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Abstract

We study the optimal dynamics of an AK economy where population is uniformly distributed

along the unit circle. Locations only differ in initial capital endowments. Spatio-temporal capital

dynamics are described by a parabolic partial differential equation. The application of the maxi-

mum principle leads to necessary but non-sufficient first-order conditions. Thanks to the linearity

of the production technology and the special spatial setting considered, the value-function of the

problem is found explicitly, and the (unique) optimal control is identified in feedback form. De-

spite constant returns to capital, we prove that the spatio-temporal dynamics, induced by the

willingness of the planner to give the same (detrended) consumption over space and time, lead

to convergence in the level of capital across locations in the long-run.

Key words: Economic Growth, Spatial Dynamics, Optimal Control, Partial-Differential

Equations

JEL Classification: C60, O11, R11, R12, R13

1. Introduction

Optimal and market allocation of economic activity across space has always been a central

issue in economic theory from the seminal work of Hotelling (1929). Recently, some authors

have studied the optimal spatial allocation of economic activity in dynamic settings with capital

accumulation. To our knowledge, Brito (2004) is the first attempt to fully characterize the cor-

responding optimal spatio-temporal dynamics, followed by Brock and Xepapadeas (2008) and

Boucekkine et al. (2009). This research is surveyed by Desmet and Rossi-Hansberg (2010).
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Factor mobility turns out to be crucial: Brito and Boucekkine et al. consider frictionless cap-

ital mobility while Brock and Xepapadeas invoke a spatial externality without capital mobility.

In the former, the production function exhibits decreasing returns: capital flows from regions

with low marginal productivity of capital to regions with high marginal productivity. As a result,

capital spatio-temporal dynamics are shown to be driven by a partial differential equation (PDE)

of the form: ∂k

∂t
(t, z) − ∂

2k

∂z2
(t, z) = F (k(t, z), z) − c(t, z), (1)

where z is the spatial position (which could be a position in the real line as in Boucekkine et

al., 2009, or in the unit circle as in this article). Per capita consumption and capital, c(t, z) and

k(t, z) respectively vary in time and space. The production function F(·, ·) can depend explicitly

on space. The specific nature of the equation comes from the term ∂2k
∂z2 (t, z) which captures capital

flows across space as explained in Section 2: this makes the problem infinite-dimensioned.

Both Brito and Boucekkine et al. have attempted to solve spatial Ramsey models where

capital follows equation (1). Both have used a straight line as a model of space and have used an

adapted maximum principle to derive the corresponding first-order conditions, in particular the

adjoint equation which is a PDE too. As explained in Boucekkine et al., the maximum principle

yields an ill-posed system of PDE equations. The problem arises from the specific generated

adjoint equation which, coupled with the associated transversality condition, does not allow to

prove neither the existence nor uniqueness of an optimal control (ill-posedness). In particular,

potential multiplicity of solutions is the key problem faced by both Brito and Boucekkine et al.,

who have ended up restricting the model and/or the set of optimal solutions to get rid of this

problem: Boucekkine et al. restrict utility functions to be linear and Brito identifies a special

type of solutions (called travelling waves).

In this paper, we consider the AK production function case and we model space as a circle.

Even if the linear production function simplifies the adjoint equation and the space is bounded,

the problem mentioned above still remains as we will show. Precisely, we show that ill-posedness

is due to the fact that the first-order optimality conditions found by Boucekkine et al., specified

for our AK problem, are necessary but not sufficient to determine the optimal solution; as a re-

sult, other “irrelevant” solutions to these conditions do emerge. This makes a big difference with

respect to the standard finite-dimensioned AK model (without space) where the first-order condi-

tions are also sufficient. The key tool to reach these results is the use of a dynamic programming

method well adapted to the infinite dimensionality of the problem. After rewriting the problem in

a suitable infinite dimensional space, we exploit the linearity of the production function and the

spatial setting (that’s the circle as a compact manifold without boundary) to identify an explicit

value function, which in turn allows us to solve the problem in feedback form and then to find

explicitly the optimal control. The methodology is described in the last paragraph of Section 2,

Appendix A gives the related details. We prove that the unique solution to the dynamic program-

ming problem does satisfy the first-order optimality conditions, hence the necessity of the latter.

Moreover, we prove that these conditions do have other solutions which are not solutions to the

original optimal control problem, implying that these conditions are not sufficient. Another point

of potential methodological interest is the proof of Theorem 3.3 where we make use of Fourier

series to explore the asymptotic behavior of the solutions. It can be of interest in infinite dimen-

sional control problems beyond the particular case analyzed in this paper. We give details of this

approach in Appendix B.

A second set of contributions concerns the full analytical characterization of optimal spatio-

temporal dynamics in the AK case. Individuals are distributed along the unit circle with possibly
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unequal initial capital endowments. How would optimal spatio-temporal dynamics alter this

initial capital distribution? In the standard AK model, no transition dynamics set in because

of constant returns to scale. We obtain a striking result: spatio-temporal dynamics set in and

lead to the convergence of time detrended capital stocks across space to the same common value

whatever the initial spatial distribution of capital. Convergence here is not the result of decreasing

returns but is exclusively due to spatio-temporal dynamics. Our main finding can also be related

to the literature on economic growth with heterogeneous initial endowments (see Chatterjee,

1994). This said, this paper highlights the specific nature of spatial dynamics, an aspect omitted

in the latter literature.

This note is organized as follows. Section 2 sketches the model. Section 3 displays the ana-

lytical results allowed by the dynamic programming model. Section 4 uses the solution obtained

by the dynamic programming method to characterize ill-posedness in the sense of Boucekkine et

al. in the model under scrutiny. Section 5 provides with complementary numerical illustrations.

2. The model

We assume that individuals are distributed homogeneously along the unit circle in the plane,

which we denote by T. Using polar coordinates T can be described as the set of spatial parame-

ters θ in [0, 2π] with θ = 0 and θ = 2π being identified.

Our assumption of a non-growing and spatially homogeneous population distribution is made

for convenience. Considering an heterogeneous spatial population distribution would lead to in-

troduce population density in the social Benthamite welfare function, which will disable the

simple analytical solution derived in this paper. Second, the choice of the unit circle to represent

space is not innocuous. It has indeed two important geometric properties: it is compact and with-

out boundary. Both conditions are essential to avoid the specification of boundary conditions, to

simplify the form of the partial differential equation that drives the system and then to simplify

the form of the Hamilton-Jacobi-Bellman (HJB) equation. Thanks to that simple form we are

able to apply the dynamic programming finding an explicit solution of the HJB equation and

solving the problem. See Remark B.2 for other details.

