce is the one of ν̄0-semimartingales. An H valued
process X is said ν̄0-semimartingale if there is Banach space ν̄0 including H (or in which H is continuously
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injected) so that X is the sum of an H-valued local martingale and a bounded variation ν̄0-valued process.
A convolution process will be shown to be a ν̄0-semimartingale, where the dual ν̄∗0 equals D(A∗), see item
2. of Proposition 5.21.

Let us come back for a moment to real valued processes. A real process X is called weak Dirichlet
(with respect to a given filtration), if it can be written as the sum of a local martingale and a process
A such that [A,N ] = 0 for every continuous local martingale. A significant result of F. Gozzi and F.
Russo, see [28], is the following. If f : [0, T ] × R → R is of class C0,1, then Yt = f(t,Xt), t ∈ [0, T ] is a
weak Dirichlet process. A similar result, in infinite dimension, is obtained replacing the process X with
its associated window X(·), see [14]. The notion of Dirichlet process extends to the infinite dimensional
framework via the notion of ν-weak Dirichlet process, see Definition 5.9. An interesting example of ν-weak
Dirichlet process is given, once more, by convolution processes, see Proposition 5.21.

Generalizing the result of [28], it can be proved that, given u : [0, T ]×R→ R of class C0,1 and being X
a suitable ν-weak Dirichlet process with finite χ-quadratic variation, where χ is Chi-subspace associated
with ν, then Yt = u(t,Xt) is a real weak Dirichlet process. Moreover its (Fukushima-Dirichlet type)
decomposition is provided in Theorem 6.7. That theorem can be seen as a substitution-tool of Itô’s formula
if u is not smooth and is a key tool for the application we provide in Section 8. Examples of such ν-weak
Dirichlet processes are convolution type processes, or more generally ν̄0-semimartingales, see Proposition
5.15, item 2. In Section 8, we study the solution of a non-homogeneous Kolmogorov equation and we
provide a uniqueness result for the related solution. The proof of the result is based on the a representation
result for (strong) solutions of the Kolmogorov equation that is obtained thanks to the uniqueness of the
decomposition of a real weak Dirichlet process. The uniqueness result covers cases that, as far as we know,
were not yet included in the literature. For instance, in our results, the initial datum g of the Kolmogorov
equation is asked be continuous but we do not require any boundedness assumption on it. This kind of
problem cannot be studied if the problem is approached, as in [4, 26], looking at the properties of the
transition semigroup on the space Cb(H) (resp. on Bb(H)) of continuous and bounded (resp. bounded)
functions defined on H, because, in this case, the initial datum always needs to be bounded. More details
are contained in Section 8. In the same spirit, further applications to stochastic verification theorems, in
which the Kolmogorov type equation, is replaced by an Hamilton-Jacobi-Bellman equation, can be realized,
see for instance [22].

2 Preliminaries

2.1 Functional analysis background

Given an underlying Banach space B (resp. Hilbert space H), | · |B (resp. | · |H) will generally denote
the norm related to B (resp. H). However, if the considered norm is clear we will often only indicate it
by | · |. Even the associated inner product with | · |H will be indicated by 〈·, ·〉H or simply by 〈·, ·〉. Given
an element a of a Hilbert space H, we generally denote by a∗, the corresponding element of H∗ via Riesz
identification. We will use the identity H∗〈a

∗, b〉H = 〈a, b〉H = 〈a, b〉H without comments. Let B1, B2 be
two separable real Banach spaces. We denote with B1 ⊗B2 the algebraic tensor product defined as the
set of the elements of the form

∑n
i=1 xi ⊗ yi, for some positive integer n where xi and yi are respectively

elements of B1 and B2. The product ⊗ : B1 ×B2 → B1 ⊗B2 is bilinear.
A natural norm on B1 ⊗ B2 is the projective norm π: for all u ∈ B1 ⊗ B2, we denote with π(u) the
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norm

π(u) := inf

{
n∑

i=1

|xi|B1 |yi|B2 : u =

n∑

i=1

xi ⊗ yi

}
.

This belongs to the class of the so-called reasonable norms |·|, in particular verifying |x1⊗x2| = |x1|B1
|x2|B2

,
if x1 ∈ B1, x2 ∈ B2. We denote with B1⊗̂πB2 the Banach space obtained as completion of B1 ⊗B2 for the
norm π, see [46] Section 2.1. We remark that its topological dual (B1⊗̂πB2)

∗ is isomorphic to the space of
continuous bilinear forms Bi(B1, B2) of continuous bilinear forms, equipped with the norm ‖ · ‖B1,B2 where
‖Φ‖B1,B2 = supa1∈B1,a2∈B2

|a1|B1
,|a2|B2

≤1,

|Φ(a1, a2)|.

Lemma 2.1. Let B1 and B2 be two separable, reflexive real Banach spaces. Given a∗ ∈ B∗1 and b∗ ∈ B∗2
we can associate to a∗ ⊗ b∗ the elements j(a∗ ⊗ b∗) of (B1 ⊗B2)

∗ acting as follows on a generic element
u =

∑n
i=1 xi ⊗ yi ∈ B1 ⊗B2:

〈j(a∗ ⊗ b∗), u〉 =
n∑

i

〈a∗, xi〉 〈b
∗, yi〉 .

j(a∗ ⊗ b∗) extends by continuity to the whole B1 ⊗B2 and its norm in (B1 ⊗B2)
∗ equals |a∗|B∗1 |b

∗|B∗2 . In

particular if νi is a (dense) subspaces of B∗i , i = 1, 2, then the projective tensor product ν1⊗̂πν2 can be
seen as a subspace of (B1⊗̂πB2)

∗.

Proof. See [22] Lemma 2.4.

Remark 2.2. We remark that B1⊗̂πB2 fails to be Hilbert even if B1 and B2 are Hilbert spaces. It is not
even reflexive space. Fore more information about tensor topologies, we refer e.g. to [46].

Let us consider now two separable Banach spaces B1 and B2. With C(B1;B2), we symbolize the set of
the locally bounded continuous B2-valued functions defined on B1. This is a Fréchet type space with the
seminorms

‖u‖r := sup {|u(x)|B2
: x ∈ B1, with |x|B1

≤ r} (4)

for r ∈ N∗.
If B2 = R we will often simply use the notation C(B1) instead of C(B1;R). Similarly, given a real

interval I, typically I = [0, T ] or I = [0, T [, we use the notation C(I ×B1;B2) for the set of the continuous
B2-valued functions defined on I×B1 while we use the lighter notation C(I×B1) when B2 = R. Eventually
a function (t, η) 7→ u(t, η) ∈ C(I×B1) will be said to belong to C1,2(I×B1) if ∂tu(t, η) belongs to C(I×B1)
while (denoted with D and D2 the derivatives w.r.t. the variable η ∈ B1) Du(t, η) belongs to C(I×B1;B1

∗)
and D2u(t, η) to C(I ×B1;Bi(B1, B1)).

We denote by L(B1;B2) the space of linear bounded maps from B1 to B2. It is of course a Banach
space and we will denote by ‖ · ‖L(B1;B2) the corresponding norm. We will often indicate in the sequel by a
double bar, i.e. ‖ · ‖ the norm of an operator or more generally of a function. As a particular case, if we
denote U,H two separable Hilbert spaces, L(U ;H) will be the space of linear bounded maps from U to H.
If U = H, we set L(U) := L(U ;U). L2(U ;H) will be the set of Hilbert-Schmidt operators from U to H and
L1(H) (resp. L+

1 (H)) will be the space of (non-negative) nuclear operators on H. For details about the
notions of Hilbert-Schmidt and nuclear operator, the reader may consult [46], Section 2.6 and [8] Appendix
C. If T ∈ L2(U ;H) and T ∗ : H → U is the adjoint operator, then TT ∗ ∈ L1(H) and the Hilbert-Schmidt
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norm of T gives ‖T‖2L2(U ;H) = ‖TT
∗‖L1(H). We recall that, for a generic element T ∈ L1(H) and given a

basis {en} of H the sum
∑∞
n=1 〈Ten, en〉 is absolutely convergent and independent of the chosen basis {en}.

It is called trace of T and denoted with Tr(T ). L1(H) is a Banach space and we denote by ‖ · ‖L1(H) the
corresponding norm. If T is non-negative then Tr(T ) = ‖T‖L1(H) and in general we have the inequalities

|Tr(T )| ≤ ‖T‖L1(H),

∞∑

n=1

| 〈Ten, en〉 | ≤ ‖T‖L1(H), (5)

see Proposition C.1, [8]. As a consequence, if T is a non-negative operator, the relation below

‖T‖2L2(U ;H) = Tr(TT ∗). (6)

will be very useful in the sequel.
Observe that every element u ∈ H⊗̂πH is isometrically associated with an element Tu in the space of

nuclear operators L1(H). The identification (which is in fact an isometric isomorphism) associates to any
element u of the form

∑∞
i=1 an ⊗ bn in H⊗̂πH the nuclear operator Tu defined as

Tu(x) :=
∞∑

i=1

〈x, an〉 bn, (7)

see for instance [46] Corollary 4.8 Section 4.1 page 76.
We recall that, to each element ϕ of (H⊗̂πH)

∗, we can associate a bilinear continuous map Bϕ and a
linear continuous operator Lϕ : H → H such that

〈Lϕ(x), y〉 = Bϕ(x, y) = ϕ(x⊗ y) for all x, y ∈ H, (8)

see [46], the discussion before Proposition 2.11 Section 2.2. at page 24. One can prove the following, see
[22] Proposition 2.6 or [15] Proposition 6.6.

Proposition 2.3. Let u ∈ H⊗̂πH and ψ ∈ (H⊗̂πH)
∗ with associated maps Tu ∈ L1(H), Lϕ ∈ L(H;H).

Then

(H⊗̂πH)∗〈ϕ, u〉H⊗̂πH
= Tr (TuLϕ) .

Proposition 2.4. Let g : [0, T ]→ L+
1 (H) measurable such that

∫ T

0

‖g(r)‖L1(H)dr <∞. (9)

Then
∫ T
0
g(r)dr ∈ L+

1 (H) and its trace equals
∫ T
0
Tr(g(r))dr.

Proof.
∫ T
0
g(r)dr ∈ L1(H) by the the first inequality of (5) and by Bochner integrability property. Clearly

the mentioned integral is a non-negative operator. The remainder follows quickly from the relation between
the trace and the L1(H) norm that we have recalled above; indeed if (en) is an orthonormal basis,

N∑

n=1

〈∫ T

0

g(r) dr en, en

〉
=

∫ T

0

N∑

n=1

〈g(r)en, en〉 dr

and we can pass to the limit thanks to (5), (9) and Lebesgue’s dominated convergence theorem.
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2.2 General probabilistic framework

In the whole paper we will fix T > 0. (Ω,F ,P) will be a fixed probability space and P will denote the
predictable σ-field on Ω× [0, T ]. (Ft) = (Ft, t ∈ [0, T ]) will be a filtration fulfilling the usual conditions. If
B is a Banach space, B(B) will denote its Borel σ-algebra. A B-valued random variable C is integrable if
E(|C|) is finite and the quantity E(C) exists as an element in B. It fulfills in particular the Pettis property:
ϕ(E(C)) = E(ϕ(C)) for any ϕ ∈ B∗.

Given a σ-algebra G, the random element E(C|G) : Ω→ B denotes the conditional expectation of C
with respect to G. The concept of conditional expectation for B-valued random elements, when B is a
separable Banach space, are recalled for instance in [8] Section 1.3. In particular, for every ϕ ∈ B∗ we have
E (ΨB∗〈ϕ,C〉B) = E (ΨB∗〈ϕ,E(C|G)〉B), for any bounded r.v. G-measurable Ψ.

A stochastic process will stand for an application [0, T ] × Ω → B, which is measurable with respect
to the σ-fields B([0, T ])⊗ F and B(B). If B is infinite dimensional, the processes are indicated by bold
letters X,Y,Z. Given a Banach space B, a process X : ([0, T ] × Ω,F) → B is said to be strongly
(Bochner) measurable if it is the limit of F- measurable countably-valued functions. By default, a
process [0, T ] × Ω → B, which is measurable with respect to the σ-fields P and B(R) is said to be
predictable with respect to the given filtration (Ft, t ∈ [0, T ]). A priori, such a process will also be
considered as strongly measurable. Any cadlag or caglad process is strongly measurable.

Let H,U be separable Hilbert spaces, Q ∈ L(U) be a positive, self-adjoint operator and define
U0 := Q1/2(U). This is again a separable Hilbert space. Even if not necessary we suppose Q to be injective,
which avoids formal complications. We endow U0 with the scalar product 〈a, b〉U0

:=
〈
Q−1/2a,Q−1/2b

〉
.

Q1/2 : U → U0 is an isometry, see e.g. [8] Section 4.3. Assume that WQ = {WQ
t : 0 ≤ t ≤ T} is an U -valued

F -Q-Wiener process (with WQ
0 = 0, P a.s.). The notion of Q-Wiener process and (Ft)-Q-Wiener process

were defined for example in [8] Chapter 4, see also [25] Chapter 2.1. We recall that L2(U0;H) stands for
the Hilbert space of the Hilbert-Schmidt operators from U0 to H.

An U -valued process M : [0, T ] × Ω → U is called (Ft)-martingale if, for all t ∈ [0, T ], M is (Ft)-
adapted with E [|Mt|U ] < +∞ and E [Ms|Ft] = Mt for all 0 ≤ t ≤ s ≤ T . In the sequel, the reference to
the filtration (Ft, t ∈ [0, T ]) will be often omitted. The mention “adapted”, ”predictable” etc... we will
always refer to with respect to the filtration {Ft}t≥0. An U -valued martingale M is said to be square

integrable if E
[
|MT |

2
U

]
< +∞. A Q-Wiener process is a square integrable martingale. We denote with

M2(0, T ;U) the linear space of square integrable martingales indexed by [0, T ] with values in U , i.e. of
measurable processes M : [0, T ] × Ω → U such that E(|MT |

2
U ) < ∞. In particular for M ∈ M2(0, T ;U),

the quantity

|M|M2(0,T ;U) :=

(
E sup
t∈[0,T ]

|Mt|
2
U

)1/2

is finite. Moreover, it defines a norm and M2(0, T ;U) endowed with it is a Banach space as stated in
[8]Proposition 3.9. An U -valued process M : [0, T ] × Ω → U is called local martingale if there exists
a non-decreasing sequence of stopping times τn : Ω → [0, T ] ∪ {+∞} such that Mt∧τn for t ∈ [0, T ] is a
martingale and P [limn→∞ τn = +∞] = 1. All the considered martingale and local martingales will be
supposed to be continuous.

