
 
 
 
 

DOCUMENT DE RECHERCHE 
 

EPEE 
 

CENTRE D’ETUDES DES POLITIQUES ECONOMIQUES DE L’UNIVERSITE D’EVRY 
 
 

 
 
 
 
 
 
 
 
 

 
On The Mitra-Wan Forest Management Problem in 

Continuous Time 

 

G. Fabbri, S. Faggian, and G. Freni 

 

14-04 

 

 
 
 

 

 

 

 

 

 

 

 

www.univ-evry.fr/EPEE 
 

Université d’Evry Val d’Essonne, 4 bd. F. Mitterran d, 91025 Evry CEDEX  



ON THE MITRA–WAN FOREST MANAGEMENT PROBLEM IN CONTINUOUS
TIME1

Giorgio Fabbri2, Silvia Faggian3 and Giuseppe Freni4

The paper provides a continuous-time version of the discrete-time Mitra-
Wan model of optimal forest management, where trees are harvested to max-
imize the utility of timber flow over an infinite time horizon. The available
trees and the other parameters of the problem vary continuously with respect
to both time and age of the trees, so that the system is ruled by a partial
differential equation. The behavior of optimal or maximal couples is classified
in the cases of linear, concave or strictly concave utility, and positive or null
discount rate. All sets of data share the common feature that optimal con-
trols need to be more general than functions, i.e. positive measures. Formulas
are provided for golden-rule configurations (uniform density functions with
cutting at the ages that solve a Faustmann problem) and for Faustmann poli-
cies, and their optimality/maximality is discussed. The results do not always
confirm the corresponding ones in discrete time.

Keywords: Optimal harvesting problems, Forest Management, Measure-
valued Control.

JEL Classification: C61, C62, E22, D90, Q23.

1We gratefully acknowledge Raouf Boucekkine, Gustav Feichtinger, Thomas Mariotti, Wilfred Nyangena,
Olli Tahvonen, Yannis Vailakis, and Vladimir Veliov for their useful comments and suggestions.
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1. INTRODUCTION

Although forest economics has a centuries-long history (see, e.g. Samuelson, 1995), the
first complete formulation of the forest management problem as a Ramsey-like optimal
control model in discrete time is contained in two papers by T. Mitra and H. Wan of
the early eighties (Mitra and Wan, 1985, 1986). The authors there discuss the long run
structure of the cutting/replanting strategy that maximizes, over an infinite horizon, the
sum of utilities generated by the flows of timber obtained by harvesting the trees of a
forest. In the basic model, the forest comprises trees of different ages, up to a maximum
age, that are cultivated on a unit piece of land that cannot be transferred to other uses,
a productivity function gives the amount of wood that is obtained harvesting a tree of
any given age, cutting and replanting costs are zero, and new saplings are immediately
replanted on the cleared land. The main results are: 1) that the Faustmann policy (i.e.,
cutting trees that reach that age maximizing the present value of bare forest land subject
to an infinite sequence of planting cycles) is optimal when the utility function is linear, which
implies a cycle in the configuration of the forest, 2) that optimal trajectories converge to the
golden rule configuration (the uniform forest with the maximum sustainable yield) when the
utility function is strictly concave and the discount factor is equal to 1, and 3) that cycles
of the optimal trajectory reappear whenever future utility is discounted even if the utility
function is strictly concave. Following this lead, almost the entire theory of optimal forest
management has been developed in terms of discrete time (see Tahvonen, 2004 and Khan
and Piazza, 2012 for recent lists of the extensions of the model) while, to our knowledge, a
consistent continuous time version has never entered the literature.

The two usual justifications for the choice of discrete time – that, (i) transactions do
not occur continuously, and (ii) sometimes a “natural period” can be found for agricultural
products (Foley, 1975) – have some appeal in forestry, but on balance there seem not to be
compelling reasons to assume that transactions in timber markets are synchronized. More-
over, forestry tasks (e.g., tree felling, timber extraction, etc.) require time and therefore
it is likely that these operations overlap not only for different agents but also for a single
forestry firm. In addition, as it is the case with other natural resources, forests grow con-
tinuously and a single natural period for cutting and replanting activities can hardly be
identified in general (e.g., at the tropics forests are cut continuously). Hence, no specific
economic reason dictates that the discrete time should be preferred to the continuous time
framework. If so, it is the technical complexity continuous time models bear that explains
the lack of contributions in optimal forest management. Indeed, in elaborating Wicksell’s
classical model of natural aging process, Cass (1973) advised that continuous time leads to
difficulties in the derivation of efficiency prices.

Some of the additional hurdles brought about by the formulation in continuous time of
the Mitra-Wan model (as well as other vintage capital models) are the following: 1) the
ages of capital goods (i.e. the ages of trees) vary continuously, so that the evolution in
time of the state of the system is described by means of a partial differential equation;
2) the control appears also in the boundary condition (giving rise to a boundary control
system); 3) candidate optimal controls are objects like Dirac’s deltas, hence more general
than measurable functions, that is, measures. We underline the fact that – contrary to
what happens in other vintage capital models – the control appearing in the evolutionary
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equation (the so called distributed control) need be a measure as a consequence of 3), so
that the equation itself cannot be interpreted (pointwise) in R as usual, and calls for an
extended formulation to make sense. All these features make the problem mathematically
challenging and, differently from that in discrete time, not a straightforward multi-sectoral
generalization of the Ramsey model (for a similar conclusion see Khan and Piazza, 2011).
There have been various attempts to gain insight into the solution of the continuous time

Mitra-Wan model, either by studying stripped down versions of the full model or by adding
further assumptions that somehow simplify the analysis. Heaps (1984) (see also Heaps, 2006)
for example, presented a model in which only the oldest trees can be harvested, and proved
in such case that the optimality conditions take the form of a delay differential equation1.
Tahvonen and Salo (1999) (see also Tahvonen et al., 2001) on the other hand, studied a
model in which time is continuous, but trees are indivisible. This implies that the number of
trees grown on the given land is finite, but also that harvesting cannot provide a continuous
flow of timber, whereas a sequence of mass points in connection with the jumps in the state
variables. In Tahvonen and Salo (1999) storage of wood is then allowed so that the planner
can smooth consumption during the time which elapses between two successive jumps.
Finally, Salant (2013) analyzed the equilibrium price paths of different vintages of trees, in
a simple model in which the forest land may be used in an alternative way, but replanting is
not allowed: irreversible deforestation allows to study optimal continuous harvesting/wood
consumption without entering the complexities of distributed state variables.
In this paper we develop a new approach to handle the continuous-time Mitra-Wan model,

that consists in reformulating the control problem for the partial differential equation as an
equivalent problem for a ordinary differential equation in an infinite dimensional space, and
in developing ad hoc techniques to perform the analysis. In our formulation we need neither
to reduce the dimensionality of the problem (as in Tahvonen and Salo, 1999 or Salant,
2013), nor to constrain the controls (as in Heaps, 1984). Although we allow strategies to
be measures rather than functions, with the consequence that instantaneous cutting for the
forest of any given age is possible (the golden rule configuration is indeed of such type), we
require the associated trajectories to be functions, so to avoid mass points. To this extent, it
is enough to consider initial distributions of the forest which are square integrable functions
and prove, as we do, that consequently the whole trajectory enjoys the same property.
Once the stage is set, two goals are mainly addressed: giving a joint classification of

the behavior of optimal and maximal programs in the cases in which the utility is linear,
convex, or strictly convex and the discount rate is positive or null; comparing the properties
of continuous-time optimal paths with those known in the discrete-time framework (indeed
it turns out that there are significant differences). More in detail, we show that:

a) the analog of golden-rule and modified golden-rule configurations is available for the
continuous-time model;

b) modified golden rules are optimal stationary solutions for the discounted model (with

1In Heaps (2006) it is claimed that cutting only the oldest trees is a property of the optimal policy function
of the full fledged model, although no formal proof is provided. For the discrete- time two-age-classes model
it is known that cutting the old trees and part of the young trees is optimal if the share of land on which old
trees are planted is below a given threshold (see for example Tahvonen, 2004). On the other hand, for the
continuous-time model discussed in this paper, constraining the control as suggested by Heaps would make
unfeasible the shrinking in time of the length of the support of the state variable and thus a convergence
result as that in Theorem 5.9 below would not hold.
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optimal cutting age M and timber stationary consumption level monotonically not
increasing in the rate of discount), while in the undiscounted case the golden rule is
maximal when the utility function is linear, and optimal when the utility is strictly
concave, provided it is unique;

c) if the golden-rule configuration is unique, then undiscounted maximal (or optimal)
paths exist from any given initial configuration and, provided the utility function is
strictly concave, converge over time to the golden rule configuration;

d) the Faustmann policy is optimal when the utility is linear and the discount positive,
is maximal (and not optimal) when the utility is linear and the discount null, it is not
optimal when the utility is strictly concave and the discount positive, for initial data
in any neighborhood of the optimal steady state. In particular this result contradicts
the analog in discrete time.

Thus we contribute extending to continuous time some of the classical results of the theory
of optimal economic growth. We show for the undiscounted case (see (c) and (d)) the
conclusions by Brock (1970) on the existence and “average” convergence of maximal paths
hold also in our framework, and that the results can be strengthened to existence and
asymptotic convergence of optimal paths as in Gale (1967) if the utility function is strictly
concave (Mitra and Wan, 1986 and Khan and Piazza, 2010 have already shown that the
same holds in discrete time). In addition we refine the above results by providing an example
in the style of Brock (1970) and Peleg (1973), which proves that optimal paths do not exist
in the linear case. On the other hand, comparative statics results under (b) are specific to
the continuous-time setting (hints for such results are in Samuelson (1995) see Figure 2 on
page 133 and the first paragraph on page 134) and have not counterpart in the discrete time
forestry literature. It is interesting to note that monotonicity of the modified golden rule
consumption may not hold in models with several capital goods like ours, while it holds in
the one sector Ramsey discounted model (see for example Mas-Colell et al., 1995, pages 758-
9). Regarding the Faustmann policy (see (d)) we prove that, similarly to what occurs in the
discrete time setting (see Mitra and Wan, 1985), discounting does not affect the structure
of the optimal policy when the utility function is linear. However, when the utility function
is strictly concave, we show that the periodic optimal solution is not optimal, contrary to
what is distinguishing of the discounted discrete-time model (Mitra and Wan, 1985 page
265 and Salo and Tahvonen, 2003 Proposition 1).

We already mentioned that the mathematics underneath the problem is challenging, due
to the control in the boundary condition and to the fact that also the distributed control
need be a distribution. While the literature on distributed control systems is wide and
(also theoretically) well established, that on boundary control systems is not as much,
even when described by a simple linear age-structured equation as that in our problem, as
the presence of the control in the boundary condition yields discontinuities in the control
operator and in the Hamiltonians which are difficult to handle. The technique of functional
analysis of rephrasing the problem in a space of functions and of later extending it to a
space of distributions (see Section 3) is performed in some theoretical and applied works.
It was first introduced in the economic literature by Barucci and Gozzi (1998, 2001) for a
problem of optimal investment with vintage capitals, and then studied in various works,
under the point of view of theoretical Dynamic Programming (Faggian, 2005, 2008, with
finite horizon; Faggian and Gozzi, 2010, with infinite horizon) and that of applications
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(Feichtinger et al., 2003, 2006; Faggian and Gozzi, 2004). We mention also the papers
by Barucci and Gozzi (1999) and Faggian and Grosset (2013) with application of such
techniques to optimal advertising. Nevertheless, in none of these works the control space
need be a space of distributions (more often it is the space of square integrable functions).
Thus, also the fact that our stationary optimal control is a distribution constitutes a new
development in the literature.

We strongly expect that the innovations here presented will find application in vintage
capital models and in other models comprising age distributed state variables (e.g., demo-
graphic models). For example, having controls that are (not functions but) positive measures
may prove useful both in the analysis of the problem of endogenous scrapping of a machine
and in the study of the investment profile (i.e., whether the investment is spread over a set
of vintages or not, see Feichtinger et al., 2006). Similarly, having controls that can be con-
centrated on single ages may help in developing theoretical models of the determinants of
the optimal retirement age for not stationary populations endowed with a rich demographic
structure (Chan and Guo, 1990; Heijdra and Romp, 2009). We also expect that our results
and methods find useful applications in the analysis of other models with age distributed
natural resources, for example age distributed fisheries (see Tahvonen, 2009) and the so
called orchard model (Mitra et al., 1991).

Our results will have a more direct bearing on the analysis of the continuous-time Ramsey
version of the clay-clay vintage capital model of Solow et al. (1966) developed by Boucekkine
et al. (1997) (see also Boucekkine et al., 1998; Hritonenko and Yatsenko, 2008), where a
Faustmann-like age shows up as the steady state age at which old machines became obsolete.
There, like for forest management, the Faustmann-like policy that replaces all stocks of
capital goods that reach the critical age, while preserving full employment of labor, turns
out to be optimal in a neighborhood of the steady state for the case of a linear utility
function. For this model, our control space will allow the handling of reversible investment,
that is beyond the reach of current theory.

Moreover, we observe that in the Ramsey vintage capital model with labor augmenting
technical progress an exact golden rule path exists if the utility function is isoelastic and is
optimal - or maximal - when the discount rate equals the Mirrlees-Brock-Gale critical dis-
count rate. For this case, our strong convergence result in the strictly concave case provides
a formal proof of the fact that the cycles induced by replacement echoes are dampened in
the long run by the force of consumption smoothing provided utility is not linear. In addi-
tion, the same result should pave the way to the general turnpike result for the discounted
model that the literature envisages (see Boucekkine et al., 1998, 2011). In connection with
this, a more complete integration of the two models can be expected, with the optimal
cyclical paths that arise in the discrete-time discounted forestry model (with the radii of
the cycles converging to zero with the discount rate, see Tahvonen et al., 2001; Salo and
Tahvonen, 2003; Dasgupta and Mitra, 2011) turning to be optimal for the discrete-time
version of the Solow et al. vintage capital model and the asymptotic convergence result
of the vintage capital model extended to the strictly concave continuous-time discounted
Mitra-Wan model.

The paper is organized as follows. In Section 2 we describe the model in continuous time,
in Section 3 we rephrase it into into abstract terms and introduce some useful notation,
besides the formal definition of optimal and maximal strategies. In Section 4 first we build
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the modified golden rules and Faustmann Policies. In Section 5, we classify in four different
subsections the behavior of optimal trajectories, according to the fact that the utility is
linear, strictly concave (or general concave, in some cases), and that the discount rate is
positive or null. We contextually establish whether Golden Rules and Faustmann policies
constitute optimal programs, maximal programs, or none of the two. In Section 6 we draw
the conclusions. A rich Appendix, following the references section, completes the work with
the proofs of the many theorems and all auxiliary technical results.

2. THE CONTINUOUS TIME MODEL

A forest of unitary extension is described in terms of a density x(t, s) which represents the
part of the forest covered at time t by trees of a certain age s, with t ≥ 0, s ≥ 0, and trees
reaching a maximum (finite) age S. Starting from an initial density x0(s), trees grow in
time and may be harvested with a certain cutting rate c(t, s), performed at time t on trees
of any age s, and chosen by the optimizer. Harvested trees are instantaneously replaced by
new saplings. The evolution of the system is described by the following transport equation

(1)





∂x
∂t (t, s) = −

∂x
∂s (t, s)− c(t, s) t > 0, 0 ≤ s ≤ S

x(t, 0) =
∫ S
0 c(t, s) ds t ≥ 0

x(0, s) = x0(s) 0 ≤ s ≤ S

where the variation of density ∂x
∂t (t, s) is due to ageing of trees −∂x

∂s (t, s), and to harvesting
−c(t, s). Note that in the boundary condition the quantity x(t, 0) of saplings of age zero at
time t is assumed to coincide with the total amount of trees (of different ages) cut at time

t, represented by
∫ S
0 c(t, s)ds.2 In addition we require the strategy-trajectory couples (c, x)

to satisfy some non negativity constraints, that is

(2) c(t, s) ≥ 0, and x(t, s) ≥ 0, ∀t ≥ 0, 0 ≤ s ≤ S

implying that only positive quantities are cut, and that the quantity of trees of all ages
remains positive in time.