The law of motion of capital in time and space is adopted from the related literature. At a

given point (t, θ) ∈ [0,∞) × T, physical capital k(t, θ) evolves according to

∂k

∂t
(t, θ) = Ak(t, θ) − c(t, θ) − τ(t, θ). (2)

A represents the level of technology, which we assume to be constant over time and space. The

production function is AK at any point in space. c(t, θ) and τ(t, θ) stand for consumption and net

trade balance at (t, θ) ∈ [0,∞)×T respectively. Capital depreciation is zero everywhere. Finally,

we assume there is no adjustment or transportation costs when moving capital from a location

to another. Such costs traditionally generate non-instantaneous adjustment, we switch off this

dynamics engine to rely on spatial dynamics.

The trade balance over an arc B =
−−−→
θ1θ2 of the circle, with θ1 < θ2, is equal to what enters at

θ1 minus what goes out at θ2, in formulas:
∫ θ2

θ1
τ(t, θ) dθ = −

(

∂k
∂θ

(t, θ2) − ∂k
∂θ

(t, θ1)
)

. Thanks to the

Lagrange form of the reminder in the Taylor expansion, last expression is equal to −(θ2−θ1)
∂2k(t,θ)

∂θ2

for some θ within [θ1, θ2]. Letting θ2 to θ1 we get τ(t, θ) = − ∂
2k(t,θ̄)

∂θ2
. Using the latter expression

for τ in (2) gives
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∂k

∂t
(t, θ) =

∂2k(t, θ)

∂θ2
+ Ak(t, θ) − c(t, θ), ∀t ≥ 0, ∀θ ∈ T

k(t, 0) = k(t, 2π), ∀t ≥ 0

k(0, θ) = k0(θ), ∀θ ∈ [0, 2π].

(3)

Provided an initial distribution of physical capital k0(·) on T, the policy maker has to choose a

control c(·, ·) to maximize the following functional

J(k0, c(·, ·)) :=

∫ +∞

0

e−ρt
∫ 2π

0

c(t, θ)1−σ

1 − σ dθ dt (4)

The value function of our problem starting from k0 is defined as

V(k0) := sup
c(·,·)

J(k0, c(·, ·)) (5)

where the supremum is taken over the controls that ensure the capital to remain non-negative at

every time and at every point of the space.

The method employed involves regular enough functions k(·, ·), c(·, ·), so that for any time

t ∈ [0,+∞) the functions k(t, ·), c(t, ·) of the space variable can be considered as elements of the

Hilbert space L2(T). L2(T) is the set of the functions f : T → R s.t.
∫ 2π

0
| f (θ)|2 dθ < +∞. This

simplifying feature allows to apply dynamic programming techniques in L2(T) which are similar

in spirit to those employed in the finite dimensional case. We write and solve the Hamilton-

Jacobi-Bellman (HJB) equation in L2(T) and we use its solution to find the optimal control in

feedback form. The method is detailed in Appendix A.

3. Spatial dynamics in the AK model: analytical results

We start characterizing a crucial property of the optimal solution: as in the pre-existing AK

frameworks, the planner chooses a constant consumption level over time and space, and all ag-

gregate variables grow at a constant growth rate from t = 0.

Theorem 3.1. Suppose that

A(1 − σ) < ρ (6)

and consider k0 ∈ L2(T), a positive initial distribution of physical capital. Define

η :=
ρ − A(1 − σ)

2πσ
. (7)

Provided that the trajectory k∗(t, θ), driven by the feedback control (constant in θ)

c∗(t, θ) = η

∫ 2π

0

k∗(t, ϕ) dϕ (8)

remains positive, c∗(t, θ) is the unique optimal control of the problem. Moreover the value func-

tion of the problem is finite and can be written explicitly as

V(k0) = α

(∫ 2π

0

k0(θ) dθ

)1−σ

(9)
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where

α =
1

1 − σ

(

ρ − A(1 − σ)

2πσ

)−σ
. (10)

Proof. See Appendix B.

The theorem deserves some comments. First, the parametric condition (6) is exactly the

one needed in the standard AK theory to assure that the objective function is finite. It is also

needed here to guarantee that the value function is finite. Indeed V(k0) is given explicitly by

(9). Notice that V(k0) depends only on the aggregate initial capital stock. Two different capital

distributions having the same aggregate value will yield the same value function, and therefore

the same optimal consumption rule (here given by (8)). The optimal solution features a kind

of pooling of resources, which is hardly surprising given the social optimum setting considered.

Finally, one has to notice that both the value function and the feedback control are identical to

those of the standard AK model once we normalize for population size, equal to 2π. We now

extract the optimal solutions for the aggregate capital stock and the induced optimal consumption

rule at any point (t, θ).

Proposition 3.2. Under the same assumptions of Theorem 3.1 the aggregate capital K(t) :=
∫ 2π

0
k(t, θ) dθ, along the optimal trajectories, is

K(t) = K(0)eβt (11)

where

β :=

[

A − ρ
σ

]

(12)

and K(0) :=
∫ 2π

0
k0(θ) dθ.

Proof. See Appendix B.

Notice that the optimal aggregate capital stock evolves exactly as in the standard AK model:

it grows at the same standard growth rate, β =
A−ρ
σ

, from t = 0. From (8), one can then use (11)

to obtain that the optimal control is c∗(t, θ) = ηK(0)eβt. This is a crucial property of the model,

the planner will choose the same (detrended) consumption level for all individuals whatever their

location and generation. Thus, the aggregate variables have no transition dynamics just like in

the standard AK theory. Nonetheless, if the planner is willing to keep (detrended) consumption

constant over time and space, he has to move capital over time and space accordingly. What

could be the induced optimal spatio-temporal dynamics? The next theorem gives the answer to

this appealing question.