Given a continuous local martingale M : [0, T ]× Ω→ U , the process |M|2 is a real local sub-martingale,
see Theorem 2.11 in [30]. The increasing predictable process, vanishing at zero, appearing in the Doob-Meyer

decomposition of |M|2 will be denoted by ([M]R,clt , t ∈ [0, T ]). It is of course uniquely determined and
continuous.

A B-valued process A is said to be a bounded variation process or to have bounded variation if
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almost every trajectory has bounded variation i.e. if, for almost all ω, the supremum of
∑N
i=1 |Ati−1

(ω)−
Ati(ω)|B over all the possible subdivisions 0 = t0 < . . . < tN , N ∈ N∗, is finite. If B = U is a Hilbert space,
following [32], Definition 23.7, we say that an U -valued process X is a semimartingale if X can be written
as X = M + A where M is a local martingale and A a bounded variation process. The total variation
function process associated with A is defined similarly as for real valued processes and it is denoted by
t 7→ ‖At‖.

2.3 The Hilbert space valued Itô stochastic integral

We recall here some basic facts about the Hilbert space valued Itô integral, which was made popular for
instance by G. Da Prato and J. Zabczyk, see [8, 9]. More recent monographs on the subject are [25, 38].

Let H and U be two separable Hilbert spaces. We adopt the notations that we have introduced in
previous subsection 2.2. IM(0, T ;U,H) will be the set of the processes X : [0, T ]× Ω→ L(U ;H) that are
strongly measurable from ([0, T ]× Ω,P) to L(U ;H) and such that

|X|IM(0,T ;U,H) :=

(
E

∫ T

0

‖Xr‖
2
L(U ;H)d[M]R,clr

)1/2

< +∞.

IM(0, T ;U,H) endowed with the norm | · |IM(0,T ;U,H) is a Banach space. The linear map

{
I : IM(0, T ;U,H)→M2(0, T ;H)

X 7→
∫ T
0
XrdMr

is a contraction, see e.g. [32] Section 20.4 above Theorem 20.5. As illustrated in [30] Section 2.2 (above
Theorem 2.14), the stochastic integral w.r.t. M extends to the integrands X which are strongly measurable
from ([0, T ]× Ω,P) to L(U ;H) and such that

∫ T

0

‖Xr‖
2
L(U ;H)d[M]R,clr < +∞ a.s. (10)

We denote by J 2(0, T ;U,H) such a family of integrands w.r.t. M.
We have the following standard fact, see e.g. [30] Theorem 2.14.

Proposition 2.5. Let M be a continuous U -valued (Ft)-local martingale, X a process verifying (10). Then

Nt =
∫ t
0
XrdMr, t ∈ [0, T ], is an (Ft)-local martingale with values in H.

Consider now the case when the integrator M is a Q-Wiener process, with values in U , where Q
be again a positive injective and self-adjoint operator in Q ∈ L(U), see Section 2.2. We consider U0

with its inner product as before. By (6) we can easily prove that, given A ∈ L2(U0;H), we have

‖A‖2L2(U0;H) = Tr
(
AQ1/2(AQ1/2)∗

)
. Let WQ = {WQ

t : 0 ≤ t ≤ T} be an U -valued (Ft)-Q-Wiener process

with WQ
0 = 0, P a.s. In this case the Itô-type integral with respect to W extends to a larger class, see

Chapter 4.2 and 4.3 of [8]. If Y is a predictable process with values in L2(U0;H) with some integrability

properties, then the Itô-type integral of Y with respect to W, i.e.
∫ t
0
YrdWr, t ∈ [0, T ], t ∈ [0, T ], is

well-defined.

Proposition 2.6. Let M be a process of the form

Mt =

∫ t

0

YrdW
Q
r , t ∈ [0, T ], (11)
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where Y be an L(U ;H) ∩ L2(U0;H)-valued predictable process such that

∫ T

0

Tr[YrQ
1/2(YrQ

1/2)∗]dr <∞ a.s. (12)

Then M is a H-valued local martingale. Moreover we have the following.

(i) If X is an H-valued predictable process such that

∫ T

0

〈Xr,YrQ
1/2(YrQ

1/2)∗Xr〉Hdr <∞, a.s., (13)

then the process

Nt =

∫ t

0

〈Xr, dMr〉H , t ∈ [0, T ], (14)

is a real local martingale. If the expectation of (13) is finite, then N is a square integrable martingale.

(ii) If, for some separable Hilbert space E, K is a L(H,E)-valued, (Ft)-predictable process such that

∫ T

0

Tr[KrYrQ
1/2(KrYrQ

1/2)∗]dr <∞ a.s., (15)

then the E-valued Itô-type stochastic integral
∫ t
0
KdM, t ∈ [0, T ], is well-defined, it is a local martingale

and it equals
∫ t
0
KYdWQ.

Proof. The results above are a consequence of [8] Section 4.7. at least when the expectations of (12), (13)
and (15) are finite. In particular the first part is stated in Theorem 4.12 of [8]. Otherwise, on proceeds by
localizations, via stopping arguments.

Remark 2.7. In the sequel we will also denote previous integral by
∫ t
0
〈Xr, dMr〉H , t ∈ [0, T ], or by∫ t

0 H
∗〈X∗r , dMr〉H , t ∈ [0, T ], using the Riesz identification.

3 Finite dimensional calculus via regularization

3.1 Integrals and covariations

This theory has been developed in several papers, starting from [41, 42]. A survey on this subject is given
in [45]. The formulation is light, efficient when the integrator is a finite quadratic variation process, but it
extends to many integrator processes whose paths have a p-variation with p < 2. Integrands are allowed to
be anticipative and the integration theory and calculus appears to be close to a pure pathwise approach even
though there is still a probability space behind. The theory clearly allows non-semimartingales integrators.
Let now X (resp. Y ) be a real continuous (resp. a.s. integrable) process, both indexed by t ∈ [0, T ].

Definition 3.1. Suppose that, for every t ∈ [0, T ], the following limit

∫ t

0

Yrd
−Xr := lim

ǫ→0

∫ t

0

Yr
Xr+ǫ −Xr

ǫ
dr (16)

exists in probability. If the obtained random function admits a continuous modification, that process is
denoted by

∫ ·
0
Y d−X and called (proper) forward integral of Y with respect to X.
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Definition 3.2. If the limit (16) exists in probability for every t ∈ [0, T [ and limt→T

∫ t
0
Y d−X exists in

probability, the limiting random variable is called the improper forward integral of Y with respect

to X and it is still denoted by
∫ T
0
Y d−X.

As we mentioned, the covariation is a crucial notion in stochastic calculus via regularization.

Definition 3.3. The covariation of X and Y is defined by

[X,Y ]t = ([Y,X]t) = lim
ǫ→0+

1

ǫ

∫ t

0

(Xs+ǫ −Xs)(Ys+ǫ − Ys)ds, t ∈ [0, T ],

if the limit exists in probability for every t ∈ [0, T ], provided that the limiting random function admits a
continuous version. IfX = Y, X is said to be finite quadratic variation process and we set [X] := [X,X].
A vector (X1, . . . , Xn) of real processes is said to admit all its mutual brackets if [Xi, Xj ], 1 ≤ i, j ≤ n,
exist.

One natural question arises. What is the link between the regularization and discretization techniques

of Föllmer ([23]) type? Let Y be a cadlag process. One alternative method could be to define
∫ T
0
Y dX as

the limit of
n−1∑

i=0

Yti(Xti+1
−Xti), N ∈ N∗,

when the mesh maxN−1
i=0 (ti+1 − ti) of the subdivision

0 = t0 < . . . < tN = T (17)

converges to zero. A large part of calculus via regularization could be essentially translated in that
formal language via discretization. However, even if it is not essential, we decided to keep going on with
regularization methods. First, because that approach is direct and analytically efficient. Second, in many
contexts the class of integrands is larger. Let us just fix one simple example: the Wiener integral with respect
to Brownian motion. Let g ∈ L2([0, T ]) and W be a classical Wiener process;

∫ t
0
gd−W, t ∈ [0, T ] exists and

equals Wiener-Itô integral
∫ t
0
gdW, t ∈ [0, T ]. However the discretizations limit of

∑n−1
i=0 g(ti)(Wti+1

−Wti)
may either not exist, or depend on the sequences of subdivisions. Indeed, as an example, let us choose
g = 1Q∩[0,T ] where Q is the set of rational numbers. If, all the ti elements of subdivision (17) where
irrational (except for the extremities), then the limit would be zero, as for the Itô-Wiener integral, being
g = 0 a.e. If on the contrary, all of the ti are rational, then the limit is WT −W0.

In the proposition below we list some properties relating Itô calculus and forward calculus, see e.g. [45].

Proposition 3.4. Suppose that M is a local continuous martingale and Y cadlag and predictable. Let V
be a bounded variation process. Let S1, S2 be (Ft)-semimartingales with decomposition Si =M i + V i,
i = 1, 2, where M i, i = 1, 2 are (Ft)-continuous local martingales and V i continuous adapted bounded
variation processes. We have the following.

1. M is a finite quadratic variation process and [M ] is the classical bracket 〈M〉.

2.
∫ ·
0
Y d−M exists and it equals Itô integral

∫ ·
0
Y dM .

3. Let us suppose V to be continuous and Y cadlag (or vice-versa); then [V ] = [Y, V ] = 0. Moreover∫ ·
0
Y d−V =

∫ ·
0
Y dV , is the Lebesgue-Stieltjes integral.
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4. [Si] is the classical bracket and [Si] = 〈M i〉.

5. [S1, S2] is the classical bracket and [S1, S2] = 〈M1,M2〉.

6. If S is a continuous semimartingale and Y is cadlag and adapted, then
∫ ·
0
Y d−S =

∫ ·
0
Y dS is again

an Itô integral.

Coming back to the general calculus we state the integration by parts formula, see e.g. item 4. of
Proposition [45].

Proposition 3.5. Let X and Y be continuous processes. Then

YtXt = Y0X0 +

∫ t

0

Y d−X +

∫ t

0

Xd−Y + [X,Y ]t,

provided that two of the three previous integrals or covariation exist. If X is a continuous bounded variation
process, then

∫ t
0
Xd−Y = YtXt − Y0X0 −

∫ t
0
Y dX.

The kernel of calculus via regularization is Itô formula. It is a well-known result in the semimartingales
theory, but it also extends to the framework of finite quadratic variation processes. Here we only remind
the one-dimensional case, in the form of a Itô chain rule. It is essentially a consequence of Proposition 4.3
of [44].

Theorem 3.6. Let F : [0, T ]×R −→ R such that F ∈ C1,2 ([0, T [×R) and X be a finite quadratic variation
process. We set Yt = F (t,Xt), t ∈ [0, T ]. Let Z = (Zt, t ∈ [0, T ]) be an a.s. bounded process. We have

∫ t

0

Zrd
−Yr =

∫ t

0

Zr∂rF (r,Xr)dr +

∫ t

0

Zr∂xF (r,Xr)d
−Xr +

1

2

∫ t

0

Zr∂
2
x xF (r,Xr)d[X]r, (18)

in the following sense: if the first (resp. the third) integral exists then the third (resp. the first) exists and
formula (18) holds.

Taking Z = 1, comes out the natural Itô formula below.

Proposition 3.7. With the same assumptions of Theorem 3.6 we have
∫ t

0

∂xF (r,Xr)d
−Xr = F (t,Xt)− F (0, X0)−

∫ t

0

∂rF (r,Xr)dr −
1

2

∫ t

0

∂2x xF (r,Xr)d[X]r.

Theorem 6.3 will extend the formula above to the case of Banach space valued integrators.
An adaptation of Proposition 11 of [45] and Proposition 2.2 of [27] gives the following. Given a real

interval I and h : I → R be a bounded variation function, we denote by ‖h‖var the total variation of h.

Proposition 3.8. Let I be a real interval and f, g : [0, T ]× I → R. Let X and Y be two real processes
such that (X,Y ) admits all its mutual brackets and f(t, ·) and g(t, ·) have bounded variation for any
t ∈ [0, T ]. We suppose moreover that t 7→ ‖f(t, ·)‖var, t 7→ ‖g(t, ·)‖var are bounded.

Then [f(·, X), g(·, Y )]t =
∫ t
0
∂xf(s,Xs)∂xg(s, Ys)d[X,Y ]s.

Below we introduce the notion of weak Dirichlet process which was introduced in [21] and [28].

Definition 3.9. A real process X : [0, T ]× Ω→ R is called weak Dirichlet process if it can be written
as

X =M +A, (19)

where

11



(i) M is a local martingale,

(ii) A is a process such that [A,N ] = 0 for every continuous local martingale N and A0 = 0.

Proposition 3.10. 1. The decomposition described in Definition 3.9 is unique.

2. A real continuous semimartingale S is a weak Dirichlet process.

Proof. 1. is stated in Remark 3.5 of [28]. 2. is obvious since a bounded variation process V is a zero
quadratic variation process by item 3. of Proposition 3.4.

3.2 The deterministic calculus via regularization.

An useful particular case arises when Ω is a singleton, i.e. when the calculus becomes deterministic.
We will essentially concentrate in the definite integral on an interval J =]a, b], where a < b are two real
numbers. Typically, in our applications we will consider a = −T or a = −t and b = 0. That integral will
be a real number, instead of functions.

We start with a convention. If f : [a, b] → R is a cadlag function, we extend it naturally to another
cadlag function fJ on real line setting

fJ(x) =





f(b) : x > b
f(x) : x ∈ [a, b]
0 : x < a.

If g is finite Borel measure on [0, T ], we define the deterministic forward integral
∫
]a,b]

g(dx)d−f(x)

(or simply
∫
]a,b]

gd−f) as the limit of
∫
]a,b]

g(ds)
ε (fJ (s+ ε)− fJ (s)), when ε ↓ 0, provided it exists. In most

of the cases g will be absolutely continuous whose density will be still denoted by the same letter. A similar
definition can be provided for the (deterministic) covariation of [f, g] of two (continuous) functions f and g
defined on some interval I. Without restriction of generality, we suppose that 0 ∈ I. We set [g, f ](x), x ∈ I,
the pointwise limit (if it exists), when ε→ 0 of

∫ x

0

(g(r + ε)− g(r))(f(r + ε)− f(r))
dr

ε
, x ∈ I.