Some remarks are here due. First of all, note that x(t, s) does not represent a spatial
density. As a consequence, it may be imagined that trees grow far from one another, and
not reciprocally interfering. Moreover, since the size of the forest is normalized to 1 at initial
time, that is

∫ S
0 x0(s) ds = 1,

∫ σ2

σ1
x(t, s) ds may be interpreted as the percentage of the total

forest which is covered at time t by trees of age between σ1 and σ2. Thus, as a consequence
of the boundary condition, the total surface of the forest is covered in time by the constant
amount 1 of trees of different ages (see Proposition 3.4), that is

∫ S

0
x(t, s) ds ≡

∫ S

0
x0(s) ds = 1, ∀t ≥ 0.

2A dimensional interpretation of the boundary condition is the following. The quantity x(t, 0)ds represents
the infinitesimal portion occupied at time t by trees of age 0, which has to be equal to the amount of trees (of

all ages) cut at time t, represented by the quantity
[∫ S

0
c(t, s)ds

]
dt. The condition then follows by observing

that time and age vary jointly, that is dt/ds = 1.
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Now let f(s) represent the productivity of a tree of age s. Summing all the contributions
f(s)c(t, s)ds of wood of different ages s harvested at time t, we obtain the total wood w(c(t))
harvested at time t, that is

(3) w(c(t)) =

∫ S

0
f(s)c(t, s)ds.

Note that f is the continuous version of the timber-content function f defined by Mitra
and Wan (1985, 1986). We assume also that f has support contained in (0, s̄), with s̄ < S,
meaning in particular that trees of age greater than s̄ are considered unproductive. Note
also that it would make a little difference to assume trees eternal (that is, S = ∞), since
the action takes place in [0, s̄] as a consequence of the choice of the productivity function.

Example 2.1 An example of (regular) productivity function f is the following

f(s) =

{
exp

[(
s− M

2

)−1 (
s− 3M

2

)−1]
s ∈ (M/2, 3M/2)

0 s ∈ [0,M/2] ∪ [3M/2,+∞).

Note that trees younger thanM/2 and older than 3M/2 are considered unproductive, while
the productivity increases towards M and decreases afterwards. �

We anticipate that in the next section, where the problem is formalized, the analysis is
restricted to a set of admissible controls c(t, s) which are null, and leave trajectories x(t, s)
null, for all s ≥ s̄. To simplify the mathematical work, we take into account initial data
x0(s) which are also null for all s ≥ s̄. Those assumptions are justified by the fact that,
with zero productivity for s ≥ s̄, one expects optimal trajectories yielding zero trees older
than s̄.
Next we introduce a utility function u, which is assumed bounded below, increasing and

concave (possibly linear)3, and an overall utility U(c) defined in terms of u as

U(c) =

∫ +∞

0
e−ρtu (w(c(t))) dt.

The problem is maximizing in a suitable sense the overall utility U(c), over the set of
admissible strategies, with or without discount (ρ > 0 or ρ = 0, respectively). Note that
when ρ > 0 the concavity of u implies the finiteness of U(c), while when ρ = 0, U(c) may
indeed be infinite valued, and this has to be taken into account when choosing a suitable
definition of optimality. Denoting with UT the overall utility at a finite horizon T , that is

UT (c) =

∫ T

0
e−ρtu (w(c(t))) dt,

we say that a control strategy c̃ catches up to a control strategy c if

∀n ∈ N, ∃Tn > 0 : T ≥ Tn ⇒ UT (c̃) > UT (c)−
1

n
.

For a given initial stock x0, an admissible control strategy c∗ is said to be optimal at x0 if
it catches up to every control strategy c admissible at the same initial stock x0. Then, an

3For instance, u(r) may be the identity function, or ln(r + 1), or r1−σ, with 0 < σ < 1.
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optimal control c∗ yields definitively (namely, for a sufficiently large horizon T ) a greater
utility than any other control c starting at the same x0 except for a (small) difference 1

n .
Note that the above definition of optimality is equivalent to require that

lim inf
T→∞

(
UT (c

∗)− UT (c)
)
≥ 0,

for every control strategy c, admissible at the initial stock x0.
If the utility function fails to be strictly concave, then optimality defined this way will

prove a too strong requirement, meaning that in some cases under study no control matching
such definition will be available, and a weaker optimality property will have to be taken
into account. Then, we say that an admissible control strategy c∗ is maximal at x0 if, given
any other control c admissible at x0, one has

∀n ∈ N, ∀T > 0, ∃Tn > T : UTn(c
∗) > UTn(c)−

1

n
,

meaning that any maximal control c∗ yields repeatedly (at a Tn > T , for increasing values of
T ) a greater utility than any other control c starting at the same x0 except for a difference
1
n . Note that optimality of a control implies maximality, but the viceversa is false in general.
Moreover a control c∗ is maximal at x0 if and only if, for every control c admissible at x0

lim sup
T→∞

(
UT (c

∗)− UT (c)
)
≥ 0.

Maximality is a more flexible idea of optimality, as it allows for controls engendering fluc-
tuating behaviors of the overall utility UT in time. Comparison of non convergent infinite
horizon integrals (or sums) appear in the optimal growth literature since Ramsey (1928),
but the terminology is not consistent across the different papers. We follow the terminol-
ogy used by McKenzie (1986), page 1286, and recall that the notion of optimal (catching
up) controls we use was formalized by Von Weizsäcker (1965) in continuous time to study
the existence of optimal programs in the aggregative model of growth, while Gale (1967)
and McKenzie (2009) extensively studied optimal paths for the multisector optimal growth
model in discrete time. Maximality of controls in the acception cited above was introduced
by Brock (1970) where existence of maximal programs for the n sectors optimal growth
model in discrete time is established, while Halkin (1974) adapted the concept to contin-
uous time. Extensions in continuous time of the results by Brock (1970) are also due to
Brock and Haurie (1976), Carlson et al. (1987), and Zaslavski (2006).

Finally, we remark that, mathematically speaking, the challenging issues go beyond the
presence of the control in the boundary condition. Here is an example: the state equation
has a solution which can be written easily by means of the characteristic method, as long
as the control is an integrable function, given by

(4) x(t, s) =

{
x0 (s− t)−

∫ t
0 c(t− τ, s− τ)dτ s ≥ t∫ s̄

0 c(t− s, r)dr −
∫ s
0 c(t− τ, s− τ) dτ 0 ≤ s < t.

Unfortunately, the space of admissible controls cannot be a space of functions, but need be
a larger space – a space of measures, where optimal controls are shaped like Dirac’s Deltas –
in which a formula like the one above is not defined. Or needs to be redefined, as we explain
in the next section.
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3. THE ABSTRACT PROBLEM

We now rephrase the problem in Section 2 by means of semigroup theory, and formalize
assumptions accordingly. The original problem for the partial differential equation is rewrit-
ten as a problem for an ordinary differential equation, set in an infinite dimensional space.
Roughly speaking, rather than considering the state and the control as real functions of
t and s, one sees them as functions of the only variable t, taking values in some space of
functions of variable s (e.g. the space of square integrable real functions): x(t) and c(t) are
interpreted as the functions of variable s defined by x(t)(s) ≡ x(t, s) and c(t)(s) ≡ c(t, s).
The initial condition is written as x(0) = x0, the state equation as x′(t) = Ax(t) + Bc(t)
where x′ denotes the time derivative, the differential operator A = −∂/∂s is a linear op-
erator between space of functions, while the control operator B represents the joint action
of the control appearing both in the partial differential equation and in the boundary con-
dition, namely Bc(t)(s) = −c(t)(s) + [

∫ S
0 c(t)(s)ds]δ0, where δ0 is the Dirac’s delta at 0.

We mention that usually the state/control spaces for such problems is L2(0, S), the set of
real square integrable functions of variable s, considered as a Hilbert space by means of
the scalar product 〈φ, ψ〉L2 =

∫ S
0 φ(s)ψ(s) ds, for φ, ψ in L2(0, S). Nonetheless we need to

generalize the problem to a larger space D′ (the dual of some D space contained in L2(0, S),
see 3.1) which contains objects like the Dirac’s deltas, as mentioned at the end of Section 2,
as optimal strategies will be of that kind (stationary programs - the so called golden rules,
see Section 4 - in the first place).

We advise that a full understanding of the following Subsection 3.1 requires some famil-
iarity with semigroup theory, and may be largely skipped at a first reading. We refer the
reader to Engel and Nagel (1999) or Pazy (1983) for the general theory of strongly contin-
uous semigroups, and to Bensoussan et al. (2007) for optimal control in infinite dimension.

3.1. The extended framework

We introduce some useful notation. Let X be a Banach space, X ′ its dual space, we
denote by 〈·, ·〉X′,X or simply by 〈·, ·〉 the duality pairing. If −∞ ≤ σ1 < σ2 ≤ ∞, we
denote by Lp(σ1, σ2;X), or simply Lp(σ1, σ2) when X = R, the space of function with
integrable p-norm, from [σ1, σ2] (or [σ1,+∞), when σ2 = +∞) to X. We write H1(σ1, σ2)
for the space of functions of L2(σ1, σ2) with (weak) derivative in L2(σ1, σ2). We also denote
by L2

loc(σ1, σ2;X) X-valued functions from [σ1, σ2] which are square integrable on every
compact interval contained in [σ1, σ2], and with L∞(σ1, σ2;X) X-valued functions having
bounded essential supremum in [σ1, σ2]. If k ∈ N ∪ {∞}, then Ck([σ1, σ2];X) (or simply
Ck([σ1, σ2]) when X = R) is the space of functions of class Ck from [σ1, σ2] to X.

When rephrasing the model in abstract terms, an intermediate step is formulating the
problem in L2(0, S), making use of the translation semigroup {T (t)}t≥0 on L

2(0, S), namely
linear operators T (t) : L2(0, S) → L2(0, S) such that [T (t)f ](s) = f (s− t) , if s ∈ [t, S],
and [T (t)f ](s) = 0 otherwise. The generator of T (t) is the operator A : D(A) → L2(0, S)
where D(A) = {f ∈ H1(0, S) : f(0) = 0}, given by [Af ](s) = −∂f(s)/∂s. The adjoint
of A is then A∗ : D(A∗) → L2(0, S) with D(A∗) = {f ∈ H1(0, S) : f(S) = 0} defined by
[A∗f ](s) = ∂f(s)/∂s, generating itself a translation semigroup T ∗(t) : L2(0, S) → L2(0, S)
given by T ∗(t)f(s) = f (s+ t) , if s ∈ [0, S − t], and T ∗(t)f(s) = 0 otherwise.
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The second step is generalization of all previous notions to a wider space. We set

D ≡ D(A∗), D′ ≡ D(A∗)′,

and assume D′ is both the control space and the state space of the abstract problem. Indeed
by standard arguments, in particular by replacing the scalar product in L2 with the duality
pairing 〈φ, ψ〉D′,D with φ ∈ D′, ψ ∈ D, the semigroup {T (t)}t≥0 can be extended to a
strongly continuous semigroup on D′ (with respect to the operator norm on D′), while
T ∗(t) can be restricted to a strongly continuous semigroup on D. The generators of such
semigroups are respectively an extension and a restriction of the ones in L2(0, S). For
simplicity we keep denoting the semigroups and their generators by T (t) and A, and by
T ∗(t) and A∗ respectively. For details we refer the reader to Faggian (2005) and Faggian
and Gozzi (2010). The role of L2(0, S) remains that of pivot space between D and D′,
namely D ⊂ L2 ⊂ D′, with the norm in D′ dominating the L2-norm, as the duality pairing
coincides with the scalar product when φ ∈ L2(0, S), namely

〈φ, ψ〉D′,D = 〈φ, ψ〉L2 , ψ ∈ D, φ ∈ L2(0, S).

We use the notation 〈·, ·〉 in both cases, unless it is ambiguous. It is very important to
say that such formulation enables the possibility of choosing controls which are positive
measures rather than functions.4 More precisely, we make use of a subset of D′, that of
(positive) Radon measures R on [0, S], endowed with the norm |c|R (the finite measure
of the set [0, S] with respect to c), for all c ∈ R. The space R contains in particular all
Dirac’s measures δs0 , with s0 ∈ [0, s̄]. Moreover, since R ⊂ D′ with continuous inclusion,
the D′-norm is dominated by the R-norm. 5

We also denote by supp(g) the support of any function/measure g ∈ R. We define the
cut-off function ψ ∈ C∞([0, S];R+) such that for fixed s1, s2, with s̄ < s1 < s2 < S6,

(5) ψ ≡ 1 on [0, s1] , ψ ≡ 0 on [s2, S] , ψ decreasing on [s1, s2] .

Observe that ψ ∈ D. Then, when c has support in [0, s̄], by means of the linear continuous
functional L : D′ → R, c 7→ Lc := 〈c, ψ〉 we may write the boundary condition as x(t, 0) =
Lc(t) = 〈c(t), ψ〉, and moreover enclose the boundary condition in the control operator B
as follows (the technique is standard)

(6) B : D′ → D′, Bc := −c+ (Lc) δ0 = −c+ 〈c, ψ〉δ0

where δ0 is the Dirac’s delta at 0.

Remark 3.1 It is easy to verify that B∗, the adjoint operator of B, is given by

B∗ : D → D, with B∗v := −v + 〈δ0, v〉ψ.

Note also that the cut-off function ψ belongs to the set

(7) D2 ≡ D(A∗2) = {g ∈ D : g′ ∈ D} = {g ∈ H2(0, S) : g(S) = g′(S) = 0},

namely, the domain of the generator of the adjoint semigroup T ∗(t) restricted to D. �

4More precisely, as a function of t, the control c(·) is chosen (positively) measure-valued.
5If C0 ≡ C0([0, S]), then R = (C0)

′
as, by Riesz Theorem, c may be represented as a positive linear

functional on C0, with norm |c|R = supφ∈C0〈cφ〉/|φ|C0 (see Rudin, 1987, Theorem 2.14, p.40). Since D ⊂
C0([0, S]), then R ⊂ D′ (both continuous inclusions) and there exists α > 0, |c|D′ ≤ α|c|R, for any c ∈ R.

6For instance, ψ ≡ 1 on
[
0, s̄+ S−s̄

4

]
, and ψ decreasing on

[
s̄+ S−s̄

4
, s̄+ 3

4
(S − s̄)

]
.
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Summing up, the state equation (1) can be written as

(8)

{
x′(t) = Ax(t) +Bc(t), t > 0
x(0) = x0

and rewritten in mild form (see e.g. Bensoussan et al., 2007 Section 3.II.1) as

(9) x(t) = T (t)x0 +

∫ t

0
T (t− τ)Bc(τ) dτ.

Moreover we assume

(10) f ∈ D, f ≥ 0, and supp(f) ⊂ (0, s̄)

implying in particular that f is continuous, null in [0, λ] for a λ > 0, and

(11) u ∈ C1(R+,R+) and concave.

Since (3) may be rewritten as w(c(t)) = 〈c(t), f〉, coinciding with (3) when c is in L2(0, S),
the objective functional UT , whenever finite, may be written as

(12) UT (c) =

∫ T

0
e−ρtu (〈c(t), f〉) dt, 0 ≤ T ≤ +∞.