Theorem 3.3. Assume that the hypotheses of Theorem 3.1 are satisfied. Suppose that

ρ < A(1 − σ) + σ. (13)

Then, along the optimal trajectory, the detrended capital

kD(t, θ) :=
k(t, θ)

eβt
(14)
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converges uniformly (and a fortiori pointwise), as a function of θ, to the constant function
K(0)

2π

when t tends to infinity. In other words

lim
t→∞

(

sup
θ∈T

∣

∣

∣

∣

∣

kD(t, θ) − K(0)

2π

∣

∣

∣

∣

∣

)

= 0.

Proof. See Appendix B.

Theorem 3.3 is the main result of this paper: it shows that though no transition dynamics oc-

cur for aggregate variables, spatio-temporal dynamics do set in, ultimately ensuring convergence

in capital over space.1 The spatio-temporal dynamics induced by the willingness of the plan-

ner to give the same consumption over space and time lead to equalize the capital level across

locations in the long-run. Hence, these dynamics do eliminate the initial inequalities in capital

endowments in our spatial AK model. As mentioned before, this result is striking in many re-

spects, notably with respect to the traditional theory of convergence, which typically builds on

decreasing returns. AK technologies are usually associated with divergence. If one has in mind

the existing literature on the link between growth and inequalities where individuals have hetero-

geneous initial endowments, then our result could be interpreted at first glance as symmetrical to

the properties highlighted by Chatterjee (1994) under decreasing returns. This said, the spatial

dynamics entailed in our model are specific. They are specific per se because they are generated

by a generic diffusion state equation with no counterpart in the standard growth theory. Our

results are also original in the sense that thanks to our explicit solution, we identify a threshold

value for the discount rate, that is ρ < ρ̄ = A(1 − σ) + σ, above which anything can happen.

Notice however, that this condition is very largely satisfied in realistic parameterizations of the

model. The next section provides a complementary numerical investigation.

4. Ill-posedness, the maximum principle and dynamic programming

Section 3 neatly illustrates the working of the adapted dynamic programming method.

Thanks to the linearity of the technology and the spatial setting considered (that’s a compact

manifold without boundary), the (unique) solution to the HJB equation has been explicitly found,

which has allowed to characterize the (unique) optimal control in feedback form. How can this

neat finding be related to the negative ill-posedness problem reported by Boucekkine et al. on

the use of the maximum principle? If one tries to address the optimal control problem using the

maximum principle, the resulting set of first-order conditions would be (with q(t, θ) the adjoint

variable): (i) the state equation (3), (ii) the maximum condition q(t, θ) = e−ρtc(t, θ)−σ, (iii) the

adjoint equation
∂q(t,θ)

∂t
= − ∂

2q(t,θ)

∂θ2
−Aq(t, θ) and (iv) the transversality condition limt→∞ q(t, θ) = 0

for all θ ∈ [0, 2π]. These are indeed the conditions found in by Boucekkine et al. (2009) spec-

ified for the AK case on the circle. The problem arises from the adjoint equation (iii). In the

standard (non-spatial) AK model, its counterpart is given by the ordinary differential equation

q̇(t) = −Aq(t), which solution is q(0)e−At. The standard way to solve the optimal control prob-

lem in this case is to identify q(0) using the transversality condition. In the infinite-dimensioned

spatial case one would like to do the same thing taking a generic q(0, θ), looking at the evolution

of the adjoint variable driven by (iii) and selecting the q(0, θ) consistently with the transversality

1Formally, we prove uniform convergence of the spatial distribution of capital by showing convergence of the corre-

sponding Fourier series coefficients.
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condition (iv). Unfortunately, this is no longer possible in this case for the same reason detailed

in Boucekkine et al. (2009): ill-posedness shows up especially as the transversality condition is

no longer enough to select a unique solution.2

Using dynamic programming, one gets rid of the adjoint equation (and the transversality

condition), and there is some hope to overcome ill-posedness. We show that this approach is

conclusive in Section 3. So how to interpret the ill-posedness problem described above? Of

course, as in finite dimension, the adjoint variable q(t, θ) is connected to the value function, V ,

as follows: q(t, θ) = e−ρt∇V(k(t))(θ), where ∇V is the Gâteaux derivative of V (more details in

Appendix A). One can study the dynamics of q since the value function is fully identified. We

have

q(t, θ) = e−ρt∇V(k(t))(θ) = e−ρtα(1 − σ) 〈k(t),✶〉−σ ✶(θ) =

(

ρ − A(1 − σ)

2πσ
K(0)

)−σ
✶(θ)e−At.

One can directly see that such a q satisfy the adjoint equation (iii): indeed
∂2q(t,θ)

∂θ2
= 0 since

q is constant in θ and
∂q(t,θ)

∂t
= −A

(

ρ−A(1−σ)

2πσ
K(0)

)−σ
✶(θ)e−At = −Aq(t, θ). Clearly this q also

satisfies the transversality condition (iv). This proves the necessity of the first-order conditions

put forward by Boucekkine et al. (2009).

We now straightforwardly show that these first-order conditions are not sufficient in the in-

finite horizon case spatial AK model considered here.3 Indeed, it is enough to observe that the

the adjoint variable (iii), together with the transversality condition (iv) admits more than one so-

lution, for example all the functions of the form c✶(θ)e−At for some real constant c satisfy both.

Thus the first-order conditions found above are only necessary and not sufficient to determine

the optimum. All in all, our spatial AK model analysis allows to reach the conclusion that the

ill-posedness problem highlighted by Boucekkine et al. recovers the occurrence of necessary but

non-sufficient first-order conditions from the application of the maximum principle.

It is worth pointing out here that the ill-posedness problem solved in this paper is not due to

the spatial setting adopted: as clearly explained in Remark (B.2) in Appendix B, the spatial set-

ting may complicate the search for an explicit solution to the HJB but is not ultimately responsible

for ill-posedness. The main source of the latter is the conjunction of the infinite-dimensionality

of the problem, coming from the PDE governing the state equation, and the infinite time horizon.

The maximum principle applied to the same type of PDEs does not suffer from ill-posedness if

time horizons were finite (see for example Barbu and Precupanu, 2012, Chapter 4). However, not

all infinite time horizons optimal control problems of parabolic PDEs suffer from ill-posedness:

this problem may not occur for example if the functional involved are quadratic or similar (see

Faggian, 2008). Unfortunately, and to the best of our knowledge, there is no general result on

necessary and sufficient conditions for the maximum principle in the infinite time horizon case

for infinite dimensional optimization problems. Much remains to do for this general class of

problems.