If g = f , we also denote it with [f ].

Remark 3.11. The following statements follows directly from the definition and are left to the reader.
The reader may consult [43] for similar considerations. By default, the bounded variations function will be
considered as cadlag.

1. If f has bounded variation then
∫
]a,b]

g(s)d−f(s) is the classical Lebesgue-Stieltjes integral
∫
]a,b]

gdf .

In particular, if g = 1,
∫ b
a
g(s)d−f(s) = f(b)− f(a).

2. If g has bounded variation, the following integration by parts formula holds:
∫
]a,b]

g(s)d−f(s) equals

g(b−)f(b)−
∫
]a,b]

f(s)dg(s).

3. A deterministic version of Theorem 3.6 can be easily stated, with respect to integrals of the type∫
]a,b]

instead of
∫ t
0
.
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Besides B = C([−T, 0]), we introduce another Banach space. Given a continuous function g : [−T, 0]→ R

we define the 2-regularization variation by |g|2,var := sup0<ε<1

∫ 0

−T
(g(s+ ε)− g(s))

2 ds
ε . We define by

V2 the space of g ∈ B such that |g|2,var is finite. If η ∈ C([−T, 0]), we denote |η|∞ := supx∈[−T,0] |η(x)|.

Proposition 3.12. The functional g 7→ |g|∞|+ |g|2,var is a norm on V2. Moreover V2, equipped with that
norm, is a Banach space.

Proof. To prove that | · |2,var is a norm, the only non-obvious property consists in establishing the triangle
inequality. This follows because of the triangle inequality related to the L2([−T, 0])-norm. It remains to
show that any Cauchy sequence in V2 converges to an element of V2. Let (gn) be such a sequence. Since
C([−T, 0]) is a Banach space, there is g ∈ C([−T, 0]) such that gn converges uniformly to g. Let M > 0.
Since (gn) is a Cauchy sequence with respect to | · |2,var, there is N such that if n,m ≥ N , with

∫ 0

−T

((gn − gm)(r + ε)− (gn − gm)(r))
2 dr

ε
≤M,

for every 0 < ε < T . Let us fix 0 < ε < T . Choosing m = N in previous expression and letting n go to ∞
it follows that

∫ 0

−T

(g(r + ε)− g(r))
2 dr

ε
≤ 2

∫ 0

−T

((g − gN )(r + ε)− (g − gN (r)))
2 dr

ε

+ 2

∫ 0

−T

(gN (r + ε)− gN (r))
2 dr

ε

≤ M +

∫ 0

−T

(gN (r + ε)− gN (r))
2 dr

ε
.

Taking the supremum on 0 < ε < T , we get that |g|2,var is finite and the result follows.

V2 is a Banach subspace of B. Given a continuous function ψ : [0, T ]→ R be a continuous increasing
function such that ψ(0) = 0, we denote by V2,ψ the space of functions η : [−T, 0]→ R such that [η] exists
and equals ψ.

Proposition 3.13. V2,ψ is a closed subspace of V2.

Proof. Let (gn) be a sequence in V2,0 i.e. such that [gn](x), x ∈ [−T, 0] exists and equals ψ. We suppose
that gn converges to g in V2. Now, for fixed ε > 0, x ∈ [−T, 0] we consider

Iψ(ε, x) := −

∫ 0

x

dr (g(r + ε)− g(r))
2 dr

ε
− ψ(x). (20)

We want to prove that for every x ∈ R, Iψ(ε, x) converges to ψ, when ε→ 0+. The left-hand side of (20)
is bounded by 4I1(ε,N, x) + 4I2(ε,N, x) + 4I3(N, x), where, for x ∈ [−T, 0], N ∈ N∗,

I1(ε,N, x) =

∣∣∣∣
∫ 0

x

((g − gN )(r + ε)− (g − gN (r))
2 dr

ε

∣∣∣∣

I2(ε,N, x) =

∣∣∣∣
∫ 0

x

((gN (r + ε)− gN (r)))
2 dr

ε
− [gN ](x)

∣∣∣∣ (21)

I3(N, x) = |[gN ](x)− ψ(x)|.
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We fix x ∈ [−T, 0]. Since gN ∈ V2,ψ then [gN ] = [g] = ψ and I3(N, x) equals zero. Let δ > 0 and N such
that for every 0 < ε < T , I1(ε,N, x) ≤ δ. Choose ε0 such that I2(ε,N, x) ≤ δ if 0 < ε < ε0. Consequently
for 0 < ε < ε0, then we have Iψ(ε, x) ≤ 2δ. This shows that Iψ(ε, x) converges to zero and so V2,ψ is a
closed subspace of V2.

4 About infinite dimensional classical stochastic calculus

4.1 Generalities

Infinite dimensional stochastic calculus is an important tool for studying properties related to stochastic
evolution problems, as stochastic partial differential equations, stochastic functional equations, as delay
equations. When the evolution space is Hilbert a lot of work was performed, see typically the celebrated
monograph of G. Da Prato and J. Zabczyk [8], in particular Section 2.3 mentions the corresponding notion
of stochastic integral. An alternative, similar approach, is the one related to random fields, see e.g. [50]
and [11]. Infinite dimensional stochastic calculus has been also developed in the framework of Gelfand
triples, used for instance in [36]. Contributions exist also for Banach space valued stochastic integrals, see
[3, 13, 12, 49], where the situation is more involved than in the Hilbert framework: the so-called reproducing
kernel space cannot be described as Im(Q1/2), as in Section 2.3, and the notion of Hilbert-Schmidt operator
has to be substituted with the one of γ-radonifying.
The aim of our approach is to try to introduce suitable techniques which allow to treat typical infinite
dimensional processes similarly to finite-dimensional diffusions. As we mentioned, stochastic process with
values in infinite dimensional space will be indicated by a bold letter of the type X,Y,Z and so on. Let
B a separable Banach space and X be a B-valued process. Consider F : B −→ R be of class C2 in the
Fréchet sense. One may ask what could be a good Itô formula in this framework. We are interested in
an Itô type expansion of F (X), keeping in mind that, classically, Itô formulae contain an integral term
involving second order type derivatives and a quadratic variation. We first introduce some classical notions
of quadratic variation very close to those of the literature, see [18, 33, 32], but in the spirit of calculus via
regularization. Those above mentioned authors introduce in fact two quadratic variations: the real and the
tensor quadratic variation. The definition below is a reformulation in terms of regularization of the real
quadratic variation of X. We prefer here, to avoid possible confusions, to replace the denomination real
with scalar.

Definition 4.1. Consider a separable Banach spaces B. We say that a strongly measurable process
X : [0, T ]× Ω→ B admits a scalar quadratic variation if, for any t ∈ [0, T ], the limit, for ǫց 0 of

[X,X]ǫ,Rt :=

∫ t

0

|Xr+ǫ − Xr|
2
B

ǫ
dr,

exists in probability and it admits a continuous version. The limit process is called scalar quadratic
variation of X and it is denoted with [X,X]R.

In Definition 1.4 of [17] the authors introduce the following definition.

Definition 4.2. Consider two separable Banach spaces B1 and B2. Suppose that either B1 or B2 is
different from R. Let X : [0, T ]× Ω→ B1 and Y : [0, T ]× Ω→ B2 be two strongly measurable processes.
We say that (X,Y) admits a tensor covariation if the limit, for ǫց 0 of the B1⊗̂πB2-valued processes

[X,Y]⊗,ǫ :=

∫ ·

0

(Xr+ǫ − Xr)⊗ (Yr+ǫ − Yr)

ǫ
dr
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exists in the ucp sense (i.e. uniform convergence in probability). The limit process is called tensor
covariation of (X,Y) and is denoted with [X,Y]⊗. The tensor covariation [X,X]⊗ is called tensor
quadratic variation of X and denoted with [X]⊗.

Remark 4.3. Let X,Y be strongly measurable processes defined on [0, T ]× Ω with values respectively on
B1 and B2. We have the following.

1. If X has a zero scalar quadratic variation and Y has a scalar quadratic variation then [X,Y]⊗ =
[Y,X]⊗ = 0. Moreover X+ Y has a scalar quadratic variation and [X+ Y]R = [Y]R;

2. If X is a bounded variation process then X admits a zero scalar quadratic variation.

3. Let M be a local martingale with values in a separable Hilbert space H. Then it has scalar quadratic
variation.

4. If B = Rn the space B⊗̂πB is associated with the space of n × n real matrices, as follows. Let
(ei, 1 ≤ i ≤ n) be the canonical orthonormal basis of Rn. A matrix A = (aij) is naturally associated
with the element

∑n
i,j=1 aijei ⊗ ej . X = (X1, . . . , Xn) admits all its mutual covariations if and only

if X admits a tensor quadratic variation. Moreover [X,X] =
∑n
i,j=1[Xi, Xj ]ei ⊗ ej .

Items 1. and 2. are easy to establish. Item 3. is stated in Remark 4.9 of [22]. Item 4. constitutes an easy
exercise, but it was stated in Section 6.2.1 of [15].

Let us consider now F : B −→ R be of class C2. In particular DF : B −→ L(B;R) := B∗ and
D2F : B −→ L(B;B∗) ∼= Bi(B,B) ∼= (B⊗̂πB)

∗ are continuous. As a first attempt, we expect to obtain an
Itô formula type expansion of the following type.

F (Xt) = F (X0) +
′′

∫ t

0
B∗〈DF (Xs), dXs〉B

′′ +
1

2

∫ t

0
(B⊗̂πB)∗〈D

2F (Xs), d[X]s〉B⊗̂πB
. (22)

This supposes of course that the tensor covariation [X,X]⊗ exists and it has bounded variation. A reasonable
sufficient condition for this demands that the scalar quadratic variation [X,X]R exists. A formal proof of
the Itô formula, inspired from the one-dimensional case could be the following. Let ε > 0. We have

∫ t

0

F (Xs+ǫ)− F (Xs)

ǫ
ds

ucp
−−−→
ǫ→0

F (Xt)− F (X0), t ∈ [0, T ].

By a Taylor’s expansion the left-hand side equals the sum of

∫ t

0
B∗〈DF (Xs),

Xs+ǫ − Xs
ǫ

〉Bds +

∫ t

0
(B⊗̂πB)∗〈D

2F (Xs),
(Xs+ǫ − Xs)⊗2

ǫ
〉B⊗̂πB

ds+R(ǫ, t),

where R(ε, ·) converges ucp to zero. Consequently, from previous formal proof, requires a good notion of
quadratic variation. Moreover the first (stochastic) integral needs to be defined. The following natural
obstacles problems appear.

• In many interesting cases mentioned at the beginning of Section 4.1, X is not a semimartingale, and
it has not even a scalar and tensor quadratic variations.

• Stochastic integration, when the integrator takes values in a Banach space is not an easy task.
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4.2 Tensor covariation and operator-valued covariation

In Definition 4.2 we introduced the notion of tensor covariation in the spirit of Metivier Pellaumail.
Before proceeding and introducing the more general definition of χ-covariation we devote some space
recalling another (somehow classical) definition used for example by several authors in stochastic calculus
in Hilbert spaces, as Da Prato and Zabczyk.

Let H be a separable Hilbert spaces and M,N two H-valued continuous local martingales.The first
covariation was denoted by [M,N]⊗, the second one will be denoted by [M,N]cl. A first difference arises by
the fact [M,N]⊗ takes values in H⊗̂πH and [M,N]cl lives in L1(H).

We remind from Section 2.1 that every element u ∈ H⊗̂πH is isometrically associated with an element
Tu in the space of nuclear operators L1(H), so it makes sense to compare Definition 4.2 and the definition
of operator-valued covariation.

Definition 4.4. Let X and Y be two H-valued continuous processes. We say that (X,Y) admits an
operator-valued covariation, denoted by [X,Y]cl, if there exists a bounded variation process V with
values in L1(H), denoted by [X,Y]cl, such that, for every a, b ∈ H, the covariation (in the sense of
regularization) of 〈a,X〉 and 〈b,Y〉 equals 〈Va, b〉. In the sequel we will also use the notation [X,Y]cl(a, b) :=
〈Va, b〉. In other words the continuous linear functional [X,Y]cl(a, ·) is Riesz-identified to Va. We will of
course identify without further mention V(a) and [X,Y]cl(a, ·).

Remark 4.5. 1. If X and Y are local martingales then 〈a,X〉 and 〈b,Y〉 are real local martingales
and previous covariations in the sense of regularization are classical covariations of martingales, see
Proposition 2.4 (3) of [43] and item 5. of Proposition 3.4.

2. If X = Y is a local martingale and V is [X,X]cl, then, by Doob-Meyer decomposition, V fulfills
the following property. For every a, b ∈ H, we have 〈a,X〉〈b,X〉 − 〈Va, b〉 is a local martingale and
obviously 〈V·(a), a〉 ≥ 0 is a non-negative increasing process for every a ∈ H; in particular, for every
t ∈ [0, T ], Vt is a non-negative map of L1(H).

3. Proposition 3.12 in [8] states that for a continuous square integrable martingale X, the quadratic
variation exists (and is unique). By stopping arguments, this can be extended to every local martingale
X.

The proposition below illustrates some relations between the tensor covariation and the operator-valued
covariation.

Proposition 4.6. 1. The operator-valued covariation is unique.

2. If (X,Y) admits a tensor covariation then, it also have an operator-valued covariation and, after the
identification above between H⊗̂πH and L1(H), they are equal.
In particular, for every a ∈ H, b ∈ H, 〈j(a∗ ⊗ b∗), [X,Y]⊗〉 = [〈X, a〉, 〈Y, b〉].

3. If X and Y are local martingales then they admit a scalar, tensor and operator-valued covariations.

Proof. Let ε > 0. Taking into account Lemma 2.1, choosing ϕ ∈ (H⊗̂πH)
∗ of the type ϕ = j(a∗ ⊗ b∗)

where a, b,∈ H, we have

(H⊗̂πH)∗

〈
ϕ,
1

ε

∫ t

0

(Xs+ε − Xs)⊗ (Ys+ε − Ys)ds

〉

H⊗̂πH

=
1

ε

∫ t

0

ds (H⊗̂πH)∗ 〈ϕ, (Xs+ε − Xs)⊗ (Ys+ε − Ys)〉H⊗̂πH
=
1

ε

∫ t

0

ds〈Xs+ε −Xs, a〉〈Ys+ε −Ys, b〉.