3.2. Admissible controls and initial data

We denote a trajectory starting at x0 and driven by a control c as x(·;x0, c) or xx0,c(·).
Although the abstract problem is set in D′, we assume for technical reasons that x0 is a
function in L2(0, S) (and not a measure), aware of the fact that initial densities where the
mass is concentrated at certain ages do not match the requirement. Moreover, we assume
that x0 is compactly supported in [0, s̄], where s̄ is the age above which trees will be consid-
ered unproductive (see (10)). Such assumptions allow a simplification of the mathematics of
the problem, as one expects an optimal trajectory starting from such initial data to preserve
the property of being null at ages greater than s̄. Accordingly, the an admissible control
c(t) is a positive distributions in D′, which is null for s ≥ s̄ and yields trajectories which
are null for s ≥ s̄. These requirements need to be formally stated, as we do next.
Initial data. Initial densities x0 are chosen in the set

(13) Π :=

{
x ∈ L2(0, S) : x ≥ 0, supp(x) ⊆ [0, s̄],

∫ s̄

0
x(s) ds = 1

}
.

Admissible control strategies. The set Ux0 of control strategies admissible at x0 is

(14) Ux0 :=

{
c ∈ L2

loc(0,+∞;D′) :
supp(c(t)), supp(x(t)) ⊆ [0, s̄] ∀t ≥ 0
c(t) and x(t;x0, c) lie in R, ∀t ≥ 0

}

Remark 3.2 Note that the condition “c(t) and x(t;x0, c) lie in R” in (14) translates the
non-negativity constraints (2) in terms of measures. It also allows the trajectory associated
to an admissible control to be a measure rather than a function, although x(t;x0, c) is
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proven to be a function ex post, in Proposition 3.3, for initial data x0 in L2(0, S) and
controls in Ux0 . Moreover c ∈ L2

loc(0,+∞;D′) implies that (and this is a mathematical
technicality) although controls are R-valued, their integrability is required with respect to
the D′–norm, which is less restrictive than integrability with respect to the R–norm, as the
second dominates the first. �

Proposition 3.3 Consider an initial datum x0 in Π and a control c ∈ Ux0. Then there
exists a unique solution x(·;x0, c) of (9) and it belongs to C0([0,+∞);D′). Moreover, for
any t ∈ [0,+∞), x(t) belongs to L2(0, S).7

We can also formally prove that the surface of the land covered with trees stays constant
in time, as stated in the next proposition.

Proposition 3.4 Assume x0 ∈ Π. Then the trajectory x = x(·;x0, c) of (9) satisfies

〈x(t), ψ〉 ≡ 〈x0, ψ〉 for all t ≥ 0, for all c ∈ Ux0 ,

that is

(15)

∫ s̄

0
x(t, s) ds =

∫ s̄

0
x0(s) ds = 1.

In some cases we need to consider a restricted class of admissible controls. If λ > 0, we set

(16) Uλ
x0

:=

{
c ∈ L∞(0,+∞;R) :

supp(c(t)) ⊆ [λ, s̄], supp(x(t)) ⊆ [0, s̄], ∀t ≥ 0
c(t), x(t;x0, c) ∈ R, ∀t ≥ 0

}

Note that here the controls are bounded in the R–norm. Note also that assuming
supp(c∗(t)) ⊆ [λ, s̄] seems natural, as by (10) any optimal control c∗(t) is expected to
satisfy supp(c∗(t)) ⊆ [λ, s̄] for almost all t ≥ 0, for a suitable λ > 0, even if not required
explicitly in the definition of the admissible class Ux0 . A further restriction will be

(17) Uλ,K
x0

:=

{
c ∈ L∞(0,+∞;R) :

supp(c(t)) ⊆ [λ, s̄], supp(x(t)) ⊆ [0, s̄] ∀t ≥ 0
c(t), x(t;x0, c) ∈ R, |c(t)|R ≤ K, ∀t ≥ 0

}

meaning that admissible controls are not only bounded in the R–norm, but also by means
of the same constant K.

3.3. Optimal, Maximal and Stationary programs

Here we formalize the definition of optimal and maximal control.

Definition 3.5 Given x0 ∈ Π with we say that c∗ ∈ Ux0 is optimal at x0 if, given any
other control c ∈ Ux0, one has

lim inf
T→∞

(
UT (c

∗)− UT (c)
)
≥ 0.

and that c∗ ∈ Ux0 is maximal at x0 if, given any other control c ∈ Ux0, one has

limsup
T→∞

(UT (c
∗)− UT (c)

)
≥ 0.

7Note that the solution coincides with the simplified formula (1) given by (4) only if in addition c ∈
L2

loc(0,+∞;L2(0, s̄)). Unfortunately, meaningful controls never fall into that class.
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The trajectory x∗ associated to an optimal (respectively, maximal) control c∗ is said to be
an optimal (maximal) trajectory, while the couple (x∗, c∗) is said to an optimal (maximal)
couple or program.

A last definition completes the abstract framework, that of stationary program. When
the control is a function, a stationary program may be defined as a couple (x, c) such that
the control is time independent, that is c(t) ≡ c ∈ L2(0, S), and the trajectory satisfies

(18) x(s) =

{
x (s− t)−

∫ s
s−t c(r)dr s ≥ t∫ s̄

s c(r)dr 0 ≤ s < t.

namely, (x, c) solves (1) with a null derivative of x with respect to t, so that x itself does
not depend on time. When c is instead a measure, (18) may be interpreted in the following
abstract way.

Definition 3.6 We say that (x̃, c̃) ∈ Π×R is a stationary couple if, for all t ≥ 0,

(19) x̃ = T (t)x̃+

∫ t

0
T (t− s)Bc̃ ds.

A stationary couple (x̃, c̃) is optimal if c(t) ≡ c̃ is optimal at x̃.

In the following Lemma we characterize stationary couples.

Lemma 3.7 A couple (x̃, c̃) ∈ Π×R is stationary if and only if −x̃ is weakly increasing
and c̃ is its Stieltjes derivative. In this case c̃ is also the derivative of −x̃ in the distributional
sense 〈x̃, φ〉L2 = 〈c̃, φ′〉D′,D, for any φ ∈ C∞([0, S],R) compactly supported in (0, S).

4. THE FAUSTMANN PROBLEM AND CANDIDATE OPTIMAL PROGRAMS

In this section we identify candidates optimal and maximal programs consistently with
Mitra and Wan (1985, 1986), only in continuous time. There and here, all candidates are
characterized by a cutting age that is obtained solving the Faustmann problem, which con-
sists in identifying critical ages maximizing “the present discounted value of all net cash
receipts [...] calculated over the infinite chain of cycles of planting on the given acre of land
from now until Kingdom Come” (Samuelson, 1995 p. 122). The rule “cutting any tree that
reaches the critical age” is called the Faustmann policy and, clearly, candidates generated
by that policy are cyclical. Stationary candidates are also prices supported and are called
here golden rules or modified golden rules, depending on the fact that the discount rate is
zero or positive. In the discrete time formulation, Mitra and Wan (1985, 1986) did not use
the term modified golden rules for the optimal stationary states of the discounted model,
although they called golden rules the stationary states of the undiscounted model, and
pointed out that, analogously to what occurs in the Ramsey model, golden rules achieve
maximum sustained forest yields.

In continuous time and for ρ > 0, the Faustmann problem is identifying maximizers for
the function

gρ(s) =

∞∑

n=1

e−ρnsf(s) =
f(s)

eρs − 1
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which can be described as the value of an infinite sequence of planting cycles with harvesting
at age s. Note that for f satisfying (10) the following sets coincide and are nonempty

argmax {gρ(s) : s ∈ [0, s̄]} = argmax
{
gρ(s)(1− e

−ρ) : s ∈ [0, s̄]
}
,

with limρ→0+ gρ(s)(1− e
−ρ) = f(s)/s. Therefore the analysis may be extended to the case

ρ = 0 by maximizing, rather than gρ, the function

Gρ(s) =

{
1−e−ρ

eρs−1 f(s) ρ > 0

f(s)/s ρ = 0.
 

 

 

  

 

 

 

 

s O 

B 

f(s) 

h!B
(s)  

A 

Figure 1.— The support func-
tion when Aρ is singleton. The co-
ordinates of B are (Mρ, f(Mρ)).

Hence the Faustmann problem becomes identifying

Aρ ≡ argmax{Gρ(s) : s ∈ [0, s̄]}, ∀ρ ≥ 0.

Maximizers enjoy some interesting properties. In or-
der to study them, once chosen a particular selection
Mρ in Aρ, it is useful to define the following support
function

(20) hρ(s) =

{
gρ(Mρ)(e

ρs − 1) ρ > 0

f(M0)M0
−1s ρ = 0.

Remark 4.1 Indeed, since hρ(s) ≥ f(s), for all
s in (0, S] and hρ(Mρ) = f(Mρ), one has

(21) Aρ = {s ∈ (0, S] : hρ(s) = f(s)}.

With reference to Figure 1, Aρ is the set where the
graph of f touches (from below) that of hρ. �

Proposition 4.2 Assume f satisfies (10). Then Aρ ⊂ (0, s̄], and Aρ 6= ∅, for all ρ ≥ 0.
Moreover, if 0 < ρB < ρA, then:
(i) There exists s̃ ∈ (0, S] such that AρA ⊆ (0, s̃] and AρB ⊆ [s̃, S]. Moreover, AρA and

AρB may be non-disjoint only if f is not differentiable at s̃.

(ii) For any chosen Mρ ∈ Aρ, the selections ρ 7→ Mρ and ρ 7→ f(Mρ)
Mρ

are nonincreasing.
Moreover Aρ is not a singleton for at most countable set of values of ρ.

(iii) For every selection Mρ of Aρ, there exists limρ↓0+ Mρ = m0. Moreover m0 = minA0.

Remark 4.3 With reference to Figure 1, if AρB has a minimum MρB , then B has coor-
dinates (MρB , f(MρB )) and, for all ρ > ρB, (Mρ, f(Mρ)) lies on the portion of the graph of
f delimited by A and B. �

4.1. The Golden Rule

A modified golden rule (xρ, cρ) (or golden rule, when ρ = 0) is a couple in Π×R so defined

(22) xρ(s) :=
1

Mρ
χ[0,Mρ](s),
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Figure 2.— The golden rule sta-
tionary path.

where Mρ ∈ Aρ), meaning that all ages in the range
[0,Mρ] are uniformly distributed and equal to 1/Mρ,
while those in the range [Mρ, S] are null, and

(23) cρ(t, s) ≡
1

Mρ
δMρ ,

where δMρ is the Dirac Delta at pointMρ, that is, the
action undertaken by cρ is cutting exactly the trees
reaching age Mρ. Note that xρ is a function in Π (see
(13)), and that cρ is not a function of s but a positive
measure. The choice of the control cρ in the problem
affects the quantity of wood, by definition of Dirac’s
Delta, as follows

(24) w(cρ) = 〈cρ, f〉 =
1

Mρ
〈δMρ , f〉 =

1

Mρ
f(Mρ).

Note that the set Aρ may be not singleton. We will take such fact into account and derive
different results accordingly.

It is not difficult to guess that any golden rule is a stationary couple, as the amount of
trees cut at ageMρ is instantaneously replanted at age 0, preserving the distribution among
different ages unaltered. Nonetheless the following result identifies completely the shape of
stationary couples of the problem.

Proposition 4.4 Assume ρ ≥ 0, and f and u satisfying (10) (11) respectively. Consider
the trajectory of system (8) starting at xρ. Then (xρ, cρ) is a stationary couple in the sense
of Definition 3.6.

Define now

(25) βρ := 〈cρ, f〉 =
f(Mρ)

Mρ
, ηρ :=

f(Mρ)

eρMρ − 1
.

and pρ : [0, S]→ R
+ as

(26) pρ(s) :=

{
ηρ (e

ρs − 1)ψ(s) ρ > 0

β0sψ(s) ρ = 0.

Note that p0(s) = limρ→0+ pρ(s) and that, for any ρ ≥ 0, pρ is twice differentiable with
pρ(S) = pρ

′(S) = 0, which implies pρ is in D2.

The dual variables in (26) have a straightforward interpretation as stationary competitive
prices associated with a golden rule path (see Cass and Shell, 1976). Indeed, assume we
interpret pρ(s) as the (infinite dimensional) vector of the prices of capital goods (i.e, the
prices of the different vintages s of trees) and set R = ρηρ the rent rate of the land on which
the trees are planted (when ρ = 0, define R = limρ→0+ ρηρ = β0). Then by definition (26)

f(s) ≤ pρ(s), s ∈ [0, s̄], f(Mρ) = pρ(Mρ),
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where the first inequality means that no cutting process yields a positive profit, while the
equality says that the only cutting processes that do not generate losses are those that
operates at the Faustmann ages. Thus, the golden rule controls maximizes the short run
profits. In addition, since, for all s ∈ [0, s̄], p′ρ(s) = ρpρ(s) + R for Mρ ≥ s ≥ 0 and
p′ρ(s) ≤ ρpρ(s) + R for s ≥ Mρ, then the asset-market-clearing conditions that hold under
competitive arbitrage are satisfied. Clearly, the arbitrage condition in a golden rule takes
the form of a “modified Hotelling rule” because a piece of land needs to be rented in order
to hold a tree of a given age in situ.

4.1.1. Modified golden rules

In the following sections we will classify the behavior of candidate optimal or maximal
programs, assuming either the discount ρ is positive or null, the utility function u is linear or
strictly concave, Aρ is singleton or multivalued. Nonetheless, when ρ > 0 is strictly positive,
optimality of the golden rule is a general property (holding for a general concave utility u
and a possibly multivalued Aρ), as stated in the next theorem.

Theorem 4.5 Assume ρ > 0, Mρ ∈ Aρ, and f and u satisfying (10) (11) respectively.
Then cρ is optimal at xρ in the sense of Definition 3.5. Moreover, if Aρ = {Mρ}, then the
unique optimal stationary couple is (xρ, cρ).

Remark 4.6 Note that the first assertion of the previous proposition holds for any choice
ofMρ in Aρ. It is easy to prove (see the Appendix for a formal proof) that the same property
holds for any convex linear combination of golden rules, that is, if Aρ = {M1

ρ , ...,M
n
ρ }, and

(xiρ, c
i
ρ) is the golden rule associated to M i

ρ, then

x̃ =

n∑

i=1

λix
i
ρ, c̃ =

n∑

i=1

λic
i
ρ,

where λi ≥ 0,
∑n

i=1 λi = 1, is also an optimal stationary program. �

Remark 4.7 Note that by (24) it is UT (cρ) = ρ−1(1− e−ρT )u(βρ), when ρ > 0 the golden
rule is optimal when starting at xρ, with maximal overall utility given by

max
c∈Uxρ

U(c) = U(cρ) = lim
T→+∞

UT (cρ) =
u(βρ)

ρ
.

The proofs of Theorem 4.5 and of other theorems in the following sections relay on the
construction of the value-loss function

(27) θρ(c(t), x(t)) = u(βρ)−u (〈c(t), f〉)+u
′ (βρ)

[
ρ 〈x(t)− xρ, pρ〉−〈x(t), A

∗pρ〉+〈c(t), pρ〉
]
,

which is formally introduced in the Appendix, in the statement of Corollary A.6. This
function. which gives the value-loss of any admissible couple at the steady state competitive
prices, is the analogous of the value-loss function commonly used for finite dimensional
optimal growth problem (see McKenzie, 1986 for the discrete time case and Magill, 1977
for continuous time). The only aspect that is specific to our infinite dimensional setting is
that the unit rental costs function contains an element accounting for the ageing process of
capital goods. Note that the input-output prices in the value-loss function are expressed in
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terms of marginal utilities, while capital goods prices in (26) are given in terms of timber.
However, since there is a single final good, expressing the prices in the new numeraire
amounts to rescaling them by means of the factor u′(〈cρ, f〉). An important consequence
of this fact is that golden rules are independent from the instantaneous utility function
(see Mitra and Wan, 1985). On the contrary, the form of the instantaneous utility function
matters in the analysis of the stationary states of the undiscounted model.