2We’d reach exactly the same conclusion if instead of considering Hilbert spaces of functions on [0, 2π], we’d go

through the maximum principle with periodic functions on the whole real space.
3Boucekkine et al. (2009) invoke a sufficient condition theorem due to Gozzi and Tessitore (1998). However, this

rather natural concavity-based sufficiency theorem is established in the finite time horizon case (see also Barbu and

Precupanu, 2012, Theorem 4.5, page 243), not in the infinite horizon case.
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5. Spatial dynamics in the AK model: computational results

We perform a numerical exercise to shed more light on the transitional dynamics of the spatial

AK-model. To this end, we use the explicit optimal dynamics of the detrended capital in the form

of Fourier series (see the appendix). There are three key parameters in our modeling: ρ, A and

σ. In the AK-model A = Y/K and consequently we choose A = 1/3 as a reasonable ratio output

to physical capital. Then we fix ρ = 0.07 and σ = 0.8.

Table 1: Parameters values

Total Factor Productivity A 1/3

Time discount rate ρ 0.07

Intertemporal elasticity of substitution σ 0.8

Provided that the set {ρ, A, σ} satisfies both conditions4 (6) and (13), Theorem 3.3 proves

that detrended capital at any point (t, θ) converges to the constant function
K(0)

2π
when t tends to

infinity. To illustrate this result, we study the case of an economy made of two regions, the first

region, [0, π] is initially endowed with twice the capital of the second region, [π, 2π], namely

k0(θ) =

{

20, θ ∈ [0, π],

10, θ ∈ [π, 2π].

In the standard AK-model the optimal trajectory instantaneously adjusts to the optimal con-

sumption and production plan. This behavior does no longer hold spatially when physical capital

is allowed to move across space as figures 1 and 2 show. Capital moves from rich locations

towards poor ones: adjustment is not instantaneous since it takes time for capital to achieve its

final location. Besides, any point is constrained in the amount of capital it can send by its (op-

timal) consumption path, from t ≥ 0. As capital moves, a wave appears and it brings about

the emergence of a temporary production agglomeration in the rich region. Simultaneously, a

depressed area is formed in the center of the poor region. When capital moves, all locations in

the rich region send capital to the poor region to reach the optimal path. The depressed area

appears since capital moves from t = 0, also within the poor region. With time, both the agglom-

eration and depression lose force and we can observe a complete convergence to the spatially

homogenous steady state value for detrended capital from t = 10. The graphs show physical

capital across space. Figure 1 shows the optimal trajectory of detrended physical capital for

(θ, t) ∈ [0, 2π] × [0, 8]5. Figure 2 illustrates the importance of condition (13). For this example

ρ = A(1−σ)+σ = 0.8667 and we can see that detrended capital does not converge to a spatially

homogenous distribution. A noteworthy aspect is that detrended physical capital does converge

to a steady state, and it does so very fast.

References

Barbu, V. and T. Precupanu (2012), Convexity and optimization in Banach spaces. Springer-Verlag,

Berlin.

4For A = 1/3 and σ = 0.8, the range of values for ρ which satisfies conditions (6) and (13) is ]0.0667, 0.8667[.
5Convergence towards the steady state would have been slower if transportation costs, adjustment costs, capital

depreciation or trade barriers had been present.

8



A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter (2007), Representation and control of

infinite dimensional system. Second edition. Birkhäuser, Boston.

R. Boucekkine, C. Camacho and B. Zou (2009),”Bridging the gap between growth theory and the

new economic geography: the spatial Ramsey model”, Macroeconomic Dynamics, 13, 20-45.

P. Brito (2004), ”The dynamics of growth and distribution in a spatially heterogeneous world”, WP

13/2004, ISEG Working Papers.

W. Brock and A. Xepapadeas (2008), ”General pattern formation in recursive dynamical systems in

economics”, MPRA paper 12305.

S. Chatterjee (1994), ”Transitional dynamics and the distribution of wealth in a neoclassical growth

model”, Journal of Public Economics, 54, 97-119.

K. Desmet and E. Rossi-Hansberg (2010), ”On spatial dynamics”, The Journal of Regional Science,

50, 43-63.

G. Fabbri and F. Gozzi (2008), ”Solving optimal growth models with vintage capital: The dynamic

programming approach”, Journal of Economic Theory, 143, 331-373.

S. Faggian (2008), ”Maximum principle for boundary control problems arising in optimal invest-

ment with vintage capital”, Working paper 181, Department of applied mathematics, University of

Venezia.

F. Gozzi and M. E. Tessitore (1998), ”Optimality Conditions for Dirichlet Boundary Control Prob-

lems of Parabolic Type”, Journal of Mathematical Systems and Control, 8(1), 1-34.

H. Hotelling (1929), ”Stability in competition”, Economic Journal, xxxix, 41-57.

X. Li and J. Yong (1995), Optimal Control Theory for Infinite Dimensional Systems Birkhäuser,
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Appendices

A. The Hilbert space setting and description of the method

A.1. The optimal control problem in infinite dimensions

This appendix provides the definitions and the properties used in the proofs of the theorems in the

paper. As announced at the end of Section 2, the dynamics of the model are described in the space L2(T).

L2(T) is a Hilbert space whose elements are functions. The scalar product of f and g in L2(T) is defined as

〈 f , g〉 :=
∫ 2π

0
f (θ)g(θ) dθ. The norm in L2(T) is given by | f |L2(T) := 〈 f , f 〉1/2 =

(

∫ 2π

0
( f (θ))2 dθ

)1/2

, and the

distance between two elements f , g ∈ L2(T) is equal to | f − g|L2(T).

We introduce the operator G on L2(T) defined as

G( f ) =
∂2 f

∂θ2
.
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Since we cannot define the second derivative on all the functions of L2(T), we need to introduce a subset

of L2(T) on which G is well defined: it is the domain of G and it is denoted with D(G). The functions that

belong to D(G) are those whose first and second derivatives are in L2(T). D(G) is often denoted by H2(T)

and it is a natural choice for us because it is made exactly of functions f for which G( f ) remains in L2(T),

which is the space in which we want to work.