(23)
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So the first expression of the equality above converges if the covariation of the real processes 〈X, a〉 and
〈Y, b〉 exists.

1. Let be two L1(H)- valued processes V1,V2 verifying

〈Vi(a), b〉 = [〈X, a〉, 〈Y, b〉], i = 1, 2,

for every a, b ∈ H. Let Ui be the associated process with values in H⊗̂πH in the sense of the usual
isomorphism (7) between H⊗̂πH and L1(H). Then, taking into account (23), for every t ∈ [0, T ]
we have 〈ϕ,U1

t 〉 = 〈ϕ,U
2
t 〉, for every ϕ in (H⊗̂πH)

∗ of the type ϕ = j(a∗ ⊗ b∗). Since, by Lemma
4.17 of [22], the algebraic tensor product H∗ ⊗H∗ is weakly-star dense in (H⊗̂πH)

∗, the uniqueness
property U1 = U2 holds.

2. Suppose that [X,Y]⊗ exists. Let a, b ∈ H and set ϕ = j(a∗ ⊗ b∗). If [X,Y]⊗ exists, by (23), then
〈ϕ, [X,Y]⊗〉 = [〈X, a〉, 〈Y, b〉]. We set now [X,Y]cl(a, b) = [〈X, a〉, 〈Y, b〉]. By the usual isomorphism
(7), between H⊗̂πH and L1(H), according to the convention in Definition 4.4, a 7→ [X,Y]cl(a, ·)
defines an L1(H)-valued process.

3. If M and N are local martingales, then M and N admit a scalar quadratic because of Proposition 1.7
of [17]. Moreover (M,N) admits a tensor covariation by Lemma 4.16 of [22]. By previous item, it
also admits an operator-valued covariation.

We specify now our result for some particular Hilbert valued martingales, namely for the Brownian
martingales. The framework is the same we used in Subsection 2.3.

Proposition 4.7. Let U and H two separable real Hilbert spaces. Let Q be a positive self-adjoint, injective
operator in L(U). We set U0 := Q1/2(U) and we consider WQ = {WQ

t : 0 ≤ t ≤ T} an U -valued Q-Wiener

process with WQ
0 = 0, P a.s. Let us suppose that (Ft) is the canonical filtration generated by WQ and

consider a predictable L2(U0, H)-valued process (Φt) such that

∫ T

0

Tr[ΦrQ
1/2(ΦrQ

1/2)∗]dr <∞ P− a.s. (24)

and the process M defined as Mt =
∫ t
0
ΦrdWQ

r, t ∈ [0, T ]. We have the following.

1. [M,M]clt =
∫ t
0
QΦ
r dr where

QΦ
t = (ΦtQ

1/2)(ΦtQ
1/2)∗.

2. [M,M]⊗t is characterized by 〈j(a∗ ⊗ b∗), [M,M]⊗t 〉 =
∫ t
0
〈a,QΦ

s b〉ds for any a, b ∈ H.

3. For every ϕ ∈ (H⊗̂πH)
∗, we have

(H⊗̂πH)∗

〈
ϕ, [M,M]⊗t

〉
H⊗̂πH

=

∫ t

0

Tr(LϕQ
Φ
r )dr. (25)
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Proof. 1. It is a consequence of Theorem 4.12 in [8], where the result is stated under the hypothesis that
the expectation of (24) is finite. It can be extended to the general case with a stopping argument.

2. From Proposition 2.6 we know that M is an H-valued local martingale. So by item 3. of Proposition
4.6, M admits both a tensor and an operator-valued quadratic variation; thanks to item 2. of the
same proposition, they coincide once we have identified H⊗̂πH with L1(H). Item 2. of Proposition
4.6 describes also the relation between the two and gives the evaluations [M,M]⊗t (a

∗ ⊗ b∗). Since,
by Lemma 4.17 of [22], the algebraic tensor product H∗ ⊗H∗ is weakly-star dense in (H⊗̂πH)

∗ the
evaluation of [M,M]⊗t on j(a∗ ⊗ b∗) characterizes [M,M]⊗t .

3. It follows from Proposition 2.3 and Proposition 2.4.

Lemma 4.8. Under the same assumptions of Proposition 4.7 we consider an L(H)-valued process (Yt)
such that

∫ T

0

Tr
(
YrΦrQ

1/2(YrΦrQ
1/2)∗

)
dr <∞ P− a.s. (26)

Denote by Jt the element of (H⊗̂πH)
∗ corresponding to Yt through the isomorphism described in (7).

Then

∫ t

0
(H⊗̂πH)∗〈Jr, d[M,M]⊗r 〉H⊗̂πH

dr =

∫ t

0

Tr
[
Yr(ΦrQ

1/2)(ΦrQ
1/2)∗

]
dr.

Proof. It is a consequence of item 3. of Proposition 4.7 and by Lemma 4.9 below.

Lemma 4.9. Consider L and T in the sense of the lines before Proposition 2.3. Let Ġ : [0, T ]→ L(H),
and ġ : [0, T ]→ (H⊗̂πH)

∗ such that for every r ∈ [0, T ], Ġ(r) = Lġ(r) is Lebesgue-Bochner integrable on

[0, T ]. We define G : [0, T ]→ L(H), by G(t) =
∫ t
0
Ġ(r)dr and g(t) =

∫ t
0
ġ(r)dr. Let J : [0, T ]→ L1(H) and

j : [0, T ]→ H⊗̂πH such that for every r ∈ [0, T ], J(r) = Tj(r).

If
∫ T
0
‖J(r)Ġ(r)‖L1(H)dr <∞, then

∫ t

0
(H⊗̂πH)∗〈ġ(r), j(r)〉H⊗̂πH

dr =

∫ t

0

Tr
(
Ġ(r)J(r)

)
dr <∞.

Proof. The proof follows first showing the equality for step functions j (resp. J), and then passing to the
limit.

5 Notion of χ-covariation

5.1 Basic definitions

We introduce now a more general notion of covariation (and quadratic variation) than the ones discussed
before, which are essentially only suitable for semimartingale processes. The basic concepts were introduced
in [15, 17, 14]. The notion of χ-quadratic variation and χ-covariation is based on the notion of Chi-subspace.
Let B,B1, B2 be separable Banach spaces.
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Definition 5.1. A Banach subspace χ continuously injected into (B1⊗̂πB2)
∗ will be called Chi-subspace

(of (B1⊗̂πB2)
∗). In particular it holds

‖ · ‖χ ≥ ‖ · ‖(B1⊗̂πB2)∗.
(27)

Typical examples of Chi-subspaces are the following.

1. Let ν1 (resp. ν2) be a dense subspace of B∗1 (resp. B∗2) then a typical Chi-subspace (of (B1⊗̂πB2)
∗)

is the topological projective tensor product of ν1 with ν2, denoted by ν1⊗̂πν2. This is naturally
embedded in (B1⊗̂πB2)

∗ as recalled in Lemma 2.1.

2. In particular, if ν0 is dense subspace of B∗, then χ := ν0⊗̂πR is a Chi-subspace of (B⊗̂πR)∗, which can
be naturally identified with B∗. By a slight abuse of notations one could say that ν0 is a Chi-subspace
of B∗.

3. Let B is a separable Hilbert space H and A is a generator of a C0-semigroup on H, see [20] and
[37] Chapter 1 for a complete treatment of the subject. Denote with D(A) and D(A∗) respectively
the domains of A and A∗ endowed with the graph norm, see again [37] Chapter 1 or [20] Chapter
II. Then a typical Chi-subspace of (H⊗̂πH)

∗ can be obtained setting χ := ν0⊗̂πν0 and ν0 = D(A∗)
endowed with its the graph norm.

4. If B = C([−τ, 0]), then χ could be the space M([−τ, 0]2) of finite signed measures on [−τ, 0]2. Other
examples of χ-subspaces are given in Section 5.2.

5. It is not difficult to see that a direct sum of Chi-subspaces is a Chi-subspace. This produces further
examples of Chi-subspaces, see Proposition 3.16 of [17].

Let X be a B1-valued and Y be a B2-valued process. We suppose X to be continuous. Let χ be a
Chi-subspace of (B1⊗̂B2)

∗. We denote by C([0, T ]) space of real continuous processes equipped with the
ucp topology. If ε > 0, we denote by [X,Y]ǫ be the application

[X,Y]ǫ : χ −→ C([0, T ])

defined by

φ 7→

(∫ t

0
χ〈φ,

J ((Xr+ǫ − Xr)⊗ (Yr+ǫ − Yr))

ǫ
〉χ∗ dr

)

t∈[0,T ]

,

where J : B1⊗̂πB2 → (B1⊗̂πB2)
∗∗ is the canonical injection between a Banach space and its bidual

(omitted in the sequel).

Definition 5.2. (X,Y) admits a χ-covariation if

(H1) For all (ǫn) ↓ 0 it exists a subsequence (ǫnk
) such that

sup
k

∫ T

0

∥∥∥(Xr+ǫnk
− Xr)⊗ (Yr+ǫnk

− Yr)
∥∥∥
χ∗

ǫnk

dr <∞ a.s.

(H2) There exists a process, denoted by [X,Y]χ : χ −→ C([0, T ]) such that

[X,Y]ǫ(φ)
ucp
−−−→
ǫ→0

[X,Y](φ), ∀ φ ∈ χ.
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(H3) There is a χ∗-valued bounded variation process ˜[X,Y]χ : [0, T ] × Ω → χ∗, such that ˜[X,Y]χt(φ) =
[X,Y]χ(φ)t, ∀t ∈ [0, T ] a.s. for all φ ∈ χ.

Definition 5.3. If B = B1 = B2, and X = Y, we say that X has a χ-quadratic variation, if (X,X)
admits a χ-covariation.

Definition 5.4. When (X,Y) admits a χ-covariation, the χ∗-valued process [̃X,Y] (which is indeed a
modification of [X,Y]) will be called χ-covariation of (X,Y). If X admits a quadratic variation, the

χ∗-valued process [̃X,X], also denoted by [̃X], is called quadratic variation of X.

Remark 5.5. 1. [̃X]χ will be the quadratic variation intervening in the second order derivative term of
Itô’s formula stated in Theorem 6.3, which will make formula (22) rigorous.

2. For every fixed φ ∈ χ, the real processes (( ˜[X,Y]χ)(φ), t ∈ [0, T ]) and ([X,Y]χ(φ)t, t ∈ [0, T ]), are
indistinguishable.

3. The χ∗-valued process [̃X,Y] is weakly star continuous, i.e. [̃X](φ) is continuous for every fixed φ ∈ χ,
see [17] Remark 3.10 1.

A particular situation arises when χ = (B1⊗̂πB2)
∗.

Definition 5.6. • We say that (X,Y) admits a global covariation if it admits a χ-covariation with

χ = (B1⊗̂πB2)
∗. In this case we will omit the mention χ in ˜[X,Y]χ and [X,Y]χ.

• The modification [̃X,X], which is a (B⊗̂πB)∗∗-valued process is also called global quadratic
variation of X.

Remark 5.7. The following statements are easy to establish, see Remarks 4.8 and 4.10 of [22].

1. If X has zero scalar quadratic variation then X has a zero tensor quadratic variation and X has a
zero global quadratic variation.

2. If X and Y have a scalar quadratic variation and (X,Y) has a tensor covariation, then (X,Y) admit a

global covariation. Moreover [̃X,Y] = [X,Y]⊗, where the equality holds in B1⊗̂πB2.

3. If (X,Y) admits a global covariation, then they it admits a χ-covariation for every Chi-subspace χ.

Moreover ˜[X,Y]χt (φ) = [̃X,Y]t(φ), for every t ∈ [0, T ], φ ∈ χ.

Proposition 5.8. Let Xi = Mi + Vi, i = 1, 2 be two semimartingales with values in Bi. Let χ any
Chi-subspace of (B1⊗̂πB2)

∗. Then (X1,X2) admits a χ-covariation and
˜[X1,X2]χ(φ) = H⊗̂πH

〈[M1,M2]⊗, φ〉(H⊗̂πH)∗ , ∀φ ∈ χ.

Proof. By item 2. of Remark 4.3, V has a zero scalar quadratic variation. By Proposition 4.6 3. (M1,M2)
admits a tensor covariation. By item 1. of Remark 4.3 and the by linearity of tensor covariation it follows
that [X1,X2]⊗ = [M1,M2]⊗. Again by point 1. of Remark 4.3, X1 and X2 have a scalar quadratic variation.
Again by Remark 5.7 2., (X1,X2) admits a global quadratic variation and so the result follows by Remark
5.7 3.
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Indeed the notion of global covariation is closely related to the weak-∗ convergence in (B⊗̂πB)
∗∗. If the

probability space Ω were a singleton, i.e. in the deterministic case, if X admits a χ-quadratic variation then

[X,X]ǫt
w∗
−−−→
ǫ→0

[̃X,X]t, ∀t ∈ [0, T ].

As we mentioned, the notion of weak Dirichlet process admits a generalization to the Banach space case.

Definition 5.9. Let V,X be two B-valued continuous processes and ν0 be a dense subspace of B∗. We set
ν = ν0 ⊗ R.

1. V is said (Ft) − ν-martingale orthogonal process if for any real (Ft)-local martingale N we have
[V, N ]ν = 0

2. X is said (Ft)− ν-weak Dirichlet if it is the sum of an a (Ft)-local martingale M and an (Ft)− ν-
martingale orthogonal process.

Remark 5.10. 1. If B = R, then any (Ft)− ν-weak Dirichlet (resp. (Ft)− ν-martingale orthogonal)
process is a real (Ft)-weak Dirichlet (resp. (Ft)-martingale orthogonal) process.

2. The notions of Dirichlet, weak Dirichlet, ν-weak Dirichlet process depend on an underlying filtration
(Ft). When not necessary it will be omitted. We will speak about Dirichlet (resp. weak Dirichlet,
ν-weak Dirichlet process) instead of (Ft)-Dirichlet (resp. (Ft)-weak Dirichlet, (Ft)-ν-weak Dirichlet
process).

Remark 5.11. Let H be a separable Hilbert space and ν0 be a Banach space continuously embedded in
H∗. We set χ = ν0⊗̂πν0, ν = ν0 ⊗ R. A zero χ-quadratic variation process is a ν-weak orthogonal process.
This was the object of Proposition 4.29 in [22].

We introduce below the useful notion of ν̄0-semimartingale.