4.2. The Faustmann solution

Besides the golden rule, other controls are candidates to be optimal or maximal when
starting at a general initial datum x0. Indeed, the golden rule may fail even to be admissible
at x0. Nonetheless, given an initial datum x0 ∈ Π, if Mρ represents a preferable cutting age
providing a maximal harvesting, one may attempt to use the feedback strategy (x̂, ĉ), where

(28) ĉ(t) = x̂(t,Mρ)δMρ , ∀t ≥ 0,

that is, ĉ cuts existing trees reaching age Mρ. Such trees vary in time depending on the
initial distribution x0. We remark that a trajectory of the system starting from an initial
datum in Π is in L2, as a function of s, so that x̂(t,Mρ) is not well defined, as well as the
control ĉ. Nonetheless, in the following lemma we are able to give meaning to both.

Lemma 4.8 Assume x0 satisfies supp(x0) ⊂ [0,Mρ]. Set

(29) x̂(t, s) = x̂(t)(s) = x0(s− σ(t))χ[σ(t),Mρ](s) + x0(s+Mρ − σ(t))χ[0,σ(t)](s)

where σ(t) =
{

t
Mρ

}
Mρ = t−

[
t

Mρ

]
Mρ, [a] and {a} denote respectively the integer and the

fractional part of the real number a. Then x̂ is Mρ-periodic, that is x̂(t +Mρ) = x̂(t), for
all t ≥ 0, the control ĉ(t) = x̂(t,Mρ)δMρ is admissible at x0 and x̂ solves the closed loop
equation

(30) x̂(t) = T (t)x0 +

∫ t

0
T (t− τ)Bx̂(τ,Mρ) δMρdτ.

We will refer to (x̂, ĉ) as to the Faustmann solution or Faustmann Policy.

Remark 4.9 Note that the golden rule is the Faustmann solution associated to the initial
datum xρ. �

Remark 4.10 Note that we require that the support of the initial datum x0 lies in
[0,Mρ] in order to prove the Lemma. With such an assumption the defined feedback control

is admissible, in particular it implies
∫ S
0 x̂(t, s)ds = 1. Indeed, since the solution is Mρ

periodic ∫ S

0
x̂(t, s)ds =

∫ σ(t)

0
x̂(t, s)ds+

∫ Mρ

σ(t)
x̂(t, s)ds

=

∫ t

0
x0(s− t)ds+

∫ Mρ

t
x0(s+Mρ − t)ds =

∫ Mρ

0
x0(r)dr.
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Figure 3.— The Faustmann Solution. The effect of cutting at age Mρ and replanting at
age 0 induces cycling of the trajectory in a time length ofMρ. After a time length ∆t < Mρ,
the graph of the trajectory is translated forward of ∆t and the portion exceeding age Mρ

reappears for s in [0,∆t].

Lemma 4.11 Assume supp(x0) ⊂ [0,Mρ], ĉ the Faustmann policy, T ≥ 0, and set n ≡
[T/Mρ], σ(T ) = {T/Mρ}Mρ and

Uρ
1 :=

∫ Mρ

0
eρτu (f(Mρ)x0(τ)) dτ, Uρ

2 (T ) :=

∫ Mρ

Mρ−σ(T )
eρτ u (f(Mρ)x0(τ)) dτ

Then

(31) UT (ĉ) =

{
1−e−ρnMρ

eρMρ−1
χ

[Mρ,∞)
(T )Uρ

1 + e−ρ(n+1)MρUρ
2 (T ), ρ > 0

nU0
1 + U0

2 (T ), ρ = 0

Remark 4.12 Note that when ρ > 0 the overall utility is finite

U(ĉ) = lim
T→∞

UT (ĉ) = Uρ
1 (e

ρMρ − 1)−1,

contrary to the case ρ = 0 where it is not. The formula is consistent with those contained
in Remark 4.7 when x0 = xρ. �

4.3. Null discounts and Good Controls

Assume ρ = 0, M ∈ A0 and denote by (x̄, c̄) the associated golden rule, that is

x̄ =
1

M
χ[0,M ], c̄ =

1

M
δM .

The case when ρ = 0 appears immediately as more complicated than the case of positive
discount. For example, the utility over a finite horizon T associated to the golden rule is

UT (c̄) = T u(β0)

so that for null discount the utility over an infinite horizon fails to be finite. With null
discount the notion of good controls, which we give next, will prove useful.
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Definition 4.13 Assume ρ = 0. A control c ∈ Ux0 is good if there exists θ ∈ R s.t.

inf
T≥0

(
UT (c)− UT (c̄)

)
≥ −θ.

We recall that the notion of good controls was introduced by Gale (1967) for the undis-
counted n sector optimal growth model in discrete time. Note that a control is defined
“good” in comparison to the golden rule c̄, and that such comparison is performed although
the golden rule may fail to be admissible at some arbitrary initial datum x0. Note also that
an equivalent way of giving the definition is to say that a control c is good if

∃θ ∈ R : ∀T ≥ 0, UT (c) ≥ UT (c̄)− θ.

meaning that the utility (over an arbitrary finite horizon T ) achieved by means of a good
control is dominated by that obtained at c̄ by at most a finite quantity θ.

The following proposition compares good and optimal controls.

Proposition 4.14 If c∗ ∈ Ux0 is maximal (and, in particular, optimal) control then it is
good.

The previous result allows to seek for optimal or maximal programs in the class of good
controls, as no control which is not good may be optimal or maximal.

5. CLASSIFICATION OF OPTIMAL PROGRAMS

5.1. Linear utility, positive discount

In Theorem 4.5 we already established that, when ρ > 0, the modified golden rules are
optimal in all sets of assumptions. In particular this holds true for u linear, say u(r) = r.
In the following theorem we establish that, in the particular case of ρ > 0 and u linear,
the Faustmann solution is an optimal program, that is, the optimal policy is cutting trees
reaching age Mρ, regardless the initial distribution x0, as long as x0 does not contain trees
older than the optimal age Mρ. This is consistent with Theorem 4.5, as the Faustmann
solution coincides with the golden rule when the initial datum is xρ.

Theorem 5.1 Assume ρ > 0, f satisfying (10), and u(r) = r, r ≥ 0. Consider an initial
datum x0 in Π with supp(x0) ⊆ [0,Mρ]. Then the Faustmann Solution (x̂, ĉ), given by (29)
(28) is optimal at x0.

Remark 5.2 The proof may be easily adapted to the case of affine utility u(r) = ar + b.

Remark 5.3 Note that, for a wide class of initial data, all those supported in [0,Mρ],
the optimal trajectory is cyclic. As a counterpart, the modified golden rule is a stationary
solution – an equilibrium – but not an asymptotic equilibrium. Optimal trajectories do not
tend to any stationary solution, except when starting already at it.

Remark 5.4 In proving Theorem 5.1 we establish that the optimal value function is linear.
The linearity of the function (i.e., all differences in value from the steady state reduces to
the difference in value of the initial forest from the stationary forest) explains the lack of
convergence of optimal trajectories to the modified golden rule. It is well known indeed that
the clustering of solutions in optimal growth models is driven by second order differences
due to strict concavity of the value function. �
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5.2. Linear utility, null discount

In this subsection we are going to show that, with null discount and linear u, the Faust-
mann solution is maximal but not optimal. Anyway, this is the best one may expect, as one
shows that optimal programs do not exist.

Moreover through this and the following subsections we always require the assumption

(32) A0 is singleton, A0 ≡ {M}

and only in this case we discuss optimality and/or maximality of steady states and of the
Faustmann Solution. The case of multivalued A0 remains unsolved, nonetheless multiplicity
of maxima is a fragile phenomenon that vanishes under small perturbations of the produc-
tivity function.

Theorem 5.5 Assume that (32) is satisfied, ρ = 0 and u(r) = r for all r ≥ 0. Consider
an initial datum x0 ∈ Π with supp(x0) ⊆ [0,M ]. Then the Faustmann Solution (x̂, ĉ), given
by (29) (28) is maximal, although it is not optimal. Indeed no optimal control exists for the
problem in this set of data.

The fact applies to the particular case of the golden rule.

Corollary 5.6 In the assumptions of Theorem 5.5, the golden rule (x̄, c̄) is a maximal,
but not optimal, program at x̄. Moreover no admissible control at x̄ may be optimal.

As a direct proof of the assertion that c̄ is not optimal, nor an optimal control ex-
ists, one may build the following example (the proof of Theorem 5.5 is based on a sim-
ilar construction) where the control c̄ is not catching up to c1 defined by means of
(33), admissible at x̄. The control c1 behaves on average like c̄ but delayed of some ini-
tial time interval: the difference in utilities yielded by c̄ and c1 coincide repeatedly with
their difference in the initial time interval, precisely because ρ = 0 and u is linear.
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Figure 4.— The control c1 with
N = 3. From time 0 to timeM/3 the
trees of age M/3, (2M)/3, and M
are cut, yielding a resulting distri-
bution, at time M/3, x1(M/3, s) =
3
M χ[0,M/3].

Example 5.7 Let N be a natural number greater
than 1. Define sj := jM/N, for j = 1, .., N and con-
sider a control c1 and associated trajectory x1 so de-
fined: when t ≤M/N , c1 cuts the quantity x1(t, sj) of
available trees of age sj , subsequently when t ≥M/N ,
c1 cuts the quantity x1(t,M) of trees reaching ageM ,
that is

(33) c1(t) =

{ ∑N
j=1 x1(t, sj)δsj , 0 ≤ t < M

N

x1(t,M)δM , t ≥ M
N

It is easy to check that c1 is admissible at any x0 with
supp(x0) ⊂ [0,M ], in particular for x0 = x̄. In the
latter case, the associated trajectory x1(t, s; c1, x̄) ≡
x1(t, s) is (a.e.) given by the explicit formula

x1(t, s) =
N

M
χ[0,t](s) +

1

M

N∑

j=1

χ[sj−1+t,sj ](s)
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when t ∈
[
0, MN

]
, s ≥ 0, while in the following interval

of length M it is equal to

(34) x1(t, s) =

{ N
M χ[t−M

N
,t](s)

N
M

[
χ[0,t−M ](s) + χ[t−M

N
,M ](s)

] t ∈
[
M
N ,M

]

t ∈
[
M,M + M

N

]
.

It is easily understood that, from t =M/N on, the trajectory is periodic with periodM , and
attains the values described in (34) in all intervals of type [Ti, Ti+1] where Ti =M/N + iM,
with i ∈ N.
Note that for during every time interval [Ti, Ti+1], the control c1 cuts an amount N/M

for a time length M/N , while c̄ cuts the amount 1/M for a time length M . Then, except
for the quantity obtained at the initial time interval, the utilities yielded by c̄ and c1 on a
period length interval are both equal to f(M), as no discount is applied and u is linear. As
a result, the difference between such utilities is periodically equal to the difference yielded
on [0,M/N ], that is

UM
N
(c1)− UM

N
(c̄) =

1

N

N−1∑

j=1

f(sj)

and which may be assumed strictly positive, provided f is not null everywhere, as for a
suitable choice of N one may the infer that f(sj) > 0 for at least one j. Such fact is
equivalent by definition to stating that the control c̄ cannot be (definitively) catching up to
c1, and by means of the same idea one is also able to contradict the existence of an optimal
control. For details we refer the reader to the proof of the general case, Theorem 5.5 in the
Appendix. �

Remark 5.8 As it is shown later in Theorem 5.12 (ii), for a utility u which is concave
but not necessarily strictly concave, one may prove existence of a maximal control when
the admissible set is Uλ,K

x0 defined in (17). In particular, the result applies when u is linear
(and ρ = 0). �

5.3. Strictly concave utility, null discount

As in the previous, in this subsection we assume that (32) is satisfied. Moreover all
statements are proved not for Ux0 as admissible class of strategies, but on the subsets Uλ

x0

and UK,λ
x0 defined in (16) (17).

Theorem 5.9 Assume ρ = 0, and that (10)(11)(32) are satisfied. Assume moreover that
u is strictly concave. Then, along the trajectory x starting from some x0 ∈ Π and driven by
a good control c ∈ Uλ

x0
one has

x(t)
t→∞
−−−−−→
L2(0,S)

x̄,

that is, the trajectory x converges to the golden rule x̄ in L2(0, S) norm.

A straightforward consequence of Theorem 5.9 and of is that its assertion holds also for
optimal trajectories, i.e. trajectories driven by an optimal control, which is good by means
of Proposition 4.14.
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Theorem 5.10 Assume ρ = 0, and that (10) (11) (32) hold. Assume moreover that u is
strictly concave. Then the golden rule (x̄, c̄) is an optimal stationary couple.

As a consequence of Theorem 5.9 the Faustmann solutions (except for the Golden Rule
itself), which were maximal for linear u, are not maximal anymore for strictly concave u,
as they are definitely caught up by the convergent solution. As a consequence, Theorem 5.9
and Proposition 4.14 imply the following Corollary.

Corollary 5.11 In the assumptions of Theorem 5.9, the Faustmann solution can be nei-
ther an optimal nor a maximal program, except for the particular case of the Golden Rule.

Theorem 5.12 Let x0 ∈ Π, ρ = 0, and assume (32) is satisfied. Let UK,λ
x0 be the space of

admissible control defined in (17). Then:

(i) if u is strictly concave, then there exists an optimal control in UK,λ
x0 ;

(ii) if u is concave (but not necessarily strictly concave), then there exists a maximal

control in UK,λ
x0 .

Remark 5.13 The existence result yielded by Theorem 5.12 is not as general as one
may hope. Indeed the proof works based on the fact that admissible controls are uniformly
bounded by a common constant K, as that set enjoys the compactness properties needed to
derive existence of a maximum. Nonetheless, for bounded initial data and for K chosen big
enough, the Faustmann policy and the golden rule fall into the described set of controls. �

5.4. Strictly concave utility, positive discount

As observed in Corollary 5.11 the Faustmann Policy is not optimal for the case of a
strictly concave utility function and null discount. However, this result does not preclude the
possibility that the Faustmann policy turns out optimal for the discounted model. Indeed,
for the discrete time model with a strictly concave utility and discounted future utilities,
Mitra and Wan (1985) provided a couple of examples in which the Faustmann Policy was
in fact optimal, and Wan (1994); Salo and Tahvonen (2002, 2003) have taken the issue
further (see also Mitra et al., 1991 for similar results in a different vintage capital model)
by showing that optimal Faustmann cycles persist in a neighborhood of the (modified)
golden rule even if the discount factor approaches unity. Proposition 1 in Salo and Tahvonen
(2003), in particular, states that for any discount factor less than one the Faustmann Policy
is optimal for all initial forests that are sufficiently close to the uniform steady state forest.