Next we define the expression etG: given a distribution k0 ∈ L2(T), which is a function of the space position

θ, the expression etGk0 denotes the unique solution of























∂k
∂t

(t, θ) = ∂
2k

∂θ2
(t, θ) = G(k(t, θ))

k(t, 0) = k(t, 2π)

k(0, θ) = k0(θ), ∀θ ∈ T,

(A.1)

computed at time t. For a fixed t the expression etGk0 is a function of the space variable θ and etGk0(θ) =

k(t, θ) where k(·, ·) is the solution of (A.1).6 etG has some important properties, the first is that etGk0 ∈ L2(T)

for all t ≥ 0. etG is a “semigroup” because it satisfies the following “semigroup property”: for all k0 ∈ L2(T)

and t, s ≥ 0, e(t+s)Gk0 = esG
(

etGk0

)

.7 etG is said to be “generated” by G (and it justifies the presence of G in

the notation “etG”). This means that, if k0 ∈ D(G), then for all t ≥ 0, limh→0
e(t+h)Gk0−etGk0

t
= GetGk0. This fact

is not surprising if one looks at the first line of (A.1). Indeed, since k(t, θ) = etGk0(θ), the left side is exactly
∂k
∂t

(t, θ) := limh→0
k(t+h,θ)−k(t,θ)

t
= limh→0

e(t+h)Gk0−etGk0

t
and the right side is Gk(t, θ) = GetGk0(θ). This implies

that
deGtk0

dt
= GeGtk0. The former property justifies the exponential notation: we write “eGtk0” because when

we take the derivative in t, it behaves exactly as a standard exponential function.

Since G is by definition identifiable with ∂2

∂θ2
and k̇ is the time derivative, the state equation (3) can be

rewritten as an evolution equation in L2(T):

{

k̇(t) = Gk(t) + Ak(t) − c(t),

k(0) = k0.
(A.2)

k(t) is an element of L2(T) for all t ∈ [0,+∞), i.e., k(t) is a function of space. Hence we can compute

k(t) at the spatial point θ ∈ T and we write k(t)(θ), which is in fact capital at time t in the point of the

space θ. The same holds for c(t). The set of admissible controls is8 Uk0
:= {c ∈ L2

loc
(R+; L2(T)) :

c(t)(θ), k(t)(θ) ≥ 0 for all (t, θ) ∈ R × T} so that we can rewrite the value function more formally as

V(k0) := supc(·)∈Uk0
J(k0, c(·)).

Once we have chosen c(·) ∈ Uk0
for a given initial distribution k0 ∈ L2(T), with an abuse of notation we

denote by k(·) the solution of (A.2), the same letter we used for the solution of (3). This is justified because

k(t)(θ) = k(t, θ), where the latter is the solution of (3). Since we do not require the initial distribution nor

the control to be regular, the solution of (3) has to be understood in some generalized form: it does not need

it to be C2 in the space variable nor C1 in the time variable, (see Lions and Magenes (1972) Section 15.1

page 78). In this sense a unique solution exists and it belongs to C([0,+∞); L2(T)) (see Bensoussan et al.,

2007, Proposition 3.4, Chapter II-1 page 136).

6Another way to describe the action of the the semigroup etG is the following: given k0 ∈ L2(T) we denote by

k̃0 : R → R it “extension” (by 2π-periodicity) on the real line i.e. k̃0(s) := k0

(

2π
{

s
2π

})

where
{

s
2π

}

denotes the fractional

part of s
2π

. Then one has that etGk0(θ) =
∫ +∞
−∞

1

(4πt)1/2 e−(r−θ)2/4t k̃0(r) dr
7More details are provided in Chapter IX, Yosida (1980).
8L2

loc
(R+; L2(T)) is the space of real locally square-integrable functions. Formally

L2
loc(R+; L2(T)) :=

{

c : R+ × T→ R :

∫ M

0

∫ 2π

0

|c(t)(θ)|2 dθ dt < +∞ for all M > 0

}

.
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Observe that for every continuous function f ∈ L2(T) we have f (0) = f (2π), since θ = 0 and θ = 2π

represent the same point on T. Consequently the boundary condition k(t, 0) = k(t, 2π) is already included

in the definition of the domain of G and the boundary condition required in the PDE version of the state

equation disappears when we rewrite the equation in (A.2).

We define function ✶ ∈ L2(T) as the constant (in the space variable) equal to 1:
{

✶ : T→ R

✶(θ) ≡ 1.

We can use ✶ to rewrite the functional (4) as

J(k0, c(·, ·)) :=

∫ +∞

0

e−ρt
∫ 2π

0

c(t, θ)1−σ

1 − σ dθ dt =

∫ +∞

0

e−ρt 〈✶,U(c(t))〉 dt, (A.3)

where U( f ) : T→ R is the function U( f )(θ) =
f (θ)1−σ

1−σ for a given f ∈ L2(T).

A.2. The method: dynamic programming approach in infinite dimensions

Summarizing we have rewritten the problem in the infinite dimensional L2(T) setting and we need to

maximize (A.3) subject to (A.2). We employ the dynamic programming method in L2(T) so we need to

write and solve an infinite dimensioned Hamilton-Jacobi-Bellman (HJB) equation in the infinite dimen-

sional L2(T) setting. Then we use the solution to find the optimal control in feedback form.9

Before writing the HJB equation of the problem we need to introduce the concept of “Gâteaux deriva-

tive”. If we have a regular function from R
N → R, then its gradient at a certain point is an element of RN .

The same thing happens if we want to compute the gradient (the Gâteaux derivative) of a (regular) function

v : L2(T) → R: it can be computed in k ∈ L2(T) and it is an element of L2(T) denoted with ∇v(k). Hence

we can compute ∇v(k) at a certain space-point θ and we get a real number. Since ∇v(k) ∈ L2(T), we can

compute G∇v(k) if ∇v(k) is in D(G), i.e. if it is regular enough as a function of θ. More details on Gâteaux

derivatives can be found for example in the book by Li and Yong (1995), page 44 (in the discussion after

Theorem 2.19).

Observe that, similarly to what happens in the standard finite dimensional case, we expect that the

solution of the HJB equation is equal to the value function of the infinite dimensional problem. In other

words the unknown v(k) of the HJB equation will be equal to the value function V(k) introduced above.

This fact will be formally proved in Appendix B, Step 3 in the proof of Theorem 3.1.