Definition 5.12. Let (St, t ∈ [0, T ]) be an H-valued progressively measurable process and a Banach space
ν̄0 in which H is continuously embedded. S is said ν̄0-semimartingale (or more precisely ν̄0 − (Ft)-
semimartingale) if it is the sum of a local martingale M and a process A which finite variation as ν̄0-valued
process.

Proposition 5.13. 1. An H-valued ν̄0-semimartingale is a semimartingale as ν̄0-valued process.

2. The decomposition of a ν̄0-semimartingale is unique, if for instance we prescribe that A0 = 0 a.s.

Proof.

1. Indeed an H-valued martingale is clearly a ν̄0-valued martingale and consequently, by stopping
arguments, an H-valued local martingale is a ν̄0-semimartingale.

2. It follows by the decomposition of a ν̄0-valued semimartingale.

The uniqueness of the decomposition of a ν̄0-semimartingale allows to define an extension of Itô integral,
that will still denoted in the same way.
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Definition 5.14. LetH,E be separable Hilbert spaces. Let ν̄0 be a Banach space in whichH is continuously
injected and S = M+ A be a H-valued which is a ν̄0-semimartingale. Suppose that (Yt) is a progressively
measurable, such that

∫ T

0

‖Yr‖
2
L(H,E)d[M]R,clr +

∫ T

0

‖Yr‖L(ν̄0,E)d‖A‖r <∞, (28)

where r 7→ ‖A(r)‖ is the total variation function of r 7→ A(r). We denote by
∫ t
0
YsdSs :=

∫ t
0
YsdMs +∫ t

0
YsdAs, t ∈ [0, T ].

Proposition 5.15. Let H be a separable Hilbert space, continuously embedded in a Banach space ν̄0. Let
S =M+ A be an H-valued process which is a ν̄0-semimartingale. We set ν0 = ν̄∗0 . We set χ = ν0⊗̂πν0.

1. A admits a zero χ-quadratic variation.

2. [M,A]χ = 0.

3. S is a ν0⊗̂πR-weak Dirichlet process.

4. S has a χ-quadratic variation. Moreover [̃S, S]
χ
(φ) = (H⊗̂πH)∗〈φ, [M,M]⊗〉H⊗̂πH

.

Proof. 1. Observe that, thanks to Lemma 3.18 in [17], it will be enough to show that

I(ǫ) :=
1

ǫ

∫ T

0

|(A(r + ǫ)− A(r))⊗2 |χ∗dr
ǫ→0
−−−→ 0, in probability. (29)

In fact, identifying χ∗ with the space of bounded bilinear functions on ν0, i.e. Bi(ν0, ν0), recalling
that ν0 = ν̄∗0 , the left-hand side of (29) gives

I(ǫ) =
1

ǫ

∫ T

0

sup
|φ|ν̄0 , |ψ|ν̄0≤1

|〈(A(r + ǫ)− A(r)), φ〉 〈(A(r + ǫ)− A(r)), ψ〉| dr

≤

∫ T

0

‖A(r + ǫ)− A(r)‖2ν̄0dr.

Since A is an ν̄0-valued bounded variation process, previous quantity converges to zero, by Remark
4.3 2.

2. It follows by very close arguments. In particular, an adaptation of Lemma 3.18 of [17] shows that it
will be enough to show that

J(ǫ) :=
1

ǫ

∫ T

0

|(A(r + ǫ)− A(r))⊗M(r + ǫ)−M(r))|χ∗dr
ǫ→0
−−−→ 0, in probability. (30)

Then we use the fact that M is a ν̄0-local martingale and therefore, by item 3. of Proposition 4.6, it
has a scalar quadratic variation, as ν̄0-valued process.

3. follows by Remark 5.11.

4. Indeed the bilinerarity of the χ-covariation and items 1. and 2. imply that [S, S]χ = [M,M]χ. The
result follows then by Proposition 5.8.

Below we will state examples of processes having a χ-quadratic variation.
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5.2 Window processes

Let B = C([−τ, 0]), for some τ > 0, X = (Xt, t ∈ [0, T ]) be a real process and X = (Xt(·), t ∈ [0, T ]),
the corresponding window process, i.e. such that Xt(x) = Xt+x, x ∈ [−τ, 0]. We start with some basic
examples.

Proposition 5.16. If X has Hölder continuous paths with parameter γ > 1
2 then X(·) has a zero scalar

quadratic variation and therefore a global quadratic variation.

Proof. It follows directly from the definition and the Hölder path property.

A typical example of such processes is fractional Brownian motion with Hurst parameter H > 1
2 or the

bifractional Brownian motion with parameters H,K and HK > 1
2 , see for instance [29, 40]. By Proposition

4.7 [17], the window of a classical Wiener process has no scalar quadratic variation so no global quadratic
variation since condition (H1) cannot be fulfilled. For this reason, it is important to investigate if it has a
χ-quadratic variation for a suitable subspace χ of (B⊗̂πB)

∗. In the framework of window processes, typical
examples of χ are the following.

1. M([−T, 0]2) equipped with the total variation norm.

2. L2([−τ, 0]2).

3. D0,0 = {µ(dx, dy) = λ δ0(dx)⊗ δ0(dy)}.

4. Let D0 be the one-dimensional space of measures obtained as multiple of the Dirac measure δ0.
The following linear subspace ofM([−T, 0]2) given by D0,0 ⊕ L

2([−T, 0])⊗D0 ⊕D0⊗L
2([−T, 0])⊕

L2([−T, 0]2). This is a Banach space, equipped with a self-explained sum of three norms. By the lines

above Remark 3.5 in [17], that space is the Hilbert tensor product (D0 ⊕ L
2)⊗̂

2
h.

5. Diag := {µ(dx, dy) = g(x)δy(dx)dy; g ∈ L
∞([−T, 0])}.

6. The direct sum χ0 of the spaces defined in 4. and 5. is a Chi-subspace. We remind item 5. at the
beginning of Section 5.2.

Remark 5.17. The window Brownian motion W (·) does not have a χ -quadratic variation for χ =
M([−τ, 0]2). This follows because the bidual of C([−τ, 0]2) is isometrically embedded into its bidual,
and the window Brownian motion has no scalar quadratic variation. In particular condition (H1) of the
χ-covariation cannot be fulfilled.

In all the other cases a classical Wiener process has a χ-quadratic variation. Indeed this also extends
to the case of a generic finite quadratic variation process. The proposition below is the consequence of
Propositions 4.8 and 4.15 of [17] and the fact that the direct sum of Chi-subspaces is a Chi-subspace.
From now on, in this section, for simplicity we set τ = T .

Proposition 5.18. Let X be a finite quadratic variation process. Then X(·) has a χ0-quadratic variation.
Moreover, for µ ∈ χ0, we have

[X(·)]t(µ) =

∫

Dt

dµ(x, y)[X]t−xdx,

where Dt is the diagonal {(x, y) ∈ [−T, 0]
2| − t ≤ x = y ≤ 0}.

In fact a Chi-subspace will plays the role of a suitable subspace of (B⊗̂πB)∗, in which lives the second
Fréchet derivative of a functional F : B → R is forced to live, in view of expanding F (X) via a Itô type
formula of the type (22).
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Example 5.19. Here are some typical particular cases of elementary functionals whose second derivatives
belong to some Chi-spaces mentioned above. The details of the verification are left to the reader.

1. F (η) = f(η(0)) where f : R→ R is of class C2. Then D2F (η) ∈ D0,0 for every η ∈ B.

2. F (η) =
(∫ 0

−T
η(s)ds

)2
. Then, for every η ∈ B, D2F (η) ∈ (D0 ⊕ L

2)⊗̂
2
h.

3. F (η) =
∫ 0

−T
η(s)2ds. In this case D2F (η) ∈ Diag for every η ∈ B.

5.3 Convolution type processes

Let H be a separable Hilbert space. Those processes, taking values in H, are the natural generalization
of Itô type processes. Let A be the generator of a C0-semigroup on H. Denote again with D(A) and D(A

∗)
respectively the domains of A and A∗ endowed with the graph norm.
Let U0, U be separable Hilbert spaces according to Sections 2.2 and 2.3. Let W be a Q-Wiener

process with values in U where Q ∈ L(U) a positive, injective and self-adjoint operator and define again
U0 := Q1/2(U) endowed with the scalar product 〈a, b〉U0

:=
〈
Q−1/2a,Q−1/2b

〉
. Let σ = (σt, t ∈ [0, T ]) with

paths a.s. in L2(U0;H) and b = (bt, t ∈ [0, T ]) with paths taking values in H being predictable such that

P

[∫ T

0

(
‖σt‖

2
L2(U0;H) + |bt|

)
dt <∞

]
= 1. (31)

Let x0 ∈ H.

Definition 5.20. A continuous process of the type

Xt = etAx0 +

∫ t

0

e(t−r)AσrdWr +

∫ t

0

e(t−r)Abrdr, (32)

is said convolution type process (related to A).

etA stands of course for the C0-semigroup associated with A. Clearly if A = 0, the semigroup is the
identity, then a convolution type process is a Itô type process. Natural examples of convolution processes
are given by mild solutions of stochastic PDEs, see for instance [8] Chapter 7 or [25] Chapter 3.1.

Proposition 5.21. Let X be a convolution type process as in (32) and

ν0 = D(A∗) ⊂ H∗, χ = ν0⊗̂πν0.

The following properties hold.

1. X admits a decomposition of the type M+ V where

Mt = x0 +

∫ t

0

σrdWr, Vt =

∫ t

0

brdr + At, t ∈ [0, T ],

where A is a progressively measurable process such that

H〈At, φ〉H∗ =

∫ t

0
H〈Xr, A

∗φ〉H∗dr, ∀φ ∈ ν0. (33)
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2. Let ν̄0 be the dual of D(A
∗), ν̄0 contains H since D(A∗) and H are Hilbert spaces and then reflexive.

Then X is an ν̄0-semimartingale with decomposition M+ V, M being the local martingale part.

3. The process A appearing in 1. admits a χ-zero quadratic variation.

4. X admits a χ-quadratic variation given

˜[X,X]χ(ϕ) =

∫ t

0

Tr
(
Lϕ(σrQ

1
2 )(σrQ

1
2 )∗
)
dr, ϕ ∈ χ, (34)

where Lϕ was defined in (8).

Proof. 1. This follows by Theorem 12, [35], see also lemma 5.1 [22].

2. The process A can be considered as a ν̄0-valued process. From (33), it follows that, for 0 ≤ s ≤ t ≤ T
and φ ∈ D(A∗), using (33), we have

H 〈At − As, φ〉H∗ =

∫ t

s

ds H〈Xr, A
∗φ〉H∗ ,

so the | · |ν̄0 norm of At − As is estimated by

sup
φ∈D(A∗)
|φ|D(A∗)≤1

| 〈At − As, φ〉 | ≤

∫ t

s

ds sup
φ∈D(A∗)
|φ|D(A∗)≤1

H | 〈Xr, A
∗φ〉H∗ | ≤

∫ t

s

|Xr|Hdr.

Previous inequalities show that A has a total variation as ν̄0-valued process which is bounded by∫ T
0
dr|Xr|H . Since the ν̄0-norm is dominated by the H-norm and

∫ ·
0
brdr is an H-valued bounded vari-

ation process, then V is also a bounded variation ν̄0-valued process. Finally X is a ν̄0-semimartingale.

3. follows from item 1. of Proposition 5.15.

4. follows from item 4. of Proposition 5.15 and item 3. of Proposition 4.7.

6 Stochastic calculus

6.1 Banach space valued forward integrals

Let U,H be separable Hilbert spaces and B,E be separable Banach spaces.

Definition 6.1. Let (Yt, t ∈ [0, T ]) be a strongly measurable process taking values in L(B,E) and

X = (Xt, t ∈ [0, T ]), be a B-valued continuous process and the following.
∫ T
0
‖Yr‖L(B,E)dr <∞. a.s. We

suppose the following.

• limε→0

∫ t
0
Yr

Xr+ε−Xr

ε dr exists in probability for any t ∈ [0, T ].

• Previous limit random function admits a continuous version.

In this case, we say that the forward integral of Y with respect to X, denoted by
∫ ·
0
Yd−X exists.
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Remark 6.2. 1. If E = R than we often denote
∫ ·
0
YrdXr =

∫ ·
0 B

∗〈Yr, dXr〉B .

2. If X = V is a continuous bounded variation process, and Y is an a.s. bounded strongly measurable
process having at most countable number jumps (as for instance cadlag or caglad), then

∫ ·
0
Yrd−Xr

exists and it equals the Bochner-Lebesgue integral
∫ ·
0
YrdXr.

If X is a.s. is absolutely continuous with derivative r 7→ Ẋr, then, whenever
∫ T
0
‖Yr‖L(B,E)|Ẋr|Bdr <

∞ a.s.
∫ ·
0
Yrd−Xr exists and it equals the same Bochner integral as before.

In both cases, the proof is similar to the case when the processes are real-valued, see e.g. Proposition
1.1 in [42] making use of stochastic Fubini’s theorem, i.e. Theorem 4.18 of [8].

3. Suppose that B = H and E = U . Let X = M be an (Ft)-local martingale and Y be a predictable

process such that
∫ T
0
‖Yr‖2L(U,H)d[M ]R,clr <∞ a.s. Then

∫ t
0
Yrd−Mr exists and it equals the Itô type

integral
∫ t
0
YrdMr, see Theorem 3.6 in [22].

4. Suppose that M = W is a Q-Wiener process with values in a separable Hilbert space H and Y
is a predictable process such that

∫ T
0
Tr((YrQ

1
2 )(YrQ

1
2 )∗dr < ∞ a.s. Then the forward integral∫ t

0
Yrd−Wr, t ∈ [0, T ] exists and it equals the Itô integral

∫ t
0
YrdWr, t ∈ [0, T ], see Theorem 3.4 in

[22].

5. A consequence of the previous two items is the following. If X = M+V is an H-valued semimartingale,
and Y is a cadlag predictable process, then

∫ t
0
Yd−X, t ∈ [0, T ], exists and it is the sum

∫ t
0
YdM+∫ t

0
YdV.

6.2 Itô formulae

We can now state the following Banach space valued Itô’s formula, see Theorem 5.2 of [17].

Theorem 6.3. Let B a separable Banach space, χ be a Chi-subspace of (B⊗̂πB)
∗ and let X a B-valued

continuous process admitting a χ-quadratic variation. Let F : [0, T ]×B −→ R be C1,2 Fréchet such that

D2F : [0, T ]×B −→ χ ⊂ (B⊗̂πB)
∗ continuously.