On the contrary, for the strictly concave continuous-time discounted model the issue of
the optimality of cyclical Faustmann solutions is still open: neither a convergence result
is available, nor a case in which the Faustmann Policy is optimal has been found. How-
ever, we can establish a partial result by proving that Proposition 1 in Salo and Tahvonen
(2003) does not carry over to our continuous- time formulation and, hence, that the model
behaves differently from the discrete-time model. To illustrate the point consider the follow-
ing simple example in which a Most Rapid Approach Path to the steady state dominated
the path generated by the Faustmann Policy for a set of initial distributions that contains
elements arbitrary close to the (modified) golden rule. Assume that Mρ = 1 is the unique
Faustmann maturity age, and that f(1) = 1. Consider the following initial density of forest
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Figure 5.— The initial state
xa(s).

xa(s) =





1 s ∈ [0, 1− 2a)

1 + a s ∈ [1− 2a, 1− a)

1− a s ∈ [1− a, 1]

0 s ∈]1,+∞),

where 0 ≤ a ≤ 1
2 (note that for a = 0 we obtain the

golden rule forest). We intend to show that for any
a in a right neighborhood of 0 the Faustmann Policy
is not optimal starting at xa(s). As a consequence,
the analogous of Proposition 1 in Salo and Tahvonen
(2003) does not hold in continuous time.
We first compute the utility associated to the Faust-

mann Policy ĉa(t) = x̂a(t, 1)δ. Note that each Faust-
mann cycle comprises three phases of constant tim-
ber consumption: an initial phase of length a during
which 1−a units of timber are consumed followed by
a phase of length a during which timber consumption rises to 1 + a and a final phase of
length 1− 2a during which consumption is constant at the modified golden rule level. Then
on the first cycle, that is for t ∈ [0, 1], one has

〈ĉa(t), f〉 = f(1)xa(t, 1) = xa(t, 1) = (1− a)χ[0,a](t) + (1 + a)χ[a,2a](t) + χ[2a,1](t),

so that the utility at horizon T = 1 is given by

U1(ĉa) =

∫ a

0
u(1− a)e−ρsds+ e−ρa

∫ a

0
u(1 + a)e−ρsds+ e−2ρa

∫ 1−2a

0
u(1)e−ρs ds

=
u(1− a) + u(1 + a)e−ρa

ρ

(
1− e−ρa

)
+
u(1)

ρ
(e−2ρa − e−ρ).

Next we note that, starting from any forest xa(s), a feasible Most Rapid Approach Path to
the steady state, namely

cmra(t) = [(1− a)δ1 + aδ1−a)]χ[0,a](t) + δ1χ[a,∞)(t),

reaches the golden rule after a units of time by continuously clearing the 1−a units of land
on which mature trees are planted and the a units of land in excess on which trees of age
1− a are grown. The utility associated to this MRA policy at horizon T = 1 is then

U1(cmra) =

∫ a

0
u ((1− a) + af(1− a)) e−ρsds+ e−ρa

∫ a

0
u(1)e−ρsds+ e−2ρa

∫ 1−2a

0
u(1)e−ρsds

= u (1− a+ af(1− a))
(1− e−ρa)

ρ
+
u(1)

ρ
(e−ρa − e−ρ).

Instead, when T = n ≥ 2, one has

Un(ĉa) =

n∑

i=0

e−iρU1(ĉa) = U1(ĉa) + U1(ĉa)
e−ρ − e−nρ

1− e−ρ

Un(cmra) = U1(cmra) +
n∑

i=1

e−iρ
u(1)

ρ

(
1− e−ρ

)
= U1(cmra) +

u(1)

ρ
(e−ρ − e−nρ).
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As a consequence one has

lim
n→∞

(Un(ĉa)− Un(cmra)) =

=
1− e−ρa

ρ

[
u(1− a)− u(1)

1− e−ρ
+
u(1 + a)− u(1)

1− e−ρ
e−ρa − u(1− a+ af(1− a)) + u(1)

]
.

The sign of the above expression is the sign of the sum in the square brackets, which is null at
a = 0, hence its sign for a > 0 in a neighborhood of 0 is given by the sign of its lowest order
non-zero derivative evaluated at the steady state. Simple calculations show that the first
derivative is null, while the second one is given by 2(u′′(1)−ρu′(1))+2f ′(1)u′(1)(1−e−ρ) =
2u′′(1), which is strictly negative, as f ′(1)(1 − e−ρ) = ρ because Mρ = 1 is the solution
of the Faustmann problem. One can therefore conclude that the Faustmann Policy is not
optimal starting at xa(s) in a neighborhood of the steady state.

6. CONCLUSIONS

In this paper we developed and analyzed a continuous time version of the Mitra and Wan
(1985) model of optimal forest management. Following the methodological precept that: ”No
substantive prediction or explanation in a well-defined macroeconomc period model should
depend on the real time length of the period” (Foley, 1975, p. 301), our main purpose was
to isolate the set of phenomena that in the optimal management of a forest are independent
of the way time is modeled. Table 1 gives an overview of the results we have established
for the continuous-time model and that can be compared with the results that have been
obtained in the discrete time model.

ρ = 0 ρ > 0

u
li
n
e
a
r • If A0 is singleton the GR is maximal, but

not optimal

• If A0 is singleton the FS is maximal at any
admissible x0 satisfying supp(x0) ⊂ [0,Mρ]

• There do not exist optimal controls

• Any MGR is optimal

• FS is optimal at any admissible x0 satisfy-
ing supp(x0) ⊂ [0,Mρ]

u
s
t
r
ic
t
ly

c
o
n
c
a
v
e Assume A0 is singleton:

• GR is the unique optimal stationary couple

• There exists an optimal control

• Any optimal trajectory converges (in L2

norm) to the GR

• Any MGR is optimal

• It is not true (as in discrete time) that FS
is optimal for all initial forests close to the
MGR. There is a counterexample

u
c
o
n
c
a
v
e Assume A0 is singleton:

• GR is the unique maximal stationary cou-
ple

• There exists a maximal (admissible) con-
trol

• Any MGR is optimal

TABLE I

Results at one glance: FS stands for Faustmann Solution, GR for Golden Rule, MGR for

modified golden rule.
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It turned out that many of the discrete time results carry over to the continuous time
version of the model with an important exception: the cyclical optimal solutions that are
characteristics of the discounted strictly-concave discrete model disappear in continuous
time. We have also established for the continuous time model a set of results that the
literature in discrete time has not yet proved: that the Faustmann solution is maximal but
not optimal for the undiscounted model with a linear utility function and that in steady
states both the Faustmann age and timber production decrease monotonically with the
increase of the discount rate.
Unlike in discrete time, modeling timber production in continuous time required a quan-

tum leap from the received vintage capital theory. Indeed, in the typical vintage capital
model in continuous time, only irreversible investment in new machines is possible, so that
distributed controls can be avoided altogether. Moreover, in the few instances in which in-
vestment in older machines is considered (e.g. Feichtinger et al., 2006) it turned out that
optimal investment is spread over a continuum of ages, so that the controls can be func-
tions. In continuous time, however, timber production cannot be modeled this way, because
the Faustmann condition implies that generically it is optimal to fell down only trees of a
single age. Therefore, to handle the case of forest management in continuous time we had
to develop an entirely new class of vintage models in which measure-valued controls are
allowed. Since this is the first attempt to formulate the Mitra-Wan model in continuous
time, we have been concentrating on the basic features of the model, without attempting to
use minimal assumptions and without taking into account recent refinements of the theory
(Khan and Piazza, 2012). Discussion of these issues is left for future work. One may also
work on generalizations of the model in several directions, for example considering positive
cutting costs, adding environmental well-being variables into the objective, and allowing for
alternative use of the forest land.
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MA, second edition, 2007.

R. Boucekkine, M. Germain, and O. Licandro. Replacement echoes in the vintage capital growth model.
Journal of Economic Theory, 74(2):333–348, 1997.

R. Boucekkine, M. Germain, O. Licandro, and A. Magnus. Creative destruction, investment volatility, and
the average age of capital. Journal of Economic Growth, 3(4):361–384, 1998.

R. Boucekkine, D. De La Croix, and O. Licandro. Vintage capital growth theory: Three breakthroughs. In
Olivier de La Grandville, editor, Economic Growth and Development, volume 11 of Frontiers of Economics
and Globalization, chapter 5, pages 87–116. Emerald Group Publishing Limited, 2011.

W. A. Brock. On existence of weakly maximal programmes in a multi-sector economy. Review of Economic
Studies, 37(2):275–280., 1970.

W. A. Brock and A. Haurie. On existence of overtaking optimal trajectories over an infinite time horizon.
Mathematics of Operations Research, 1(4):337–346, 1976.



ON THE MITRA–WAN FOREST MANAGEMENT PROBLEM IN CONTINUOUS TIME 25

D. A. Carlson, A. Haurie, and A. Jabrane. Existence of overtaking solutions to infinite dimensional control
problems on unbounded time intervals. SIAM journal on control and optimization, 25(6):1517–1541, 1987.

D. Cass. On the wicksellian point-input, point-output model of capital accumulation: A modern view (or,
neoclassicism slightly vindicated). Journal of Political Economy, 81(1):71–97, 1973.

D. Cass and K. Shell. Introduction to hamiltonian dynamics in economics. Journal of Economic Theory, 12
(1):1–10, 1976.

W. L. Chan and B. Z. Guo. Overtaking optimal control problem of age-dependent populations with infinite
horizon. Journal of Mathematical Analysis and Applications, 150(1):41–53, 1990.

K. L. Chung. A course in probability theory. Third edition. Access Online via Elsevier, 2001.
S. Dasgupta and T. Mitra. On optimal forest management: A bifurcation analysis. In K. G. Dastidar,
H. Mukhopadhyay, and U. B. Sinha, editors, Dimensions of economic theory and policy: essays for Anjan
Mukherji. 2011.

K. J. Engel and R. Nagel. One-parameter semigroups for linear evolution equations, volume 194 of Graduate
Texts in Mathematics. Springer, 1999.

S. Faggian. Regular solutions of first-order Hamilton-Jacobi equations for boundary control problems and
applications to economics. Applied Mathematics and Optimization, 51(2):123–162, 2005. ISSN 0095-4616.

S. Faggian. Hamilton-Jacobi equations arising from boundary control problems with state constraints. SIAM
Journal on Control and Optimization, 47(4):2157–2178, 2008.

S. Faggian and F. Gozzi. On the dynamic programming approach for optimal control problems of PDE’s
with age structure. Mathematical Population Studies, 11(3-4):233–270, 2004.

S. Faggian and F. Gozzi. Optimal investment models with vintage capital: Dynamic programming approach.
Journal of Mathematical Economics, 46(4):416–437, 2010.

S. Faggian and L. Grosset. Optimal advertising strategies with age-structured goodwill: segment vs. single
medium scenario. Annals of Operations Research, 2013. to appear.

G. Feichtinger, G. Tragler, and V. M. Veliov. Optimality conditions for age-structured control systems.
Journal of Mathematical Analysis and Applications, 288(1):47–68, 2003.

G. Feichtinger, R. F. Hartl, P. M. Kort, and V. M. Veliov. Anticipation effects of technological progress on
capital accumulation: a vintage capital approach. Journal of Economic Theory, 126(1):143–164, 2006.

D. K. Foley. On two specifications of asset equilibrium in macroeconomic models. Journal of Political
Economy, 83(2):303–324, 1975.

D. Gale. On optimal development in a multi-sector economy. The Review of Economic Studies, 34(1):1–18,
1967.

H. Halkin. Necessary conditions for optimal control problems with infinite horizons. Econometrica, 42(2):
267–272, 1974.

T. Heaps. The forestry maximum principle. Journal of Economic Dynamics and Control, 7(2):131–151,
1984.

T. Heaps. An extension of the forestry maximum principle. working paper, 2006.
B. J. Heijdra and W. E. Romp. Retirement, pensions, and ageing. Journal of Public Economics, 93(3):
586–604, 2009.

E. Hewitt. Integration by parts for stieltjes integrals. The American Mathematical Monthly, 67(5):419–423,
1960.

F. Hirsch and G. Lacombe. Elements of functional analysis, volume 192 of Graduate Text in Mathematics.
Springer, 1999.

N. Hritonenko and Y. Yatsenko. From linear to nonlinear utility in vintage capital models. Mathematical
Population Studies, 15(4):230–248, 2008.

M. A. Khan and A. Piazza. On uniform convergence of undiscounted optimal programs in the mitra–wan
forestry model: the strictly concave case. International Journal of Economic Theory, 6(1):57–76, 2010.

M. A. Khan and A. Piazza. An overview of turnpike theory: towards the discounted deterministic case.
Advances in Mathematical Economics, 4(1):39–67, 2011.

M. A. Khan and A. Piazza. On the mitra–wan forestry model: a unified analysis. Journal of Economic
Theory, 147(1):230–260, 2012.

M. J. P. Magill. Some new results on the local stability of the process of capital accumulation. Journal of
Economic Theory, 15(1):174–210, 1977.

A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeconomic theory. Oxford university press New York,
1995.



26 GIORGIO FABBRI, SILVIA FAGGIAN AND GIUSEPPE FRENI

L. W. McKenzie. Optimal economic growth, turnpike theorems and comparative dynamics. In Handbook of
mathematical economics 3, pages 1281–1355. Elsevier, 1986.

L. W. McKenzie. Accumulation programs of maximum utility and the von neumann facet. In T. Mitra and
K. Nishimura, editors, Equilibrium, Trade, and Growth: Selected Papers of Lionel W. McKenzie, pages
345–376. MIT Press, 2009.

T. Mitra and H. Y. Wan. Some theoretical results on the economics of forestry. The Review of Economic
Studies, 52(2):263–282, 1985.

T. Mitra and H. Y. Wan. On the Faustmann solution to the forest management problem. Journal of
Economic Theory, 40(2):229–249, 1986.

T. Mitra, D. Ray, and R. Roy. The economics of orchards: an exercise in point-input, flow-output capital
theory. Journal of Economic Theory, 53(1):12–50, 1991.

A. Pazy. Semigroups of linear operators and applications to partial differential equations, volume 44 of
Applied Mathematical Sciences. Springer-Verlag, New York, 1983.

B. Peleg. A weakly maximal golden-rule program for a multi-sector economy. International Economic
Review, 14(3):574–579, 1973.

F. P. Ramsey. A mathematical theory of saving. The Economic Journal, 38(152):543–559, 1928.
W. Rudin. Real and complex analysis. Third edition. Tata McGraw-Hill Education, 1987.
S. W. Salant. The equilibrium price path of timber in the absence of replanting: Does hotelling rule the
forests too? Resource and Energy Economics, 35(4):572–581, 2013.

S. Salo and O. Tahvonen. On equilibrium cycles and normal forests in optimal harvesting of tree vintages.
Journal of Environmental Economics and Management, 44(1):1–22, 2002.

S. Salo and O. Tahvonen. On the economics of forest vintages. Journal of Economic Dynamics and Control,
27(8):1411–1435, 2003.

P. A. Samuelson. Economics of forestry in an evolving society. Journal of Forest Economics, 1(1):115–150,
1995. (reprinted from Economic Inquiry 14, 466-492, 1976).
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APPENDIX A: PROOFS

In this appendix we complete our exposition with the proofs of the aforementioned results.

A.1. Proofs for Section 3

The subsection contains the proofs of the results which were stated in Section 3 and of some other useful
ones. Those results are mostly well known in semigroup theory applied to control in infinite dimensions. In
this respect, our main reference is Bensoussan et al. (2007).

Proposition A.1 Given T > 0, the operator C : L2(0, T ;D′) → C([0, T ];D′) given by C(c)(t) :=∫ t

0
e(t−s)ABc(s) ds is continuous. As a consequence S : D′ × L2(0, T ;D′) → C([0, T ];D′) defined by by

S(x0, c)(t) := T (t)x0 + C(c)(t) is continuous. In particular, for any x0 ∈ D′, and for any c ∈ Ux0
, the

function [0, T ]→ D′, t 7→ T (t)x0 + C(c)(t) is also continuous.
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Proof: See e.g. Bensoussan et al. (2007) Section II.1.3. Q.E.D.

Proof of Proposition 3.3. The proof of the first fact is a consequence of Proposition A.1. Next we need
to show that, for any t ∈ [0,+∞), x(t) lies in L2(0, S). Expanding in (9) the definition of B we have

(35) x(t) = T (t)x0 +

∫ t

0

〈c(τ), ψ〉T (t− τ)δ0 dτ −
∫ t

0

T (t− τ)c(τ) dτ.