The HJB equation of the problem is defined as

ρv(k) = 〈k,G∇v(k)〉 + A 〈k,∇v(k)〉 + sup
c∈L2(T;R+)

{− 〈c,∇v(k)〉 + 〈✶,U(c)〉} . (A.4)

The HJB equation (A.4) is infinite dimensional, this means that its solution is a function v : L2(T) → R,

i.e., for every k ∈ L2(T), v(k) is a real number, being k in itself a function from T to R. (A.4) is formally

obtained in analogy with the HJB equation in the dynamic programming for finite dimensional problems.

On the left hand side we have the discount rate times the unknown v computed at point k.

On the right hand side of (A.4) there is the supremum on c of the scalar product of the right side of

the state equation (A.2) with the differential of v computed at point k, ∇v(k), plus the utility. We can write

〈k,G∇v(k)〉 instead of 〈Gk,∇v(k)〉, because G is self-adjoint: for f and g in D(G), 〈G f , g〉 = 〈 f ,Gg〉: G.

Next we need to find an explicit solution v to this differential equation. This is part of the results in

Appendix B. We also show that this solution is indeed the value function of the problem, and we use it to

give an explicit expression of the optimal control of the problem in feedback form.

We devote Remark B.2 to the description of the elements of the model which are necessary to apply our

approach as for example whether the geometric peculiarities of the circle play a role. This is particularly

important if one wants to try to apply the same method to different situations and models.

9This technique has already been successfully applied to the optimal control of another class of infinite-dimensioned

dynamic equations, namely delayed differential equations, e.g. by Fabbri and Gozzi (2008).
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B. Proofs

Proof of Theorem 3.1. We prove the theorem using dynamic programming. The proof is presented in some

steps: first, we find an explicit solution to the HJB equation. In the second step, we prove the feasibility of

the induced consumption trajectory. Finally in the third step, we prove the optimality of this consumption

trajectory showing at the same time that the explicit solution we found is the value function of the system,

i.e., v(k0) = V(k0) where V(k0) is defined in (5).

Step 1: We find an explicit solution of the HJB equation (A.4) on the open setΩ :=
{

k ∈ L2(T) : 〈k,✶〉 > 0
}

.

We look for a continuous solution v with continuous differential, v ∈ C1(Ω). This implies that v changes

continuously when its argument changes continuously w.r.t. the distance in L2(T) and that its differential

∇v : Ω → L2(T) moves continuously in the L2(T) distance when its argument changes continuously w.r.t.

the L2(T) distance. But we ask more: we need the term 〈k,G∇v(k)〉 to change continuously when we change

continuously k w.r.t. the L2(T)-norm. In general it is not obvious because G is a second derivative. Hence

we require ∇v(k) ∈ D(G) and G∇v : Ω→ L2(T) to be continuous for all k ∈ Ω.

Once we have made all these requirements about regularity of the solution, all terms in (A.4) can be

computed. We say that v is a solution of (A.4) if it is regular and it solves (A.4) at all points of Ω.

We look for a solution of (A.4) of the following form: v(k) = α 〈k,✶〉1−σ for some positive real number

α, so that ∇v(k) = α(1 − σ) 〈k,✶〉−σ ✶. Note that ∇v(k) ∈ D(G) and G∇v : Ω → L2(T) is continuous for all

k ∈ Ω. Substituting in (A.4) we obtain:

ρα 〈k,✶〉1−σ = α(1 − σ) 〈k,✶〉−σ 〈k,G✶〉 + Aα(1 − σ) 〈k,✶〉−σ 〈k,✶〉
+ sup

c∈L2(T;R+)

{−α(1 − σ) 〈k,✶〉−σ 〈c,✶〉 + 〈✶,U(c)〉} .

Observing that G✶ = 0 and that the supremum is attained when c = (α(1 − σ))−1/σ 〈k,✶〉✶, the expression

above becomes:

ρα 〈k,✶〉1−σ = Aα(1 − σ) 〈k,✶〉1−σ − 2πα(1 − σ) (α(1 − σ))−1/σ 〈k,✶〉1−σ + 2π

[

(α(1 − σ))−1/σ 〈k,✶〉
]1−σ

1 − σ .

From it we obtain ρ = A(1−σ)− 2π(1−σ) (α(1 − σ))−1/σ
+ 2π (α(1 − σ))−1/σ, so there exists a solution of

the requested form when α = 1
1−σ

(

ρ−A(1−σ)

2πσ

)−σ
. Before passing to step 2 we make an observation that will

be useful later: given an admissible control c(·), the related trajectory k(·) is given by the solution of (A.2).

Hence, at every time and at every point θ of the space, k(·) remains below the solution of ˙̄k(t) = Gk̄(t)+Ak̄(t)

with k̄(0) = k0. In particular, for all t ≥ 0, 〈k̄(t),✶〉 ≥ 〈k(t),✶〉. k̄(t) can be expressed as k̄(t) = etAetGk0

so that 〈k̄(t),✶〉 = etA〈k̄0,✶〉. We show how to prove this last equality, see the explanations after (B.8) and

(B.10). This means that for every choice of c(·) we have

∣

∣

∣e−ρtv(k(t))
∣

∣

∣ = e−ρtα 〈k(t),✶〉1−σ ≤ e−ρtα
〈

k̄(t),✶
〉1−σ
= e−ρtetA(1−σ)

〈

k̄0,✶
〉1−σ t→∞−−−→ 0 (B.1)

where we obtain the last limit thanks to hypothesis (6).

Step 2: We prove that the feedback control provided by the solution is admissible.

The feedback control provided by the solution is

{

φ : L2(T) → L2(T)

φ(k) := arg maxc∈L2(T)

{−α(1 − σ) 〈k,✶〉−σ 〈c,✶〉 + 〈✶,U(c)〉} = (α(1 − σ))−1/σ 〈k,✶〉✶ = η 〈k,✶〉✶,
(B.2)

where η =
ρ−A(1−σ)

2πσ
. The related trajectory is, by definition, the solution of the following integral (mild)

equation

k(t) = etAeGtk0 −
∫ t

0

e(t−s)Ae(t−s)Gη 〈k(s),✶〉✶ ds. (B.3)
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It is not an explicit form since the unknown k appears in both sides given that the optimal control is

specified in feedback form, i.e., as a function of the state k. One can prove that such an equation has a

unique solution that we call k∗(t) (see for example Bensoussan et al., 2007, Proposition 3.4, Chapter II-1

page 136). The control we want to prove to be admissible is c∗(t) := φ(k∗(t)), for all t ≥ 0. Since by

hypothesis k∗(t)(θ) remains positive, then c∗(t) remains positive too and then it is admissible.