Then for every t ∈ [0, T ] the forward integral

∫ t

0
B∗〈DF (s,Xs), d

−Xs〉B (35)

exists and the following formula holds.

F (t,Xt) = F (0,X0)+

∫ t

0

∂rF (r,Xr)dr+

∫ t

0
B∗〈DF (r,Xr), d

−Xr〉B+
1

2

∫ t

0
χ〈D

2F (r,Xr), d[̃X]r〉χ∗ . (36)

The assumption that the second derivatives to lives in a suitable χ-space can be relaxed in some
situations, see for instance Proposition 6.4.

Proposition 6.4. Let H be a separable Hilbert space. Let ν0 be a dense subset of H
∗. We set χ = ν0⊗̂πν0.

Let X be a χ-finite quadratic variation H-valued process. Let F : [0, T ]×H → R of class C1,2 such that
(t, x)→ DF (t, x) is continuous from [0, T ]×H to ν0. Suppose moreover the following assumptions.
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(i) There exists a (cadlag) bounded variation process C : [0, T ]×Ω→ H⊗̂πH such that, for all t in [0, T ]
and φ ∈ χ,

H⊗̂πH
〈Ct(·), φ〉(H⊗̂πH)∗ = [X,X]χt (φ)(·) a.s.

(ii) For every continuous function Γ: [0, T ]×H → ν0 the integral
∫ t

0

〈
Γ(r,Xr), d

−Xr
〉

(37)

exists. Then

F (t,Xt) = F (0,X0) +

∫ t

0
H∗
〈
∂xF (r,Xr), d

−Xr
〉
H

(38)

+
1

2

∫ t

0
(H⊗̂πH)∗

〈
D2F (r,Xr), dCr

〉
H⊗̂πH

+

∫ t

0

∂rF (r,Xr)dr.

Proof. In Theorem 5.4 of [22], the result is formulated for the particular case ν0 = D(A∗) where A is the
generator of a C0-semigroup; the arguments to extend the result to the case of a generic ν0 are the same.

Remark 6.5. Clearly

(t, ω) 7→ (φ 7→ χ∗〈Ct(ω), φ〉χ) = ˜[X,X]χt(ω),

are indistinguishable processes with values in χ∗, if we identify χ∗ as a space which contains the bidual of
H⊗̂π and therefore H⊗̂π itself.

A consequence of previous proposition is a natural Itô formula for convolution type processes.

Proposition 6.6. Let X be a convolution type process as in Definition 5.20 with σ and b verifying (31).
Assume that F ∈ C1,2([0, T ]×H) with DF ∈ C([0, T ]×H,D(A∗)). Then, for every t ∈ [0, T ],

F (t,Xt) = F (0,X0) +

∫ t

0

∂rF (r,Xr)dr

+

∫ t

0

〈DF (r,Xr), br〉 dr +

∫ t

0

〈
DF (r,Xr), σrdW

Q
r

〉

+

∫ t

0

〈A∗DF (r,Xr),Xr〉 dr +
1

2

∫ t

0

Tr
[(
σrQ

1/2
)(

σrQ
1/2
)∗
D2F (r,Xr)

]
dr, P− a.s. (39)

where for (r, η) ∈ [0, T ]×H, again we associate D2F (r, η), which is in principle an element of Bi(H,H),
with a map in L(H), as in (8).

Proof. It is a consequence of Proposition 6.4 using Proposition 5.21 as follow. Let χ = ν0⊗̂πν0 with
ν0 = D(A∗).
Indeed, thanks item 4. of Proposition 5.21, X admits a χ-quadratic variation. Consider the decomposition

M + V defined in item 1. of Proposition 5.21. We first check that hypothesis (ii) of Proposition 6.4 is
satisfied.

∫ t
0
〈Γ(r,Xr), d−Mr〉 (resp.

∫ t
0
〈Γ(r,Xr), d−

∫ ·
0
brdr〉) exists and it equals the Itô type integral

∫ t

0

〈Γ(r,Xr), dMr〉 (40)
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(resp.

∫ t

0

〈Γ(r,Xr), br〉dr). (41)

This happens because of items 2. and 3. of Remark 6.2. Consequently
∫ t
0
〈Γ(r,Xr), d−Xr〉 exists if

∫ t

0

〈
Γ(r,Xr), d

−Ar
〉
, t ∈ [0, T ], (42)

exists and it equals the sum of (40), (41) and (42). We recall that A was defined in Proposition 5.21.
So let us show that (42) exists. For every t ∈ [0, T ], using (33), we evaluate limit of its ǫ-approximation,
using item 1. of Proposition 5.21.

1

ǫ

∫ t

0

〈Γ(r,Xr),Ar+ǫ − Ar〉 dr =
1

ǫ

∫ t

0

∫ r+ǫ

r

〈Xu, A
∗Γ(r,Xr)〉 dudr

=
1

ǫ

∫ t

0

∫ u

u−ǫ

〈Xu, A
∗Γ(r,Xr)〉 drdu

ǫ→0
−−−→

∫ t

0

〈Xu, A
∗Γ(u,Xu)〉 du. (43)

The validity of Hypothesis (i) comes out setting Ct =
∫ t
0
(σrQ

1
2 )(σrQ

1
2 )∗dr. It holds because X is a ν̄0-

semimartingale, taking into account Proposition 5.15 4. and item 1. of Proposition 4.7. Expression (39)
results now from (38). The first integral of the right-hand side of (38) gives the second, third and fourth
integrals of (39). In particular the second and the third ones are obtained differentiating M and

∫ ·
0
brdr,

using Remark 6.2 2., 3. and Proposition 2.6. The fourth integral comes from (43) choosing Γ = DF .
Finally the last integral in (39) comes from the third addendum of (38), taking into account (34) and
Lemma 4.9 with j = C and ġ(r) = D2F (r,Xr).

The theorem below operates as a substitute of a non-smooth Itô formula. It is a stability of ν-weak
Dirichlet processes, which was the object of Theorem 4.2 of [22].

Theorem 6.7. Let H be a separable Hilbert space. Let ν0 be a dense subset of H
∗. We set ν = ν0⊗R and

χ = ν0⊗̂πν0. Let F ∈ C
0,1([0, T ]×H) such that DF is continuous from [0, T ]×H to ν0. Let X =M+ V

be a (Ft)− ν-weak Dirichlet process and we suppose that X has a χ-quadratic variation.
Then (F (t,Xt)) is a real (Ft)-weak Dirichlet process with martingale part M

u where

MF
t = F (0,X0) +

∫ t

0

〈DF (r,Xr), dMr〉H .

7 Calculus with respect to window processes

Let X be a real (continuous) process such that [X]t ≡ ψ(t) with ψ(t) = σ2t, σ ≥ 0. Let B = C([−T, 0]).
Let u : [0, T ]×B → R) of class C0,1([0, T [×B. For t ∈ [0, T [, η ∈ B, we set

Dδ0u(t, η) = Du(t, η)(0), D⊥u(t, η) = Du(t, η)−Du(t, η)(0).

In this section, for t ∈ [0, T ], we will also denote

Dt :=
{
(x, y) ∈ [−t, 0]2|x = y

}
. (44)
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7.1 The case of vanilla random variables

A window diffusion X is naturally related to an infinite dimensional Kolmogorov type equation. But in
fact this link remains valid when the diffusion is a non-semimartingale with the same quadratic variation. Let
us concentrate on the case of a (non-necessarily semimartingale) process X such that [X]t = σ2t, t ∈ [0, T ],
for σ ≥ 0.
In order to motivate the discussion, we start with the simple representation a r.v. of the type

h = f(XT ) where f : R → R is continuous with polynomial growth. We suppose the existence of
v ∈ C1,2([0, T [×R) ∩ C0([0, T ]× R) such that

{
∂tv(t, x) +

σ2

2 ∂
2
xxv(t, x) = 0

v(T, x) = f(x).

Then

h := f(XT ) = v(0, X0) +

∫ T

0

∂xv(s,Xr)d
−Xr,

where previous integral is an improper forward integral. That result appeared in [47], [52]. The proof
can be easily formulated through Proposition 3.7. Later on, generalizations were performed in the case of
Asiatic options and other classes in [7, 1] and [6], which also considers r.v. of the type h = f(Xt0 , . . . , XtN ),
for 0 = t0 < . . . < tN = T .
The natural question concerns the validity of a similar formula when h is path dependent.
Previous toy model can be revisited using infinite dimensional calculus via regularization.

Proposition 7.1. We set again B = C([−T, 0]) and η ∈ B and we define G : B −→ R, by G(η) := f(η(0))
and u : [0, T ] × B −→ R, by u(t, η) := v(t, η(0)). Then u ∈ C1,2 ([0, T [×B;R) ∩ C0 ([0, T ]×B;R) and it
solves

{
∂tu(t, η) + σ2

2 〈D
2u (t, η) , 1Dt

〉 = 0, (t, η) ∈ [0, T | ×B,
u(T, η) = G(η), η ∈ B.

(45)

Proof. The final condition is obviously verified since u(T, η) = v(T, η(0)) = f(η(0)) = G(η) for all η ∈ B.
Moreover u is obviously of class C1,2([0, T [×B)∩C0([0, T ]×B) and ∂tu (t, η) = ∂tv (t, η(0)); also Du (t, η) =

∂xv (t, η(0)) δ0 and D
2u (t, η) = ∂2x xv (t, η(0)) δ0 ⊗ δ0. Finally ∂tu (t, η) +

σ2

2 D
2u (t, η)(Dt) = 0.

Suppose that u : [0, T ] × B → R is of class C0,1([0, T [×B). A quantity which will play a role in the
sequel is the deterministic forward integral

∫
]−t,0]

D⊥dxu(t, η)d
−η(x), see Section 3.2.

Suppose that for a given (t, η), D⊥dxu(t, η) is absolutely continuous, we denote by x 7→ Dac
x u(t, η) the

corresponding derivative. If moreover x 7→ Dac
x u(t, η) has bounded variation, then previous deterministic

integral exists and,
∫

]−t,0]

D⊥dxu(t, η)d
−η(x) = η(0)Dac

x u(t, η)({0})−

∫

]−t,0]

η(x)Dac
dxu(t, η(x)),

because of Remark 3.11 2.
In the toy model mentioned above, that integral is clearly zero since D⊥u is identically zero.

7.2 Itô formulae for window processes

The Itô formula stated in Theorem 6.3 can be particularized for the case when X = X(·) is a window
process (with τ = T ), associated with a finite quadratic variation process X. We recall that X admits
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a χ0-quadratic variation, where χ0 is the Chi-space of signed measures on [−T, 0]
2 introduced in item 6.

before Proposition 5.18. In particular Theorem 6.3 applies, so that integral (35) exists and it it decomposes
in the sum

∫ t

0

Dδ0F (r,Xr)d
−Xr +

∫ t

0
B∗〈D

⊥F (r,Xr), d
−Xr〉B , (46)

where Dδ0F and D⊥F were defined at the beginning of Section 7, provided that at least one of the two
addends exist.

Remark 7.2. 1. The second term is the limit in probability of the expression
∫ t

0

dr

∫ 0

−r

D⊥dxF (r,Xr)
Xr+x+ε −Xr+x

ε
, (47)

when ε goes to zero.

2. If X is a semimartingale, then the first integral is the Itô integral
∫ t
s
Dδ0F (r,Xr)dXr. Consequently

the second one is forced to exist.

3. If X is not necessarily a semimartingale, sufficient conditions for its existence can be provided.
Suppose that the deterministic quadratic variation of almost all path of X exists. In particular [X]
exists as an increasing real process. In this case a sufficient condition for the existence of the second
integral in (46), is the realization of following Condition related to F . We recall that the space V2,ψ,
for a fixed increasing continuous function ψ : [0, T ]→ R such that ψ(0) = 0, was defined at Section
3.2. B denotes here C([−T, 0]).

Definition 7.3. A continuous function u : [0, T ] × B → R of class C0,1([0, T [×B) is said to fulfill
Condition (C) (related to ψ) if the following holds.

(a) For each t ∈ [0, T ], η ∈ V2,ψ, the deterministic integral
∫

|−t,0]

D⊥x u(t, η)d
−η(x) (48)

exists.

(b) For any ε > 0, t ∈ [0, T ], η ∈ B, we denote

I(t, η, ε) :=

∫ 0

−t

D⊥x u(t, η)
η(x+ ε)− η(x)

ε
dx. (49)

We suppose the existence of J : [0, T ]× V2,ψ → R+ such that |I(t, η, ε)| ≤ J(t, η), ∀η ∈ V2,ψ and

such that for each compact K of B included in V2,ψ,
∫ T
0
supη∈K J(s, η)ds <∞.

As far as last point is concerned we remark that relatively compact subsets of B are very tiny.
Sufficient conditions for the validity of Condition (C) will be given below. Clearly this condition
implies the existence of the second integral of (46). In fact the set {Xs(·), s ∈ [−T, 0]} is compact in
B and included in V2,ψ. If Condition (C) is verified then

|I(s,Xs(·), ε)| ≤ sup
η∈K

J(s, η),

where K = K(ω) = {Xs(·), s ∈ [−T, 0]}. The result follows by Lebesgue dominated convergence
theorem.
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A sufficient condition for the realization of Condition (C) is given below. This will be a consequence of
integration by parts and Itô chain rule (18) in Proposition 3.6, expressed in the context of deterministic
calculus via regularization.

Lemma 7.4. Suppose the existence of continuous maps Fi : [0, T ] × B × [−T, 0] → R, Gi : [0, T ] ×
[−T, 0]×R→ R, 1 ≤ i ≤ N , such that D⊥dxu(t, η) is absolutely continuous and D

⊥
dxu(t, η) = Dac

x u(t, η)dx =∑N
i=1 Fi(t, η, x)Gi(t, x, η(x))dx, with the following properties for any subset K of V2,ψ such that

sup
η∈K

‖η‖2,ψ <∞ and it is a compact subset of B. (50)

For every 1 ≤ i ≤ N , for any such K, we suppose the following.

• For any (t, η) ∈ [0, T ]× V2,ψ, Fi(t, η, ·) has bounded variation.

• (t, η) 7→ ‖Fi(t, η, ·)‖var is bounded on [0, T ]×K.

• Gi ∈ C
0,1([0, T ]× [−T, 0]× R).

Then u fulfills Condition (C) with respect to ψ.