(i) Since x0 ∈ L2(0, S) then T (t)x0 ∈ L2(0, S), as T (t) coincides on L2(0, S) with the translation semi-
group. By definition, T (τ)x0 is then a positive function;

(ii) The term
∫ t

0
〈c(τ), ψ〉T (t − τ)δ0 dτ is a positive function, as all integrands are positive. Moreover it

belongs to L2(0, S) as a consequence of Proposition 3.1 in Bensoussan et al. (2007), page 212, once
we have proven that Hypothesis 3.1 page 212 in Bensoussan et al. (2007) is satisfied. To this extent,
we denote with B1 the operator B1 : D

′ → D′ given by B1φ := 〈φ, ψ〉 δ0 so that B∗1 : D → D is given
by B∗1h := 〈δ0, h〉ψ. As a consequence

|B∗1T ∗(τ)h|D ≤ |〈δ0, T ∗(τ)h〉|R |ψ|D ≤ |h(τ)|R |ψ|D

so that

∫ T

0

|B∗1T ∗(τ)h|2D dτ ≤ |ψ|2D
∫ S

0

|h(τ)|2
R
dτ = |ψ|2D|h|2L2(0,S),

and the statement is proven.

(iii) Last we observe that −
∫ t

0
T (t − τ)c(s) dτ is a negative distribution in D′ and by Proposition 2.3

page 270 of Hirsch and Lacombe (1999) is a negative measure on [0, S]. Then, by means of Lebesgue
decomposition theorem (see e.g. Rudin, 1987, Theorem 6.10 page 121), it may be decomposed into a
(negative) part, absolutely continuous w.r.t. the Lebesgue measure on [0, S], and a (negative) singular
part.

As a result of the previous analysis, the measure defined by the right side of (35) has singular part
coinciding with that described in (iii). At the same time, the singular part of the measure defined by the
left side of (35) need be positive, then the singular part on both sides is null. Then for any t ≥ 0, the
term −

∫ t

0
T (τ)c(τ) dτ is a function in L2(0, S), as it is a measure, absolutely continuous w.r.t. the Lebesgue

measure on [0, S], and whose density (by positivity of x(t) and of the first two terms in the right hand side
of (35)), is dominated (in absolute value) by a function in L2 (the sum of such positive terms). The explicit
formula solution when c(·) ∈ L2

loc(0,+∞;L2(0, S)) can be computed by standard calculations. Q.E.D.

Proof of Proposition 3.4. Consider first c in L2
loc(0,+∞;L2(0, S)). By means of (4) one has

〈x(t), ψ〉 = 〈x0, ψ〉 −
∫ s̄

0

∫ t∧s

0

c(t− τ, s− τ) dτ ds+
∫ t∧s

0

∫ s̄

0

c(t− s, τ) dτ ds.

It then suffices a change of variables in the first integral above to derive

∫ s̄

0

∫ t∧s

0

c(t− τ, s− τ) dτ ds =
∫ t

0

∫ s̄

0

c(s, τ) dτ ds =

∫ t

0

∫ s̄

0

c(t− s, τ) dτ ds

and hence 〈x(t), ψ〉 = 〈x0, ψ〉 . The claim for a general c in Ux0
follows by density and by continuity of the

operator S defined in Proposition A.1. Q.E.D.

It is a well known fact (see Bensoussan et al., 2007 Section II.3.1, pages 201-204)8 that if x(t) is a solution
of (9) then it is also a weak solution of the same equation, where by weak we mean that the the left and
right hand sides of (8) are equal when evaluated at any test function p ∈ D2, with D2 defined in (7). Hence
the following proposition holds true.

8More precisely, as indicated at page 204, one has to repeat the construction of the weak solution at page
203, with k ∈ D2 .
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Proposition A.2 Let x be the solution to (9) when x0 ∈ Π, c ∈ Ux0
. Let also T be any finite horizon and

p be any function in D2. Then

{
d
dt
〈x(t), p〉 = 〈x(t), A∗p〉 − 〈c(t), p〉+ 〈δ0, p〉 〈ψ, c(t)〉 , ∀t ∈ (0, T ]

〈x(0), p〉 = 〈x0, p〉 = 1.

Proof of Lemma 3.7 Let φ ∈ C1(0, S;R) be compactly supported in (0, S) (so that φ(S) = 0 and φ ∈ D).
By definition, a stationary couple (x̃, c̃) satisfies

〈x̃, φ〉L2 =

〈
T (t)x̃+

∫ t

0

T (t− s)Bc̃ ds, φ
〉

L2

.

By deriving with respect to t both sides and evaluating at t = 0 one has

0 = 〈x̃, A∗φ〉L2 + 〈Bc̃, φ〉 = 〈x̃, A∗φ〉 − 〈c̃, φ〉 =
〈
x̃, φ′

〉
− 〈c̃, φ〉

as φ(0) = 0 and A∗φ = φ′, which implies that c̃ is the distributional derivative of −x̃. Since in addition c̃
is a positive measure, −x̃ is an almost everywhere increasing function and c̃ is its Stieltjes derivative (see
Theorem 346.1 and the related proof in Ziemer, 2004).
On the other hand, if x ∈ Π, with −x̃ increasing and with Stieltjes derivative c̃, it suffices to show that,

for any φ in D and any t ≥ 0,

(36)
d

dt

〈
T (t)x̃+

∫ t

0

T (t− s)Bc̃ ds, φ
〉

L2

= 0.

We denote by ∂x̃ the Stieltjes derivative of x̃. Since s 7→ [T ∗(t)φ](s) is differentiable, the derivative in (36)
equals

〈x̃, A∗T ∗(t)φ〉L2 + 〈Bc̃, T ∗(t)φ〉 =
∫ S

0

[T ∗(t)φ]′(r)x̃(r)dr− [T ∗(t)φ](0)
∫ S

0

∂x̃(r)+

∫ S

0

[T ∗(t)φ](r)∂x̃(r).

Using the integration by part formula for Stieltjes integrals (see e.g. Hewitt, 1960), and denoting by x̃(0) =
lims→0+ x̃(s) and x̃(S) = lims→S− x̃(s) (we recall that x̃ is monotone), the previous expression is equal to

∫ S

0

[T ∗(t)φ]′(r)x̃(r)dr − [T ∗(t)φ](0)(x̃(S)− x̃(0))

+ [T ∗(t)φ](S)x̃(S) − [T ∗(t)φ](0)x̃(0) −
∫ S

0

[T ∗(t)φ]′(r)x̃(r)dr = 0

since x̃(S) = 0 and [T ∗(t)φ](S) = 0 by definition of T ∗(t) in Section 3.1. Q.E.D.

A.2. Proofs for Section 4

Proof of Proposition 4.2. Note that Aρ 6= ∅ is a consequence of the fact that gρ(·) is continuous and
possibly non-zero only on the compact set [λ, s̄], while (10) implies 0 6∈ Aρ for any ρ ≥ 0. Now letMρA ∈ AρA

and MρB ∈ AρB be arbitrarily chosen.
Now, note that the support function hρ defined in (20) is an exponential function, increasing and convex,

so that ρB < ρA implies hρA is definitively greater than hρB for increasing values of ρ. Hence, hρA(0) =
hρB (0) = 0 and: either 1) hρA(s) > hρB (s) for all s ∈ (0, S], or 2) there exists s̃ ∈ (0,+∞) such that
hρA(s̃) = hρB (s̃), hρA(s) < hρB (s) for all s ∈ (0, s̃), and hρA(s) > hρB (s) for all s ∈ (s̃,+∞). Nonetheless,
the former never takes place, as gρB is maximal at MρB implies

hρA(MρA)− hρB (MρA) = (eρBMρB − 1)(gρB (MρA)− gρB (MρB )) ≤ 0

so that

hρA(MρA) ≤ hρB (MρA), with MρA > 0.

As a consequence, MρA ∈ (0, s̃].
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Similarly, from the maximality of gρA at MρA , one derives hρA(MρB ) ≥ hρB (MρB ), which implies s̃ ≤ S
and MρB ∈ [s̃, S]. Since the selections MρA and MρB were arbitrarily chosen in AρA and AρB respectively,
the first assertion in (i) is proven. If in addition f is differentiable at s̃, assume by contradiction that
AρA ∩ AρB = {s̃}. Then by Remark 4.3 f(s̃) = hρA(s̃) = hρB (s̃), and h

′
ρA(s̃) > h′ρB (s̃) which contradicts

the fact that the graph of f lies underneath the graph of both support functions.
Next we prove (ii). The fact that the selection ρ 7→ Mρ is nonincreasing is a direct consequence of (i).

Now note that from MρA ≤MρB and the convexity of hρB (s) (see also Figure 1) follows

(37)
hρB (MρB )

MρB

≥ hρB (MρA)

MρA

while Remark 4.1 implies

(38) f(MρB ) = hρB (MρB ) and hρB (MρA) ≥ f(MρA)

so that (37) and (38) give
f(MρB )

MρB

≥ f(MρA)

MρA

.

The last claim in (ii) is a consequence of (i) and of countability of the discontinuities of a decreasing
function (see e.g. Chung, 2001 page 4). The limit m0 in (iii) exists and is contained in [0, S], as any selection
Mρ in Aρ is nonincreasing and there contained. Note that by continuity of f any Aρ necessarily has a
positive minimum, and that Aρ ∩ A0 contains at most one element, which implies m0 ≤ minA0. Suppose
by contradiction that m0 < minA0. Then h0(s)− f(s) is always strictly positive on [λ,m0]. Moreover, if we
define

(39) kρ(s) =
f(minA0)

eρminA0 − 1
(eρs − 1).

we may observe that: (i) hρ(s) ≥ kρ(s), and (ii) kρ(s) − h0(s) converges uniformly to 0 on [λ,m0], when
ρ→ 0. Hence there exists ρ̂ small enough such that,

(40) hρ̂(s) ≥ kρ̂(s) > f(s)

for any s ∈ [λ,m0]. This implies Aρ̂ ⊂ (m0,minA0], a contradiction. Q.E.D.

Prior to demonstrate some of the theorems in Section 4 we need a series of preliminary results, which we
state and prove hereby.

Lemma A.3 Given a, b ∈ [0, S], a ≤ b, one has:

(41) T (t)χ[a,b] = χ[a+t,(b+t)∧S], and

∫ t

0

T (τ)δb dτ = χ[b,(b+t)∧S]

Proof: The first assertion follows from

T (t)χ[a,b](s) = χ[a,b](s− t)χ[t,S](s) = χ[a+t,b+t](s)χ[t,S](s) = χ[a+t,(b+t)∧S](s).

For the second, note that, if φ is any test function in D, one has 〈δb, T ∗(τ)φ〉 = φ(b+ τ) if b+ τ ≤ S, and 0
otherwise, so that, by changing the variable in the integral with σ = τ + b, one obtains

〈∫ t

0

T (τ)δb dτ, φ

〉
=

∫ t

0

〈δb, T ∗(τ)φ〉 dτ =
∫ (b+t)∧S

b

φ(σ) dσ = 〈χ[b,(b+t)∧S], φ〉

which implies the claim. Q.E.D.

Lemma A.4 Given g ∈ L2
loc(0,+∞;R), a ∈ [0, S), one has, for any t ∈ [0, S − a], s ∈ [0, S]:

(42)

(∫ t

0

g(τ)T (t− τ)δa dτ
)
(s) = χ[a,t+a](s)g(t+ a− s).

Proof: The proof is a consequence of the previous Lemma and arguing by density after applying (42) to
approximating step-functions. Q.E.D.
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Lemma A.5 Assume ρ ≥ 0, and xρ, cρ pρ are defined by means of (22) (23) (26) respectively. Assume
(10) (11). Consider any trajectory x of system (8) starting at x0 ∈ Π, and driven by a control c ∈ Ux0

. Then,
for all t ≥ 0

(43) 〈c(t)− cρ, f − p〉 ≤ ρ 〈x(t)− xρ, pρ〉 − 〈x(t)− xρ, A∗pρ〉 .

Proof: From Proposition 4.2 we derive that there exists Mρ in the nonempty set Aρ. Moreover, by
definition of pρ one has that f(s) ≤ pρ(s) for all s ∈ [0, s̄], and f(Mρ) = pρ(Mρ), so so that for all positive
measure c ∈ D′, one derives 〈f, c〉 ≤ 〈pρ, c〉 with the equality holding at c = γδMρ , with γ any nonnegative
constant. In particular, for γ = 1, one has

(44) 〈c(t), f − pρ〉 ≤ 0 = 〈cρ, f − pρ〉, ∀t ≥ 0

Now we recall that by means of Proposition 3.3, x(t) lies in L2(0, S), so that the duality pairing with x(t)
coincides with scalar product with x(t) in L2(0, S), moreover A∗pρ = pρ

′ so that

(45) −ρ 〈x(t), pρ〉+ 〈x(t), A∗pρ〉 = −ρ
∫ s̄

0

pρ(s)x(t, s) ds+

∫ s̄

0

pρ
′(s)x(t, s) ds =: ∆(ρ).

When ρ > 0, we have , supp x(t) ⊂ [0, s̄], pρ
′(s) = ρηρe

ρs on [0, s̄], and Proposition 3.4 holds, so that

(46) ∆(ρ) = ρηρ

∫ s̄

0

x(t, s) ds = ρηρ

∫ s̄

0

x0(s) ds = ρηρ

that is, the quantity on the left of (45) hand side is constant for all trajectories (i.e., for all admissible
controls c, and all initial data x0 covering a unitary area). In particular the property holds true when x is
set equal to xρ. Then the claim follows by means of (44), (45) and (46). We proceed similarly for the case
ρ = 0, as this time p′0(s) = β0 on [0, s̄], so that

∆(0) =

∫ s̄

0

p′0(s)x(t, s) ds = β0

∫ s̄

0

x(t, s) ds = β0,

which leads to the same conclusion. Q.E.D.

Corollary A.6 In the assumption of Lemma A.5, and for u satisfying (11), set βρ := f(Mρ)/Mρ, and
αρ := u′ (βρ). Then for all t ≥ 0, the value-loss function defined in (27) satisfies

θρ(c(t), x(t)) ≡ u(βρ)− u (〈c(t), f〉) + αρ

[
ρ 〈x(t)− xρ, pρ〉 − 〈x(t), A∗pρ〉+ 〈c(t), pρ〉

]
≥ 0

Proof: For all c in D′, define

h : D′ → R, h(c) := u(〈c, f〉)

so that h(cρ) = u(〈cρ, f〉) = u(βρ), moreover h is differentiable with h′(c) = u′(〈c, f〉)f ∈ D, h′(cρ) =
u′(βρ)f = αρf . Since h is concave, we have u(〈c, f〉) − u(βρ) ≤ αρ 〈c− cρ, f〉, for all c ∈ D′. Then Lemma
A.5 implies

u(〈c(t), f〉) ≤ u(βρ) + αρ

[
〈c(t)− cρ, pρ〉+ ρ 〈x(t)− xρ, pρ〉 − 〈x(t)− xρ, A∗pρ〉

]
,

and, to complete the proof, we need to show that −〈cρ, pρ〉+ 〈xρ, A∗pρ〉 = 0. This holds true when ρ > 0 as

−〈cρ, pρ〉+ 〈xρ, A∗pρ〉 = − ηρ
Mρ

(
eρMρ − 1

)
+
ρηρ
Mρ

∫ Mρ

0

eρs ds = 0.

When instead ρ = 0, the claim follows from

(47) 〈xρ, A∗p0〉 =
∫ s̄

0

x(t, s)β0ds = β0 = 〈cρ, p0〉.