Step 3: We prove that the feedback control is optimal proving at the same time that the solution of the HJB

equation we found is indeed the value function.

c∗(·) is an optimal control if for any other admissible control c̃(·) we have J(k0, c
∗(·)) ≥ J(k0, c̃(·)). Let

us call k̃(·) the trajectory related to the admissible control c̃(·) and let us denote by w(t, k) : R × L2(T) → R

the function w(t, k) := e−ρtv(k). We have:

v(k0) − w(T, k̃(T )) = w(t, k̃(0)) − w(T, k̃(T )) = −
∫ T

0

d

dt
w(t, k̃(t)) dt

=

∫ T

0

e−ρt
[

ρv(k̃(t)) −
〈

Gk̃(t) + Ak̃(t) − c̃(t),∇v(k̃(t))
〉]

dt. (B.4)

Using the regularizing properties of the heat semigroup one can prove that k̃(t) ∈ D(G), for all t > 0. Passing

to the limit in (B.4) as t → ∞ and using (B.1) we have

v(k0) =

∫ +∞

0

e−ρt
[

ρv(k̃(t)) −
〈

Ak̃(t) − c̃(t),∇v(k̃(t))
〉

−
〈

k̃(t),G∇v(k̃(t))
〉]

dt, (B.5)

and then v(k0) − J(k0, c̃(·)) =
∫ +∞

0

e−ρt
[(

ρv(k̃(t)) −
〈

Ak̃(t),∇v(k̃(t))
〉

−
〈

k̃(t),G∇v(k̃(t))
〉

)

+

(

〈

c̃(t),∇v(k̃(t))
〉

− 〈✶,U(c̃(t))〉
)]

dt

=

∫ +∞

0

e−ρt





























sup
c∈L2(T;R+)

{

−
〈

c,∇v(k̃(t))
〉

+ 〈✶,U(c)〉
}















−
(

−
〈

c̃(t),∇v(k̃(t))
〉

+ 〈✶,U(c̃(t))〉
)















dt ≥ 0, (B.6)

where we used that v is a solution of (A.4). (B.6) shows that v(k0) − J(k0, c̃(·)) ≥ 0. Furthermore, the

same expression also implies that v(k0) − J(k0, c
∗(·)) = 0 since c∗(·) is defined using the feedback defined

in (B.2). Hence, for all admissible c̃, v(k0) − J(k0, c̃(·)) ≥ 0 = v(k0) − J(k0, c
∗(·)) so that J(k0, c̃(·)) ≤

J(k0, c
∗(·)), implying c∗’s optimality. In particular, since v(k0) = J(k0, c

∗(·)) = 0 and c∗ is an optimal

control, v(k0) is the value function at k0. The uniqueness of the optimal control follows from standard

convexity considerations.

Proof of Proposition 3.2. We use that the optimal trajectory solves the mild equation (B.3). Along the

optimal trajectories we have

k∗(t) = eAteGtk0 −
∫ t

0

e(t−s)Ae(t−s)Gc∗(s) ds = eAteGtk0 −
∫ t

0

e(t−s)Ae(t−s)Gη 〈k∗(s),✶〉✶ ds. (B.7)

Both sides are elements of L2(T) so one can take the scalar product of both with ✶ ∈ L2(T), obtaining

K∗(t) = 〈k∗(t),✶〉 = eAt
〈

k0, e
Gt
✶

〉

−
∫ t

0

e(t−s)A
〈

η 〈k∗(s),✶〉✶, e(t−s)G
✶

〉

ds, (B.8)

where K∗ is the aggregate capital along the optimal trajectory. We used two properties. The first is intuitive:

the scalar product can “enter inside” the integral because both the scalar product and the integral are linear.

The second is that etG is “self-adjoint’: for any f , g ∈ L2(T) one has 〈 f , etGg〉 = 〈etG f , g〉. Moreover

using that eGt
✶ = ✶ (an explanation of this fact is given in the proof of Theorem 3.3) the expression above

becomes:

K∗(t) = etAK(0)−
∫ t

0

e(t−s)AK∗(s)

[

2π
ρ − A(1 − σ)

2πσ

]

ds = etAK(0)−
∫ t

0

e(t−s)A ρ − A(1 − σ)

σ
K∗(s) ds. (B.9)
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Note that 〈✶,✶〉 =
∫ 2π

0
1 dθ = 2π. (B.9) is a a standard one-dimensional ordinary differential equation in

K∗(t) in integral form. One can prove by inspection that (B.9) has a unique solution K∗(t) = K(0)eβt with

β = (A − ρ)/σ. This finishes the proof.

Proof of Theorem 3.3. We need to write kD(t, θ) using Fourier series. This is one of the advantages of

studying the problem on T: only functions on T (or 2π-periodic functions on R) can be written using

Fourier series.10 For n ∈ Z, we call en the function en : T→ R, given by

en(θ) :=



























cos(nθ)√
π
, if n ≥ 1,

sin(−nθ)√
π
=

sin(nθ)√
π
, if n ≤ −1,

1√
2π
, if n = 0.

(B.10)

They are the sines and cosines needed to write the Fourier expansion.

For a fixed n ∈ Z en is very regular and en(0) = en(2π) so they are in the domain of G and Gen =
d2en(θ)

dθ2
=

−n2en. Hence, for fixed θ and calling φ(t, θ) := etGen(θ) we have that
dφ(t,θ)

dt
= etGGen(θ) = −n2etGen(θ) =

−n2φ(t, θ) so φ(t, θ) = e−n2tφ(0, θ). That is etGen(θ) = e−n2 ten(θ). This implies in particular that etG
✶ = ✶.