Proof. By additivity we can reduce to the case N = 1 and we set F = F1, G = G1. Let K be a subset of
V2,ψ such that (50) is fulfilled.
Let F : [0, T ]×V2,ψ× [−T, 0]→ R be measurable such that for every t and η we suppose that x 7→ F (t, η, x)
has bounded variation and (t, η) 7→ ‖Fi(t, η, ·)‖var is bounded on [0, T ]×K. Let G : [0, T ]× [−T, 0]×R→ R
of class C0,1,1([0, T ]× [−T, 0]×R). Let η ∈ V2,ψ and set G̃ : [0, T ]× [−T, 0]×R→ R the primitive defined
by G̃(t, x, y) =

∫ y
0
G(t, x, ỹ)dỹ. By formula (18) in Proposition 3.6 and Remark 3.11 3., we obtain

∫

]−t,0]

F (t, η, x)G(t, x, η(x))d−η(x) =

∫

]−t,0]

F (t, η, x)d−x G̃(t, x, η(x))−
1

2

∫

]−t,0]

F (t, η, x)∂η(x)G(t, x, η(x))d[η](x)

(51)

−

∫

]−t,0]

F (t, η, x)∂xG̃(t, x, η(x))dx,

provided that the first integral after the equality symbol is well-defined. By Remark 3.11 2., that integral
equals

F (t, η, 0−)G̃(t, 0, η(0))−

∫

]−t,0]

F (t, η, dx)G̃(t, x, η(x));

consequently item (a) of Condition (C) is fulfilled.
In the sequel of the proof, for η ∈ B, we denote by RK(t, η, ε) a quantity such that for every 0 < ε < 1,
supt∈[0,T ],η∈K |R(t, η, ε)| ≤ C(T,K), where C(T,K) only depend on T and K. We denote

K0 :=
⋃

η∈K

Im(η),

which is clearly a compact subset of R. We need to control the quantity

∫ 0

−t

F (t, η, x)G(t, x, η(x))
η(x+ ε)− η(x)

ε
dx. (52)
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We set again G̃(t, x, y) =
∫ y
0
G(t, x, ỹ)dỹ for t ∈ [0, T ] and x ∈ [−T, 0], y ∈ R, so that ∂G̃∂y (t, x, y) = G(t, x, y).

By Taylor expansion (52) equals

I1(t, η, ε)− I2(t, η, ε)− I3(t, η, ε) +RK(t, η, ε),

where

I1(t, η, ε) :=

∫ 0

−t

dx

ε
F (t, η, x)

(
G̃(t, x+ ε, η(x+ ε))− G̃(t, x, η(x))

)
,

I2(t, η, ε) :=

∫ 0

−t

dx

ε
F (t, η, x)

∂G̃

∂x
(t, x, η(x)),

I3(t, η, ε) :=
1

2

∫ 0

−t

dx

ε
F (t, η, x)

∫ 1

0

da
∂G̃

∂z
(t, x+ aε, η(x) + a(η(x+ ε)− η(x))) (η(x+ ε)− η(x))

2
.

I1(t, η, ε) equals

∫ 0

−t

dx

ε
(F (t, η, x)− F (t, η, x− ε)) G̃(t, x, η(x)) +RK(t, η, ε)

=

∫

[−t,0]

F (t, η, dy)

ε

∫ y+ε

y

dx G̃(t, x, η(x)) + RK(t, η, ε). (53)

Consequently, for 0 < ε < 1 we have

|I1(t, η, ε)| ≤ sup
x∈[−T,0]
y∈K0

t∈[0,T ]

|G̃(t, x, y)| sup
η∈K,t∈[0,T ]

‖F (t, η, ·)‖var + sup
η∈K
0<ε<1
t∈[0,T ]

|RK(t, η, ε)| =: C1;

I2(t, η, ε) can be handled in similar (but easier) way to I1. There is a constant C2 such that

sup
x∈[−T,0]
η∈K
t∈[0,T ]

|I2(t, η, ε)| ≤ C2.

Concerning I3(t, η, ε), for 0 < ε < 1, we have

|I3(t, η, ε)| ≤ sup
x∈[−T,0]
y∈K0

t∈[0,T ]

∣∣∣∣∣
∂G̃

∂y
(t, x, y)

∣∣∣∣∣ sup
x∈[−T,0]
η∈K

|F (t, η, x)|

(
sup
η∈K

‖η‖2,ψ

)
,

which is bounded because of (50). Finally item (b) of condition (C) is also fulfilled.

7.3 An infinite dimensional PDE

In this subsection again B will stand for C([−T, 0]). We are interested here in a class of functionals
G : B −→ R such that the r.v. h := G(XT (·)) admits a representation

h = G0 +

∫ T

0

ξsd
−Xs, (54)
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where G0 is a real number and ξ is adapted with respect to the canonical filtration (Ft) of X. If X is a
classical Wiener process, and h belongs to some suitable Malliavin type Sobolev space, then G0 = E(h)
and Clark-Ocone formula says that ξ in (54) is given by ξt = E(Dm

t h|Ft), t ∈ [0, T ].
In this section we want to show that the replication of a random variable h = G(X(·)), is robust with

respect to the quadratic variation of X, for a large class of G; the fact that the underlying process is
distributed according to Wiener measure is not so relevant. We are indeed interested in a representation
(54), which formulates G0 and ξ through two functionals of X, which do not depend on the specific model
of X such that [X]t ≡ σ2t, t ∈ [0, T ].
The methodology for expressing a Clark-Ocone type formula for finite quadratic variation processes

consists in two steps.

1. We need to choose a functional u : [0, T ]×B −→ R which solves the infinite dimensional PDE (56)
with final condition G.

2. Using an Itô type formula we establish a representation form (54).

The proposition below represents the second step of the procedure.
Below ψ will stand for ψ(t) ≡ σ2t, for some σ ≥ 0.

Proposition 7.5. Let X a process such that a.s. the limit [X,X] in Definition 3.3 holds a.s. and gives ψ.
Let u : [0, T ]×B −→ R be a function of class C1,2 ([0, T [×B) ∩ C0 ([0, T ]×B). For (t, η) ∈ [0, T ]×B, we
decompose Du(t, η) = Dδ0u(t, η)δ0 +D⊥dxu(t, η). We symbolize again through the Chi-space χ0 of signed
measuresM([−T, 0]2) defined in item 6. in Section 5.2. We suppose the following.

1. u fulfills Condition (C) and we denote

I(u)(t, η) :=

∫

]−t,0]

D⊥dxu(t, η)d
−η(x), (t, η) ∈ [0, T ]× V2,ψ. (55)

2. For all t ∈ [0, T ], η ∈ V2,ψ, D
2u(t, η) ∈ χ0 and the map (t, η) 7→ D2u(t, η) is continuous with respect

to the topologies of [0, T ]×B and χ0.

3. u solves the solving the infinite dimensional PDE





∂tu(t, η) + I(u)(t, η) + σ2

2 〈D
2u (t, η) , 1Dt

〉 = 0, (t, η) ∈ [0, T ]× V2,ψ,

u(T, ·) = G.

(56)

Then representation (54) holds with G0 = u(0, X0(·)) and ξs = Dδ0u(s,Xs(·)).

Remark 7.6. The condition on X implies that X is a finite quadratic variation process and [X]t = σ2t.This
is a little bit stronger but it is fulfilled in almost the known models where [X] = ψ. A typical X with this
a.s. property is the sum of a Wiener process and a Hölder process V with respect to an index γ > 1

2 .

Proof. The proof the proposition is a consequence of Theorem 6.3 and of the considerations following the
statement of Condition (C). In particular we remark that for all t ∈ [0, T ], a.s. we have

I(u)(t,Xt(·)) =

∫ t

0
B∗〈D

⊥F (r,Xr), d
−Xr〉B . (57)
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Coming back to the two steps mentioned at the beginning of Section 7.3, Theorem 9.41 and Theorem
9.53 of [15] give some sufficient conditions to solve (56). This constitutes step 1. This can be done for
instance in the two following cases.

1. G has a smooth Fréchet dependence on L2([−T, 0]).

2. h := G(XT (·)) = f
(∫ T

0
ϕ1(s)d

−Xs, . . . ,
∫ T
0
ϕn(s)d

−Xs

)
,

• f : Rn → R continuous with linear growth

• ϕi ∈ C
2([0, T ];R), 1 ≤ i ≤ N .

Remark 7.7. Suppose that X =W . There are cases where the methodology developed here is operational
and the classical Clark-Ocone formula does not apply. For instance in some cases h may be allowed even
not to belong to L1(Ω) and a fortiori h /∈ D1,2 or h /∈ L2(Ω), see for instance Proposition 9.55 in [15].

Remark 7.8. 1. Remark that our representation theorems also holds when σ = 0.

2. In a work in preparation, the authors extend the present theory to the case when X is replaced with
the window of a generic diffusion process.

3. The present approach was developed at the same time and independently than functional Itô’s
calculus of B. Dupire, R. Cont, D. Fournié, see e.g. [19, 5].

8 Applications to study of Kolmogorov equations

In this section we illustrate how to use the tools of stochastic calculus via regularization in the study of
solutions of forward Kolmogorov equations (i.e. Fokker-Planck equations) related to an evolution problem in
infinite dimensions, for instance a stochastic PDE. Kolmogorov equations in infinite dimension constitute a
classical field of study, they appear for example in quantum field theory and in stochastic reaction-diffusion.
We do not have here the ambition of summarizing the existing literature but only to describe how the
development of the theory we have described in previous sections can help to treat some cases that are not
covered by the existing literature.
We are interested in studying a class of Kolmogorov equation associated to an evolution equation

of the form (3) using the strong solution approach. In other words we will define the solution of the
Kolmogorov equation using approximating sequences, see Definition 8.7. The main results of the section
are the following:

(i) We provide, first of all, in Theorem 8.8, a probabilistic representation of strong solutions (t, η)→ v(t, η)
of the Kolmogorov equation decomposing it into two stochastic terms: the evaluation of the initial
datum of the Kolmogorov equation along the trajectory of a reversed evolution equation and a
stochastic integral term depending on the first derivative of v.

(ii) In Proposition 8.9 we show that a strong solution of the Kolmogorov equation is also a mild solution.
The definition of mild solution will be recalled in (64). As a corollary we get the uniqueness of the
strong solution.

With respect to similar contributions in this sense (see e.g. [4, 26, 10]) we are able to prove the uniqueness
of the strong solution in cases in which the stochastic evolution equation connected to the Kolmogorov
equation is not homogeneous and in which the regularity of the solution (t, η) 7→ v(t, η) is only requested
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to be C0,1 with Dv(t, η) ∈ C([0, T ]×H;D(A∗)), where A is the generator of the C0-semigroup appearing
in the infinite dimensional stochastic evolution equation, see e.g. (3), related to the Kolmogorov equation.
More details about comparison with existing results are given in Example 8.10 and Remark 8.11.

8.1 The setting

Let H be a separable Hilbert space and A be the generator of a C0-semigroup on H, see Section 5.3.
We denote again with D(A) and D(A∗) respectively the domains of A and A∗ endowed with the graph
norm. Let fix again T > 0.

Let us again consider (Ω,F ,P) a complete probability space and (Ft)t≥0 a filtration on it satisfying the
usual conditions. Assume that U,U0 are separable Hilbert spaces, Q ∈ L(U) is a positive, injective and self-

adjoint operator as in Section 2.2 or 5.3 and define U0 := Q1/2(U). Let again WQ = {WQ
t : 0 ≤ t < +∞}

be an U -valued (Ft)-Q-Wiener process, with WQ
0 = 0, P a.s.

We consider two functions b and σ as follows.

Hypothesis 8.1. b : [0, T ]×H → H is a continuous function and satisfies, for some C > 0,

|b(t, η)− b(t, γ)| ≤ C|η − γ|,

|b(t, η)| ≤ C(1 + |η|),

for all η, γ ∈ H, t ∈ [0, T ]. σ : [0, T ]×H → L2(U0;H) is continuous and, for some C > 0,

‖σ(t, η)− σ(t, y)‖L2(U0;H) ≤ C|η − γ|,

‖σ(t, η)‖L2(U0;H) ≤ C(1 + |η|),

for all η, γ ∈ H, s ∈ [0, T ].

Remark 8.2. Observe that, thanks to the definition of norm on U0, the hypothesis ‖σ(t, η)‖L2(U0;H) ≤
C(1 + |η|) implies

‖σ(t, η)Q1/2‖L2(U ;H) ≤ C(1 + |η|), (t, η) ∈ [0, T ]×H

and then
∥∥∥
(
σ(t, η)Q1/2

)(
σ(t, η)Q1/2

)∗∥∥∥
L1(H)

≤ C2(1 + |η|)2, (t, η) ∈ [0, T ]×H.

For η ∈ H, we consider the equation

{
dXt = (AXt + b(t,Xt)) dt+ σ(t,Xt)dW

Q
t ,

X0 = η.
(58)

The solution of (58) is understood in the mild sense, so an H-valued predictable continuous process X
is said to be a mild solution of (58) if

P

(∫ T

0

(|Xr|+ |b(r,Xr)|+ ‖σ(r,Xr)‖
2
L2(U0;H))dr < +∞

)
= 1
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and

Xt = etAη +

∫ t

0

e(t−r)Ab(r,Xr)dr +

∫ t

0

e(t−r)Aσ(r,Xr)dW
Q
r (59)

P-a.s. for every t ∈ [0, T ],

Thanks to Hypothesis 8.1, standard results about stochastic infinite dimensional evolution equation, see
e.g. Theorem 3.3 of [25], ensure that there exists a unique solution X of (58), which admits a continuous
modification. So for us, the solution X can always be considered as a continuous process.

8.2 The Kolmogorov equation

Let g : H → R be a continuous and bounded function. We introduce now the following non-homogeneous
Kolmogorov equation.

{
−∂tv + 〈A

∗Dv, η〉+ 1
2Tr

[
σ(t, η)σ∗(t, η)D2v

]
+ 〈Dv, b(t, η)〉 = 0 (t, η) ∈ [0, T ]×H,

v(0, η) = g(η), η ∈ H.
(60)

In the above equation, given (t, η) ∈ [0, T ]×H, given v : [0, T ]×H ×H, Du(t, η) (resp. D2v(t, η)) is the
Fréchet (resp. second Fréchet) derivative of v w.r.t. to the second variable η; it is identified with elements
of H (resp. with a symmetric bounded operator on H, taking into account the identification (8)). ∂tv is
the derivative w.r.t. the time variable.