Q.E.D.
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Remark A.7 Note that the proofs of the previous results remain true when cρ is replaced by a positive
multiple γδMρ of the Dirac’s delta at Mρ. If moreover ρ = 0, (43) holds true for a general initial datum
x0 in place of xρ. Indeed 〈x,A∗p0〉 = β0 for all x ∈ L2(0, S) having support in [0, s̄] and unitary extension∫ s̄

0
x(s)ds = 1. We summarize these facts in the following generalized version of Lemma A.5 for the case

ρ = 0. �

Corollary A.8 Let be ρ = 0. Consider any trajectory x(t) starting at x0 ∈ Π and driven by a control
c ∈ Ux0

. Then, for all t ≥ 0, γ ≥ 0,

〈c(t)− γδM0
, f − p0〉 ≤ − 〈x(t)− x0, A∗p0〉 .

Corollary A.9 In the assumption of Corollary A.6

(48) UT (cρ)− UT (c) ≥ αρ

(
〈xρ − x0, pρ〉 − e−ρT〈xρ − x(T ), pρ〉

)
,

Proof: From Corollary A.6 we derive

u(βρ)− u(〈c(t), f〉) ≥ αρ

[
ρ 〈xρ − x(t), pρ〉 − 〈c(t), pρ〉+ 〈x(t), A∗pρ〉

]
= eρt

d

dt

〈
x(t)− xρ, e−ρtpρ

〉
.

which promptly implies the thesis. Q.E.D.

Lemma A.10 Assume xρ, pρ are defined by means of (22)(26) respectively, and let ρ > 0. Consider any
trajectory x of system (8) starting at xρ, and driven by a control c ∈ Uxρ . Then

lim
T→+∞

∫ T

0

d

dt

[〈
xρ − x(t), e−ρtp

〉]
dt = 0.

Proof: Note that ∫ T

0

d

dt

[〈
xρ − x(t), e−ρtp

〉]
dt = e−ρT 〈xρ − x(T ), pρ〉

so that recalling that x(T ) and xρ are supported in [0, s̄] and that (15) holds, one gets

∣∣∣e−ρT 〈xρ − x(T ), pρ〉
∣∣∣ ≤ e−ρT

∫ S

0

|xρ(s)− x(T, s)||pρ(s)|ds ≤ 2e−ρT ηρ
(
eρS − 1

)
T→+∞−−−−−→ 0

which implies the claim. Q.E.D.

Proof of Proposition 4.4. We need to show that (cρ, xρ) satisfies Definition 3.6. Note that by means of
(6) we have

Bcρ = − 1

Mρ
δMρ + 〈

1

Mρ
δMρ , ψ〉δ0 =

1

Mρ

(
δ0 − δMρ

)

so that, by making use of (41) one obtains

T (t)xρ +

∫ t

0

T (t− τ)Bcρ dτ = 1

Mρ
χ[t,(t+Mρ)∧S] +

1

Mρ

∫ t

0

T (σ)(δ0 − δMρ) dσ

=
1

Mρ
χ[t,(t+Mρ)∧S] +

1

Mρ

(
χ[0,t∧S] − χ[Mρ,(Mρ+t)∧S]

)
=

1

Mρ
χ[0,Mρ] = xρ

which implies the thesis. Q.E.D.

Proof of Theorem 4.5. We make use of Definition 3.5 to show that cρ is optimal. Let UT be defined by
means of (12) and let c be any control admissible at the initial datum xρ, and let x(t) = xxρ,c(t) be the
associated trajectory. Define

(49) Γ(T ) := UT (cρ)− UT (c) + αρ

∫ T

0

d

dt

[〈
xρ − x(t), e−ρtpρ

〉]
dt =

=

∫ T

0

e−ρt[u(βρ)− u (〈c(t), f〉) + αρ

(
ρ 〈xρ − x(t), pρ〉 − 〈x(t), A∗pρ〉+ 〈c(t), pρ〉

)]
dt

−
∫ T

0

e−ρt 〈c(t), ψ〉 〈δ0, pρ〉 dt.
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where the last equality is obtained by applying Proposition A.2. By means of Corollary A.6 the first ad-
dendum in the right hand side is positive, while the second is null, due to the fact that 〈p, δ0〉 = 0. Hence
Γ(T ) ≥ 0, which by means of Lemma A.10 implies

lim inf
T→+∞

(UT (cρ)− UT (c)) ≥ 0,

as required.
Now we assume that Aρ is singleton and that (x̃, c̃) is an optimal stationary couple, and we show that (x̃, c̃)

necessarily coincides with the golden rule. We start by showing that supp(c̃) = {Mρ}. To do so, we prove
that supp(c̃) ∩ [0,Mρ) = ∅ and supp(c̃) ∩ (Mρ, s̄] = ∅. Assume by contradiction that supp(c̃) ∩ [0,Mρ) 6= ∅
and define, for ǫ > 0, the control

(50) cǫ(t)(s) :=

{
(1− ǫ)χ[0,Mρ)(s)c̃(s) + χ(Mρ,s̄](s)c̃(s) + ǫδMρ

∫ t

0
c̃(Mρ − s) ds t ∈ [0,Mρ)

(1− ǫ)χ[0,Mρ)(s)c̃(s) + χ(Mρ,s̄](s)c̃(s) + ǫδMρ

∫Mρ

0
c̃(s) ds t ∈ [Mρ,+∞)

coinciding with c̃ when ǫ = 0.9 One can easily see that that cǫ is admissible at x̃. If we show that (d/dǫ)U(cǫ)
is strictly positive at ǫ = 0 then, for ǫ small enough, U(cǫ) > U(c̃) and c̃ is not optimal:

d

dǫ
U(cǫ)

∣∣∣∣
ǫ=0

=
d

dǫ

(∫ +∞

0

e−ρtu (〈cǫ(t), f〉) dt
)∣∣∣∣

ǫ=0

= u′ (〈c̃, f〉)
(∫ +∞

0

e−ρt

〈
− c̃χ[0,Mρ] + δMρ

[
χ[0,Mρ)(t)

∫ t

0

c̃(Mρ − s) ds

+ χ[Mρ,+∞)(t)

∫ Mρ

0

c̃(s) ds

]
, f

〉
dt

)
= u′ (〈c̃, f〉)

[ ∫ +∞

0

e−ρt 〈−c̃χ[0,Mρ], f
〉
dt+

+

∫ Mρ

0

e−ρtf(Mρ)

(∫ t

0

c̃(Mρ − s) ds
)
dt+

(∫ +∞

Mρ

e−ρtf(Mρ) dt

)(∫ Mρ

0

c̃(s) ds

)]

Integrating with respect to t the first and the third addenda and integrating by parts (see e.g. Hewitt, 1960)
the second, we obtain

(51) = u′ (〈c̃, f〉)
[
− 1

ρ

〈
f, c̃χ[0,Mρ]

〉
+

(
− f(Mρ)

ρ
e−ρMρ

∫ Mρ

0

c̃(s) ds

+
f(Mρ)

ρ

∫ Mρ

0

e−ρtc̃(Mρ − t) dt
)
+
f(Mρ)

ρ
e−ρMρ

∫ Mρ

0

c̃(s) ds

]

= u′ (〈c̃, f〉)
[
− 1

ρ

〈
f, c̃χ[0,Mρ]

〉
+
f(Mρ)

ρ

∫ Mρ

0

e−ρtc̃(Mρ − t) dt
]

= u′ (〈c̃, f〉)
[
− 1

ρ

〈
f, c̃χ[0,Mρ]

〉
+
f(Mρ)

ρ
e−ρMρ

∫ Mρ

0

eρsc̃(s) ds

]

that, recalling (25) and (26), can be rewritten as

= u′ (〈c̃, f〉)
[
− 1

ρ

〈
f, c̃χ[0,Mρ]

〉
+
f(Mρ)e

−ρMρ

ρ

∫ Mρ

0

(
pρ(s)

ηρ(s)
+ 1

)
c̃(s) ds

]

=
u′ (〈c̃, f〉)

ρ

[
−
〈
f, c̃χ[0,Mρ]

〉
+
(
1− e−ρMρ

) 〈
pρ, c̃χ[0,Mρ]

〉
+ f(Mρ)e

−ρMρ
〈
ψ, c̃χ[0,Mρ]

〉]

=
u′ (〈c̃, f〉)

ρ

[〈
pρ − f, c̃χ[0,Mρ]

〉
+ e−ρMρ

〈
f(Mρ)ψ − pρ, c̃χ[0,Mρ]

〉]
.

Since u′ > 0 and pρ ≥ f , the previous expression is greater than

u′ (〈c̃, f〉)
ρ

[
e−ρMρ 〈f(Mρ)ψ − pρ, c̃〉

]
> 0

9 Since x̃ is decreasing (and of bounded variation), then c̃ = −∂x is a (positive) Radon measure. For this
reason the integrals appearing in (50) need to be interpreted as Lebesgue-Stieltjes integrals (see e.g. Ash,

2000 Section 1.5 page 35), more precisely
∫Mρ

0
c̃(s) ds =

∫Mρ

Mρ−t
∂x̃(s) and

∫ t

0
c̃(Mρ − s) ds =

∫Mρ

0
∂x̃(s).
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where the strict positivity of the last inequality follows from

pρ(s) ≥ f(Mρ), ∀s ∈ [0,Mρ]; pρ(s) < f(Mρ), ∀s ∈ [0,Mρ); supp(c̃) ∩ [0,Mρ) 6= ∅.
By a similar argument one may prove that, if supp(c̃) ∩ (Mρ, s̄] 6= ∅, then (x̃, c̃) cannot be optimal as well,
so that necessarily supp(c̃) = {Mρ}. Since the only probability measures whose support is {Mρ} are of type
c̃ = αδMρ , for some real number α ≥ 0, x̃ is in Π, if and only if α = 1/Mρ. Then c̃ = cρ defined in (23) and
then that x̃ = xρ defined in (22), as we were meant to prove. Q.E.D.

Proof of Remark 4.6. By linearity, x̃ satisfies Definition 3.6 and hence is a stationary program. What
is left to show is that (c̃, x̃) is optimal. Let c be any control admissible at x̃ and let x be the associated
trajectory. Then using concavity, optimality of ciρ and (49), one gets

lim inf
T→+∞

(UT (c̃)− UT (c)) ≥
n∑

i=1

λi lim inf
T→+∞

(
U(ciρ)− UT (c)

)
≥ 0.

Q.E.D.
Proof of Lemma 4.8. It is straightforward from definition that x̂ is Mρ-periodic. Then we need to show
that x̂ solves (30), more precisely that

(52) 〈x̂(t)− T (t)x0, ϕ〉 =
〈∫ t

0

T (t− τ)Bx̂(τ,Mρ) δMρdτ, ϕ

〉
, ∀ϕ ∈ D.

Since x̂ is Mρ-periodic, we may assume t ∈ (0,Mρ). We note that 〈T (t)x0, ϕ〉D′,D =
∫ S

t
x0(s − t)ϕ(s) ds

while

〈x̂(t), ϕ〉D′,D =

∫ S

0

x̂(t, s) ϕ(s)ds =

∫ M

t

x0(s− t)ϕ(s) ds+
∫ t

0

x0(s+M − t)ϕ(s) ds

so that the left hand side in (52) may be rewritten as follows

(53) 〈x̂(t)− T (t)x0, ϕ〉D′,D = −
∫ S

M

x0(s− t)ϕ(s) ds+
∫ t

0

x0(M − τ)ϕ(t− τ) dτ

On the other hand x̂(t,M) = x0(M − t), ĉ(t) = x0(M − t)δMρ , and
〈
δMρ , ψ

〉
= ψ(M) = 1 so that

Bx̂(τ,Mρ) δMρ = x̂(τ,Mρ) δMρ+
〈
x̂(τ,Mρ) δMρ , ψ

〉
δ0 = x0(M − t)(δ0 − δMρ)

and the right hand side in (52) is

∫ t

0

〈
Bx̂(τ,Mρ) δMρ , T

∗(t− τ)ϕ
〉
dτ =

∫ t

0

x0(M − t)
〈
(δ0 − δMρ), T

∗(t− τ)ϕ
〉
dτ

=

∫ t

0

x0(M − t) ([T ∗(t− τ)ϕ] (0)− [T ∗(t− τ)ϕ] (Mρ)) dτ

=

∫ t

0

x0(M − τ)ϕ(t− τ) dτ −
∫ t

M+t−S

x0(M − τ)ϕ(t− τ +M) dτ

which is equal, by means of a change of variables, to the right hand side in (53). Q.E.D.

Proof of Lemma 4.11. Recalling that x̂ is periodic of period Mρ, and that (Lemma 4.8 ) x̂(t,Mρ) =
x0(Mρ − σ(t)), one has 〈ĉ(t), f〉 = x̂(t,Mρ)f(Mρ) = f(Mρ)x0(Mρ − σ(t)), so that, once set n = [T/Mρ], by
suitable changes of variables we have (note that if T < Mρ then the first sum is null)

UT (ĉ) =

n−1∑

i=0

e−ρiMρ

∫ Mρ

0

e−ρtu (f(Mρ)x0(Mρ − t)) dt+ e−ρnMρ

∫ T−nMρ

0

e−ρt u (f(Mρ)x0(Mρ − t)) dt

=
1− e−nρMρ

eρMρ − 1
Uρ

1 + e−ρ(n+1)MρUρ
2 (T )

When ρ = 0, similarly

UT (ĉ) =

n−1∑

i=0

∫ Mρ

0

u ( f(Mρ)x0(Mρ − t)) dt+
∫ T−nMρ

0

u (f(Mρ)x0(Mρ − t)) dt = nU0
1 + e

−ρMρU0
2 (T )

Q.E.D.
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A.2.1. Optimality and good controls

In order to prove Proposition 4.14, we need some preliminary results, contained in the following lemmata.

Lemma A.11 Assume (10) and (11) are satisfied. Let T > 0. Then there exists a positive constant BT

depending on T (and not depending on c and x0), such that

UT0
(c) ≤ BT , ∀T0 ≤ T, ∀x0 ∈ Π, ∀c ∈ Ux0

Proof: We prove the assertion for ρ = 0, as for ρ > 0 the result holds a fortiori. Let x(t) be the trajectory
starting at an initial datum x0 ∈ Π and driven by a control c ∈ Ux0

. Set ε := min {λ, S − s1}, where s1 is
that in (5), and consider a function φ ∈ C1([0, S];R) such that φ(s) = 1 for all s ∈ [0, ε/2], φ(s) = 0 for all
s ∈ [ε, S], and φ′(s) ≤ 0 for all s ∈ [0, S]. Note that ψ ≥ φ and φ ∈ D, so that making us of Proposition 3.4
and of (9) one has

(54) 〈T (ε/2)x0, φ〉+
∫ ε/2

0

〈c(τ), B∗T ∗(ε/2− τ)φ〉 dτ = 〈x(ε/2), φ〉 ≤ 〈x(ε/2), ψ〉 = 1.

For all τ ∈ [0, ε/2], one defines

φτ (s) ≡ [T ∗(ε/2− τ)φ](s) = φ(s+ ε/2− τ)χ[0,S−(ε/2−τ)](s)

so that B∗T ∗(ε/2− τ)φ = −φτ + 〈δ0, φτ 〉ψ = −φτ + ψ, which implies

〈c(τ), B∗T ∗(ε/2− τ)φ〉 = 〈c(τ), ψ − φτ 〉 ≥ 〈c(τ), ψ − φ〉, ∀τ ≤ ε/2.

Since 〈T (ε/2)x0, φ〉 ≥ 0, from the latter and (54) one derives

∫ ε/2

0

〈c(τ), ψ − φ〉 dτ ≤ 1.