The Fourier coefficients of a 2π-periodic function f are given by
∫ 2π

0
en(s) f (s) ds and this is exactly

equal to 〈 f , en〉. Hence to determinate the Fourier coefficients, we use (B.3) and take the scalar product with

en for all n:

〈kD(t), en〉 = e−βt 〈k(t), en〉 = e−βt
〈

eAteGtk0, en

〉

− e−βt
∫ t

0

〈

e(t−s)Ae(t−s)Gη 〈k(s),✶〉✶, en

〉

ds

= e−βt
〈

k0, e
AteGten

〉

− e−βt
∫ t

0

η 〈k(s),✶〉
〈

✶, e(t−s)Ae(t−s)Gen

〉

ds. (B.11)

For n , 0, 〈en,✶〉 = 0 since it is the integral on [0, 2π] of a constant times sin(nθ) or cos(nθ). Using the last

remark and that eAteGten = e(−n2+A)ten:

〈kD(t), en〉 = e−βt
〈

k0, e
(A−n2)ten

〉

= e(A−n2−β)t 〈k0, en〉 , n , 0.

If n = 0 we have 〈kD(t), e0〉 = K(0)√
2π

(it follows immediately from Proposition 3.2).

Functions on T and real 2π-periodic functions can be written using Fourier series. More precisely, for

every function in k ∈ L2(T) one has |k −∑

n∈Z en 〈(k, en〉|L2(T) = 0 (see p.92 in Rudin, 1987). Furthermore,

|k|2
L2(T)
=

∑

n∈Z |〈(k, en〉|2, so we can express kD(t) using its Fouries series:

kD(t)(θ) =
K(0)

2π
+

∑

n∈Z
n,0

e(A−n2−β)t 〈k0, en〉 en(θ). (B.12)

Now consider ε ∈
(

0,
A(1−σ)+σ−ρ

σ

)

, whose existence is ensured by (13), so that A− 1− β+ ε < 0, and observe

that, using the the expression of kD(t) as Fourier series,

sup
θ∈T

∣

∣

∣

∣

∣

kD(t)(θ) − K(0)

2π

∣

∣

∣

∣

∣

= sup
θ∈T

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

n∈Z
n,0

e(A−n2−β)t 〈k0, en〉 en(θ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ e−εt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

n∈Z
n,0

e(A−n2−β+ε)t |〈k0, en〉| sup
θ∈T

|en(θ)|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= e−εt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

n∈Z
n,0

e(A−n2−β+ε)t |〈k0, en〉|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ e−εt

























∑

n∈Z
n,0

e2(A−n2−β+ε)t

























1/2 























∑

n∈Z
n,0

|〈k0, en〉|2
























1/2

= e−εt

























∑

n∈Z
n,0

e2(A−n2−β+ε)t

























1/2

|k0|L2 .

(B.13)

10If the Hilbert space is different from L2(T) and one has a optimal feedback rule similar to (B.3), one can use the same

technique we use here in some cases. As a result, the optimal solution can be explicitly written as a sum of functions

using a Hilbert basis. For example, if the Hilbert space is the space of square integrable functions on the sphere, one can

use spherical harmonics.
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In the second line of (B.13) we have used a version of the Cauchy-Schwartz inequality that ensures that

given two sequences of real numbers {an}n∈Z and {bn}n∈Z one has

∣

∣

∣

∣

∣

∑

n∈Z
n,0

anbn

∣

∣

∣

∣

∣

≤
(

∑

n∈Z
n,0

a2
n

)1/2 (

∑

n∈Z
n,0

b2
n

)1/2

. To

obtain the equality on the third line, we use that since k0 ∈ L2(T), then |k0|2L2(T)
=

∑

n∈Z |〈(k0, en〉|2.

If we consider t ≥ 1 and calling S :=
∑

n∈Z e(A−n2−β+ε) < ∞, we can conclude from (B.13) that

sup
θ∈T

∣

∣

∣

∣

∣

kD(t)(θ) − K(0)

2π

∣

∣

∣

∣

∣

≤ e−εt (S |k0|L2 )
t→∞−−−→ 0,

and this concludes the proof.

Remark B.1. (B.12) allows to decompose kD(t) as a sum of terms with different exponential decays. The

first term is
K(0)

2π
, which is the limit of kD for t → ∞. The second is e(A−1−β)t 〈k0, e1〉 e1(θ), it tends to zero

following the exponential factor e(A−1−β)t. The third term is e(A−22−β)t 〈k0, e2〉 e2(θ), etc.

Hence we can approximate the behavior of kD when t → ∞ using a finite sum of these terms. Note

indeed that such a behavior can be seen in the two pictures: in Picture 1 the first term of the series is more

persistent than the others. In picture 2 ρ = A(1 − σ) + σ and the solution does not converge to a constant.

Indeed,
K(0)

2π
is dominated in the limit by

∑

n∈Z
n,0

e(A−n2−β)t 〈k0, en〉 en(θ).

(B.12) can also be used for numerical simulation as we do in this paper.

Remark B.2. Our method to find an explicit solution could work in principle in other geometric contexts

but working in non-compact spaces or in spaces with a non-void boundary would complicate the state

equation, the HJB equation and the search of an explicit solution of the HJB. The manifold used in this

paper, the circle, is compact and without boundary, and the unique inherent constraint imposed on the state

variable is k(t, 0) = k(t, 2π). If we had worked on a segment [a, b] ⊂ R, we would have to specify at every

time the boundary conditions on k(t, a) and k(t, b). If we had worked on the straight line R, we would have

to specify at every time some form of limit of k(t, x) for x → +∞ and x → −∞. In this case, if we rewrite

the PDE as an evolution equation in the Hilbert space, new and typically “unbounded” terms arising from

the boundary conditions will show up in the state equation (see e.g. Bensoussan et al., 2007, Section II-3.2

page 212), making much harder to find an explicit solution to the HJB equation. Moreover, some boundary

conditions would enter in the definition of the domain D(G) even in the simplest case when we impose

a zero boundary condition (see e.g. Tanabe, 1997, Section 5.2 page 180). An explicit solution v satisfies

∇v(k) ∈ D(G) for all k in L2(Ω), so the more complex the form of the domain, the harder the identification of

an explicit solution. In particular, if we had worked on the segment [a, b] ∈ R and specified some boundary

conditions k(t, a) and k(t, b) different from k(t, a) = k(t, b), the function always equal to 1 would have not

belonged to the domain of G. As a result, a solution of the form we have found could not work. The same

would have hold if we had worked on R.
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Figure 1: Spatial convergence of k(t, x) when ρ = 0.07, (t, x) ∈ [0, 8] × [0, 2π].

Figure 2: Case ρ = A(1 − σ) + σ, spatial divergence of k(t, x), (t, x) ∈ [0, 8] × [0, 2π].
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