We recall that the spaces C([0, T ]×H), C(H), C([0, T ]×H ;D(A∗)) are Fréchet type spaces if equipped
with the topology defined by the seminorms (4). We denote with L0 the operator on C([0, T ]×H) defined
as

{
D(L0) :=

{
ϕ ∈ C1,2([0, T ]×H) : Dϕ ∈ C([0, T ]×H;D(A∗))

}

L0(ϕ)(t, η) := −∂tϕ(t, η) + 〈A
∗Dϕ(t, η), η〉+ 1

2Tr
[
σ(t, η)σ∗(t, η)D2ϕ(t, η)

]
.

(61)

Using this notation, (60) can be rewritten as

{
L0(v(t, ·)) + 〈Dv, b(t, η)〉 = 0, (t, η) ∈ [0, T ]×H,

v(0, η) = g(η) η ∈ H.
(62)

8.3 Mild, strict and strong solutions

We recall here three different definitions of solution of the Kolmogorov equation, see e.g. [10] for more
details. Assume that Hypothesis 8.1 is verified. Fix s ∈ (0, T ]. By the same arguments as those at the end
of Section 8.1, the equation below has a unique mild solution Ys on [0, s]:

{
dYst = (AYt + b(s− t,Yst )) dt+ σ(s− t,Yst )dW

Q
t , t ∈ [0, s],

Ys0 = η.
(63)

We will be in fact mainly interested in its value at point s.
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Definition 8.3. [Mild solution of the Kolmogorov equation].
We call mild solution of the Kolmogorov equation (60) the function

V (s, η) := E

[
g(Yss)

]
, (64)

where Ys is the solution of (63).

Remark 8.4. Whenever b and σ does not depend explicitly on time we have Yss = Xs, where X is the
solution of (58), so the definition given above reduces to the mild solution given in [10] Section 6.5 page
122. In this case the mild solution can be expressed in terms of the transition semigroup (Pt, t > 0)
corresponding to (58). More precisely one has V (t, η) := Pt(g)(η), where, for any t ∈]0, T ], and for any
bounded, measurable function φ : H → R, Pt is characterized as

(Pt φ)(η) = E[φ(Xt)]. (65)

We recall, in a slightly more general situation, the notion of strict and strong solutions. Let consider
h ∈ C([0, T ]×H), g ∈ C(H) and the Cauchy problem

{
(L0(v) + h)(t, η) = 0, (t, η) ∈ [0, T ]×H,

v(0, η) = g(η), η ∈ H.
(66)

Moreover, for any s ∈ (0, T ], we consider the following Kolmogorov equation with final datum:

{
∂tu(t, η) + 〈A

∗Du(t, η), x〉+ 1
2Tr

[
σ(t, x)σ∗(t, x)D2u

]
+ h(t, η) = 0, (t, η) ∈ [0, s)×H,

u(s, η) = g(η), η ∈ H.
(67)

Introducing the new notation

{
D(L s

0 ) :=
{
ϕ ∈ C1,2([0, s]×H) : Dϕ ∈ C([0, s]×H;D(A∗))

}
,

L s
0 (ϕ)(t, η) := ∂tϕ(t, η) + 〈A

∗Dϕ(t, η), η〉+ 1
2Tr

[
σ(t, η)σ∗(t, η)D2ϕ(t, η)

]
,

(68)

the equation (67) can be rewritten as

{
(L s

0 (u) + h)(t, η) = 0, (t, η) ∈ [0, s[×H,

u(s, η) = g(η), η ∈ H.
(69)

Remark 8.5. Observe that the sign in front of ∂t are opposite in (60) and (67).

Definition 8.6. [Strict solution of the Kolmogorov equation].
Consider h ∈ C([0, T ]×H) and g ∈ C(H). We say that v ∈ C1,2([0, T ]×H) (resp. u ∈ C([0, s]×H))

is a strict solution of (66) (resp. of (69)) if v ∈ D(L0) (resp. if u ∈ D(L s
0 )) and (66) (resp. (69)) is

satisfied.
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Definition 8.7 (Strong solution of the Kolmogorov equation). .
Let h ∈ C([0, T ]×H) and g ∈ C(H). We say that v ∈ C0,1([0, T ]×H) with Dv ∈ C([0, T ]×H ;D(A∗))

(resp. u ∈ C0,1([0, s] × H) with Du ∈ C([0, s] × H;D(A∗))) is a strong solution of (66) (resp. of
(69)) if there exist three sequences {vn} ⊆ D(L0) (resp. {un} ⊆ D(L s

0 )), {hn} ⊆ C([0, T ] × H) (resp.
C([0, s]×H)) and {gn} ⊆ C(H) fulfilling the following.

(i) For any n ∈ N, vn (resp. un) is a strict solution of the problem

{
L0(vn)(t, η)) + hn(t, η) = 0, (t, η) ∈ [0, T ]×H,

vn(0, η) = gn(η) η ∈ H.
(70)

(resp. of

{
(L s

0 (un) + hn)(t, η) = 0, (t, η) ∈ [0, s[×H,

un(s, η) = gn(η), η ∈ H.
) (71)

(ii) The following convergences hold:




vn → v in C([0, T ]×H),
hn → h in C([0, T ]×H),
gn → g in C(H),


resp.





un → u in C([0, s]×H),
hn → h in C([0, s]×H),
gn → g in C(H).




8.4 Decomposition for strong solutions of the Kolmogorov equation

Theorem 8.8. Consider g ∈ C(H). Assume that Hypothesis 8.1 is satisfied. Suppose that v ∈ C0,1([0, T ]×
H) with Dv ∈ C(H;D(A∗)) is a strong solution of (66). Then, given s ∈ (0, T ] and η ∈ H, we have

v(s, η) = g(Yss)−

∫ s

0

〈
Dv(s− r,Ysr), σ(s− r,Y

s
r)dW

Q
r

〉
, (72)

where Ys is the solution of (63).

Proof. We denote by vn the sequence of smooth solutions of the approximating problems prescribed by
Definition 8.7, which converges to v. We fix s > 0 and we observe that t 7→ u(t, η) := v(s− t, η) is a strong
solution of

{
∂tu+ 〈A

∗Du, η〉+ 1
2Tr

[
σ(s− t, η)σ∗(s− t, η)D2u

]
+ 〈Du, b(s− t, η)〉 = 0,

u(s, η) = g(η),
(73)

in the sense of Definition 8.7 (in the case of (71)) if we use, as a approximating sequence, un(t, η) :=
vn(s− t, η). Thanks to Proposition 6.6, every un verifies, for t ∈ [0, s],

un(t,Y
s
t ) = un(0, η) +

∫ t

0

∂run(r,Y
s
r)dr

+

∫ t

0

〈A∗Dun(r,Y
s
r),Y

s
r〉 dr +

∫ t

0

〈Dun(r,Y
s
r), b(s− r,Y

s
r)〉 dr

+
1

2

∫ t

0

Tr
[(
σ(s− r,Ysr)Q

1/2
)(

σ(s− r,Ysr)Q
1/2
)∗
D2un(s− r,Y

s
r)
]
dr

+

∫ t

0

〈
Dun(r,Y

s
r), σ(s− r,Y

s
r)dW

Q
r

〉
. P − a.s. (74)
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Since un is a strict solution of (73) the expression above gives, for t ∈ [0, s],

un(t,Y
s
t ) = un(0, η) +

∫ t

0

〈Dun(r,Y
s
r), σ(s− r,Y

s
r)dWr〉 . (75)

Define, for t ∈ [0, s],

Mn
t := un(t,Y

s
t )− un(0, η). (76)

(Mn)n∈N is a sequence of real local martingales (vanishing at zero). Since, thanks to Theorem 7.4 of [8]
one has

E sup
t∈[0,s]

(
1 + |Yst |

N
)
< +∞ for any N ≥ 1,

Mn converges ucp, thanks to the definition of strong solution, to

Mt := u(t,Yst )− u(0, η). (77)

Since the space of real continuous local martingales equipped with the ucp topology is closed (see e.g.
Proposition 4.4 of [28]) then M is a continuous local martingale.

Now set ν0 = D(A∗), χ = ν0⊗̂πν0 and we show how the theory developed in the previous sections can
help us here. Proposition 5.21 2. ensures that Ys is a ν̄0-semimartingale with ν̄0 being the dual of D(A∗).
By Proposition 5.15 3., it is a ν0⊗̂πR-weak Dirichlet process with decomposition M+ A where M is the
local martingale defined by Mt = η +

∫ t
0
σ(s− r,Ysr)dW

Q
r and A is a ν0⊗̂πR-martingale-orthogonal process.

Moreover X has a finite χ-quadratic variation by Proposition 5.21 item 4.
Theorem 6.7 and Proposition 2.6 (ii) ensures that the process u(·,Ys· ) is a real weak Dirichlet process

whose local martingale part being equal to

Nt = u(0, η) +

∫ t

0

〈
Du(r,Xr), σ(s− r,Y

s
r)dW

Q
r

〉
. (78)

Observe that 13 is satisfied thanks to 8.2 and the continuity of Dv, X and Ys.
By item 1. of Proposition 3.10 the decomposition of a real weak Dirichlet process is unique so, identifying

(77) with (78), for any t ∈ [0, s], we get

u(t,Yst ) = u(0, η) +

∫ t

0

〈
Du(r,Ysr), σ(s− r,Y

s
r)dW

Q
r

〉
. (79)

Since v(s, η) = u(0, η), for any t ∈ [0, s], by (79) it yields

v(s, η) = u(0, η) = u(t,Yst )−

∫ t

0

〈
Du(r,Ysr), σ(s− r,Y

s
r)dW

Q
r

〉
. (80)

In particular, for t = s, since u(s, ·) = g by (73), it follows

v(s, η) = u(0, η) = g(Yss)−

∫ s

0

〈
Du(r,Ysr), σ(s− r,Y

s
r)dW

Q
r

〉

= g(Yss)−

∫ s

0

〈
Dv(s− r,Ysr), σ(s− r,Y

s
r)dW

Q
r

〉
,

which concludes the proof.
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We are now able to establish uniqueness of the solution of the Kolmogorov equation.

Proposition 8.9. Assume that Hypotheses 8.1 are satisfied and that g is a continuous function from H
to R. Let v ∈ C0,1([0, T ]×H) with Dv ∈ C(H;D(A∗)) be a strong solution of (60). Let v such that Dv
has most polynomial growth in the η variable. Then the following holds.

(i) The expectation appearing in (64) makes sense and it is finite; consequently the function V is
well-defined.

(ii) v = V on [0, T ]×H.

Proof. Thanks to Theorem 8.8, we can write, for any s ∈ (0, T ],

v(s, η) +

∫ s

0

〈
Dv(s− r,Ysr), σ(s− r,Y

s
r)dW

Q
r

〉
= g(Yss). (81)

Observe that, by Theorem 7.4 in [8], all the momenta of supr∈[0,t] |Y
s
r| are finite. On the other hand Dv

has polynomial growth, then, recalling Remark 8.2, for t ∈ [0, s],

E

∫ t

0

〈
Dv(s− r,Ysr),

(
σ(s− r,Ysr)Q

1/2
)(

σ(s− r,Ysr)Q
1/2
)∗
Dv(s− r,Ysr)

〉
dr

is less or equal to, for all t ∈ [0, s],

E

∫ t

0

C
(
1 + |Ysr|

N
)
dr

for some constants C and N and then, thanks again to Theorem 7.4 of [8] is finite.
Consequently, by Proposition 2.6 (i)

t 7→

∫ t

0

〈
Dv(s− r,Ysr), σ(s− r,Y

s
r)dW

Q
r

〉
, t ∈ [0, s],

is a true martingale vanishing at 0. Consequently, for any t ∈ [0, s], its expectation is zero. In the left-hand
side of (81) we have a deterministic value and a random variable with zero-expectation, so the expectation
of the right-hand side is well-defined and equals v(s, η). In particular we have

v(s, η) = E

[
g(Yss))

]

which concludes the proof.

Example 8.10. Whenever b and σ do not depend directly on the time and then the Kolmogorov equation
is homogeneous, if X is the solution of (58) and Ys the solution of (63) we have

X = Ys on [0, s],

for any s ∈]0, T ]. So in particular v(s, η) = V (s, η) = Ps(g)(η) where (Pt) is the transition semigroup
associated to (58). In this case Proposition 8.9 gives a result similar to that of Theorem 7.6.2 Chapter
7 of [10]. In that case the authors do not use a strong solution approach. The two results have different
hypotheses; in fact the one contained in [10] requires that v is in twice differentiable with locally uniformly
continuous derivatives in the η variable while our result require the C1 regularity and that Dv(t, η) ∈
C([0, T ]×H;D(A∗)).
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Remark 8.11. The technique we have presented here can easily be adapted to treat other cases. One is
the case in which b ≡ 0 and the function h appearing in (66) is a generic continuous function.

In this case the uniqueness result can be formulated as follows: any strong solution with the regularity
required by Proposition 8.9 can be expressed as

v(s, η) = E

[
g(Yss) +

∫ s

0

h(s− r,Ysr)dr

]
.

Whenever σ does not depend directly on the time the expression above can be rewritten as

v(s, η) = E

[
g(Xs) +

∫ s

0

h(s− r,Xr)dr

]
.

So the existence of E [g(Xs)] implies the existence of E
[∫ s

0
h(s− r,Xr)dr

]
and vice-versa. When one of the

two exists (e.g. if g of h are bounded or have polynomial growing) we can write latter expression as

Ps(g)(η) +

∫ s

0

Pr(h(s− r, ·))(η)dr.

Then v is the mild solution used for example (in the particular case σ being the identity) in [26]. In that
paper, the author uses a strong solution approach, introducing a series of functional spaces that allow to
deal with a possible singularity at time 0 (that we do not have here), but he does not explicitly provide a
uniqueness result.

Observe that in [26, 4] the problem is approached by studying the properties of the transition semigroup
defined in (65) on the space Cb(H) of the continuous bounded function (or in some cases, on the space
Bb(H) of bounded function) defined on H introducing a new notion of semigroup (see also [39]). This
kind of methodology structurally requires the initial datum g to belong to Cb(H) (or Bb(H)) and then
Kolmogorov equations with unbounded initial datum cannot be studied.

Remark 8.12. The ideas we used here to prove the relation between strong and mild solutions of the
Kolmogorov equations can be used to study second order Hamilton-Jacobi-Bellman equation related to
optimal control problems driven by stochastic PDEs and provide consequently verification theorems. This
kind of approach is used for example in Section 6 of [22].
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