Now the argument is iterated. A consequence of (9) is

x(t) = T (t− r)x(r) +
∫ t

r

T (t− τ)Bc(τ) dτ, 0 ≤ r ≤ τ

which is applied with t = r + ε
2
, r = n ε

2
and n ∈ {0, 1, .., [2T/ε]}, deriving

∫ (n+1) ε
2

n ε
2

〈c(τ), ψ − φ〉 dτ ≤
∫ (n+1) ε

2

n ε
2

〈c(τ), ψ − φ〉 dτ ≤ 1

so that

(55)

∫ T

0

〈c(t), ψ − φ〉 dt ≤
[2T/ε]∑

n=0

∫ (n+1) ε
2

n ε
2

〈
c(τ), χ[λ,s̄]

〉
dτ ≤ 2T

ε
+ 1.

Since u is concave, there exist real constants a and b such that u(q) ≤ a + bq for all q ∈ R
+. Moreover one

can choose b1 such that b ≥ maxs∈[λ,s̄] f(s) so that b(ψ − φ) ≥ f . Then one has

u(〈c(t), f〉) ≤ a+ b 〈c(t), f〉 ≤ a+ b1b 〈c(t), ψ − φ〉

and hence by (55)

UT (c) =

∫ T

0

u(〈c(t), f〉) dt ≤ aT + b1b

(
1 +

2T

ε

)
=: BT ,

with BT is independent of the chosen control and on the initial datum. Since (11) implies UT (c) is increasing
in T , one has UT0

(c) ≤ UT (c) ≤ BT and the claim. Q.E.D.

Remark A.12 Note that for ρ = 0 the value-loss function defined in (27) and in Corollary A.6 satisfies

(56) θ(c) ≡ θ0(c, x) = −[u (〈c, f〉)− u (〈c̄, f〉)− u′(〈c̄, f〉) 〈c− c̄, f〉]
= u (β0) − u (〈c, f〉) + α0 〈c− c̄, p0〉 .

The concavity of u implies θ(c) ≥ 0, with θ(c̄) = 0. Note also that, although evaluated in (27) along the
trajectories of the system, θ is is a well defined real function on D′. �
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Remark A.13 We say that the continuous function ω : R+ × R
+ → R

+ is a local modulus if for all
b > 0, lima→0+ ω(a; b) = 0. Throughout this section we will denote by ω(·; ·) any function having such
properties, or by ω(·), if there is no explicit dependence from a parameter b. Then, given x ∈ Π, (47) implies
α0 〈x,A∗p0〉 = α0β0 so that

θ(c) = u (β0)− u (〈c, f〉) + α0 〈c, p0〉 − α0 〈x,A∗p0〉 .

In particular, given is x0 ∈ Π and a control c ∈ Ux0
, along the associated trajectory we have

(57) θ(c(t)) = u (β0)− u (〈c(t), f〉) + α0 〈c(t), p0〉 − α0 〈x(t), A∗p0〉 .

It is also straightforward that θ : D′ → R is a continuous function, indeed

|θ(c)− θ(c1)| ≤ |u (〈c, f〉)− u (〈c1, f〉) |+ α0|c− c1|D′ |po|D ≤ ωθ(|c− c1|D′)

for some modulus ωθ, for any c, c1 ∈ D′ (note indeed that u is a uniformly continuous function). �
Lemma A.14 Given a good control c(·) ∈ Ux0

then the following limit exists and is finite

Lc := lim
T→∞

∫ T

0

θ(c(t)) dt ∈ [0,+∞).

Proof: Since θ(c(t)) ≥ 0, the function T 7→ ∆T :=
∫ T

0
θ(c(t)) dt is positive and increasing and therefore

the limit exists, and is positive (possibly equal to +∞). Now observe that (57) and Proposition A.2 imply

(58) ∆T = UT (c̄)− UT (c) + α0

∫ T

0

〈c(t), p0〉 − 〈x(t), A∗p0〉 dt

= UT (c̄)− UT (c)− α0

∫ T

0

d

dt
[〈x(t), p0〉] dt = UT (c̄)− UT (c)− α0 〈x(T )− x0, p0〉 .

Recalling that c is good, by definition there exists θ ∈ R such that for all T is UT (c̄)−UT (c) ≤ θ. Moreover,
since x(T )−x0 ∈ L2(0, S), in (58) duality pairing coincides with the scalar product in L2(0, S), and observing
that p0 lies in L

∞(0, S) (i.e. it is a bounded function), with |p0|L∞ ≤ β0S, by means of Hölder inequality
one gets

| 〈x(T )− x0, p0〉 | ≤ |p0|L∞(|x(T )|L1 + |x0|L1) = 2|p0|L∞ ,
so that

∆T ≤ θ + 2α0β0S

and the proof is complete. Q.E.D.

Remark A.15 As a consequence of the previous lemma, for any fixed positive constant A, we have

∫ t

t−A

θ(c(τ)) dτ ≤ ω(1/t)

for a suitable modulus ω, that is, the integral is infinitesimal as t tends to +∞. �

Lemma A.16 For any given x0 and x1 in Π, there exists a control ĉ ∈ Ux0
, denoted with ĉ(·) = ĉ(·;x0, x1, s̄)

that drives the system from x0 to x1 in a time length less or equal to s̄.

Proof: We define

d+(s) := (x0(s)− x1(s)) ∨ 0, d−(s) := (x1(s)− x0(s)) ∨ 0, for s ∈ [0, S],

so that d+(s) (respectively, d−(s)) is strictly positive at those points where x0 is strictly bigger (respectively,
smaller) than x1. In some sense d

+ and d− represent the values that need to be compensated by the choice

of a suitable control. Since
∫ S

0
x0(s) ds =

∫ S

0
x1(s) ds = 1 we have that

J :=

∫ S

0

d+(s) ds =

∫ S

0

d−(s) ds =

∫ s̄

0

d+(s) ds =

∫ s̄

0

d−(s) ds.

where the last equalities derive from the fact that both x0 and x1 are supported in [0, s̄].
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If J = 0, then x0 = x1 and there is nothing to prove. Now assume J > 0. We define, for t ∈ [0, s̄]

(59) e−(t) :=

∫ s̄

s̄−t

d−(τ) dτ.

where e− measures the mass of trees to be compensated, with age in the interval [s̄−t, s̄]. Note that e−(0) = 0,
e−(s̄) = J , and e− is an increasing function. We define also, for t ∈ [0, s̄]

(60) D+(t, s) :=





0, s > s̄

d+(s− t), s ∈ [t, s̄]
d+(s− t+ s̄), s ∈ [0, t).

This function represents the translation with replanting of the exceeding part of the initial forest x0. We
want to prove that the following control satisfies the claim of the lemma in a time length of s̄:

ĉ(t, ·) =
(
x0(s̄− t)− d+(s̄− t)e−(t)

J

)
δs̄ + d−(s̄− t)D

+(t, ·)
J

, t ∈ [0, s̄].

Note that x0, x1 ∈ L2(0, S) imply d+, d− ∈ L2(0, S), D+(t) ∈ L2(0, S) for any t ∈ [0, s̄], and t 7→ D(T )
belongs to C(0, s̄;L2(0, S)). Moreover e− ∈ C(0, s̄), implies ĉ ∈ L2(0, s̄, D′) (in fact, c ∈ L2(0, s̄,R)). 10

One needs to prove that the trajectory x̂(t) associated to the control ĉ(t) satisfies x̂(s̄, s) = x1(s) for all s:

x̂(t) = I1(t) + I2(t) + I3(t) :=

[
T (t)x0 +

∫ t

0

T (t− τ)Bx0(t− τ)δs̄ dτ
]

− 1

J

[∫ t

0

d+(s̄− τ)e−(τ)T (t− τ)Bδs̄ dτ
]
+
1

J

[∫ t

0

d−(s̄− τ)T (t− τ)BD+(τ) dτ

]
.

Recalling the Faustmann solution (see 29), we have I1(s̄) = x0. Regarding I3(t), note that

T (t− τ)BD+(τ) = T (t− τ)
〈
D+(τ), ψ

〉
δ0 − T (t− τ)D+(τ) = Jδ0 − T (t− τ)D+(τ)

so that I3(t) = I31(t) + I32(t) with

I31(t, s) =

∫ t

0

d−(s̄− τ)T (t− τ)δ0 dτ = d−(s̄− t+ s)χ[0,t](s)

where the last equality is derived by means of (42), while

I32(t) = −
∫ t

0

d−(s̄− τ)T (t− τ)D
+(τ)

J
dτ.

Now note that T (t− τ)D+(τ)(s) = D+(τ)(s− t+ τ) if s− t+ τ ≥ 0 and 0 if s− t+ τ < 0, so that the last
expression, evaluated at s, gives

I32(t, s) = − 1

J

∫ t

(t−s)∨0

d−(s̄−τ)D+(τ)(s−t+τ) dτ = − 1

J

∫ t∧(s̄+t−s)

(t−s)∨0

d−(s̄−τ)D+(τ)(s−t+τ) dτ.

By means of the definition of e− and D+(τ) given in (59) (60) respectively, the latter is explicited as follow

I32(t)(s) =





− 1
J

∫ t

t−s
d−(s̄− τ)d+(s− t+ s̄) dτ = − 1

J
d+(s− t+ s̄)

(
e−(t)− e−(t− s)

)
s ∈ [0, t)

− 1
J

∫ t

0
d−(s̄− τ)d+(s− t) dτ = − 1

J
d+(s− t)e−(t) s ∈ (t, s̄]

− 1
J

∫ (s̄+t−s)

0
d−(s̄− τ)d+(s− t) dτ = − 1

J
d+(s− t)e−(s̄+ t− s) s > s̄

10The control ĉ, roughly speaking, acts as follows: (i) the term x0(s̄− t)δs̄ cyclicly cuts and replants at age
0 the trees reaching age s̄ (it is indeed the Faustmann policy for M = s̄); (ii) Note that if at time t the trees
aged s̄ are not enough (i.e. if d−(s̄− t) > 0), one needs to cut more trees in order to reach the level x1(s̄− t).
The term d−(s̄− t)D+(t, ·)/J does the job, taking from those ages where trees are exceeding the final target
x1 and represented by D

+(t) (note that the trees (re)planted at time t are those having age s̄− t at time s̄,
the final time in which we want the forest to have the configuration x1); (iv) The term −d+(s̄− t)e−(t)δs̄/J
takes into account the fact that part of exceeding trees described in (ii) (for which d+ is strictly positive)
were already cut in [0, t), so that one needs only to cut (by means of δs̄) the remaining ones.
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Regarding I2(t), since −Bδs̄ = δs̄ − δ0, we may apply again (42) and derive

I2(t, s) =
1

J

[
d+(s− t)e−(t+ s̄− s)χ[s̄,s̄+t)(s)− d+(s̄+ s− t)e−(t− s)χ[0,t)(s)

]

As a whole

x̂(t, s) =





x0(s) + d−(s̄− t+ s)− d+(s̄− t+ s) e
−(t)
J

if s ∈ [0, t)
x0(s)− d+(s− t) e

−(t)
J

if s ∈ [t, s̄]
0 if s > s̄.

so that at any time t the support of x(t) is in [0, s̄], moreover e−(s̄) = J implies at t = s̄ that

x̂(s̄, s) =

{
x0(s) + d−(s)− d+(s) if s ∈ [0, s̄]
0 if s > s̄

which equals x1(s) by means of the definitions of d
+ and d−. Q.E.D.

Now we are ready to prove that maximal (and, in particular, optimal) controls are good controls.

Proof of Proposition 4.14: Assume by contradiction that the maximal control c∗ is not good, and denote
by x∗ the associated trajectory. Then, given any θ ∈ R, there exists Tθ ≥ 0 with

UTθ
(c∗)− UTθ

(c̄) < −θ

Next we show that Tθ may be chosen arbitrarily large, for instance Tθ > 2s̄, if θ is chosen sufficiently large.
Indeed by means of Lemma A.11 one has supt∈[0,2s̄] |Ut(c

∗) − Ut(c̄)| ≤ B2s̄ so that for θ > B2s̄, we have
UT (c

∗)− UT (c̄) < −θ only for values of T which are greater than 2s̄.
Hence we select θ > 2Bs̄ > B2s̄ and Tθ > 2s̄ and define, with the notation of the previous Lemma, the

following controls: c1(t) = c(t;x0, x̄) stirring the system from x0 to x̄ in time s̄, and c2(t) = c(t; x̄, x∗(Tθ)),
stirring the system from x̄ to x∗(T ) in time s̄ and moreover

c̃(t) =





c1(t) if t ∈ [0, s̄)
c̄ if t ∈ [s̄, Tθ − s̄)
c2(t) if t ∈ [Tθ − s̄, Tθ)
c∗(t) if t ≥ Tθ

We show that c̃ catches up to c∗, so that c∗ cannot be maximal, yielding a contradiction. To do so it is
enough to observe that, for any T ≥ Tθ, one has

UT (c̃)−UT (c
∗) = UTθ

(c̃)−UTθ
(c∗) = Us̄(c̃)−Us̄(c̄)+UTθ

(c̄)−UTθ
(c∗)+

∫ T

T−s̄

[u(〈c̃(t), f〉)−u(〈c̄, f〉)] dt

≥ Us̄(c̃) − Us̄(c̄) + θ + Us̄(c̃(· + T − s̄)) − Us̄(〈c̄, f〉) ≥ θ − 2Bs̄ > 0.

Q.E.D.

A.3. Proofs for Section 5

A.3.1. Linear utility, positive discount

Proof of Theorem 5.1. Consider (31) when u(r) = r. Note that ĉ(t) coincides with cρ when x0 = xρ, so
that (31) applies also with (xρ, cρ) in place of (x

∗, ĉ). If n = [T/Mρ], σ(T ) = {T/Mρ}Mρ then

UT (ĉ)−UT (cρ) = ηρ(1−e−ρnMρ)

∫ Mρ

0

eρτ (x0(τ)− 1/Mρ) dτ+e
−ρ(n+1)Mρ

∫ Mρ

Mρ−σ(T )

eρτ (x0(τ)− 1/Mρ) dτ.

Hence when T → +∞, and once set φ(t) = eρt, we derive

(61) U(ĉ)− U(cρ) = lim
T→+∞

(
UT (ĉ)− UT (cρ)

)
= ηρ〈x0 − xρ, φ〉 = 〈x0 − xρ, pρ〉.
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Now let c be arbitrarily chosen in Ux0
, with x(t) = x(t; c, x0) the associated trajectory. Let T > 0, and note

that Corollary A.9 implies (for u(r) = r, is αρ = 1)

(62) UT (cρ)− UT (c) ≥ −e−ρT〈xρ − x(T ), pρ〉+ 〈xρ − x0, pρ〉 ,

Coupling the previous relation with (61) we derive

UT (ĉ)− UT (c) ≥ ω(T )

for a suitable function ω, ω(T )→ 0 as T → +∞, which implies the thesis. Q.E.D.

A.3.2. Linear Utility, Null discount

Average of a trajectory. Assume x is the trajectory associated to some initial datum x0 and driven by
an admissible control c. We denote by means of xA(t) the average of the trajectory over a time interval [0, t]
that is

(63) xA(t) :=
1

t

∫ t

0

x(s;x0, c) ds.

Lemma A.17 Assume ρ = 0, c ∈ Ux0
∩ L∞(0,+∞;D′) a good control, and x0 ∈ Π. Then

(64)
〈
xA(t), h

〉
→ 〈x̄, h〉 , as t→ +∞ for all h ∈ D.

Proof: The proof is obtained by applying Theorem 9.1.3 in Zaslavski (2006) to the modified objective

functional ŨT (c) =
∫ T

0
u (〈c(t), f〉)−u(〈cρ, f〉) dt, so that controls which are good for ŨT (c) satisfy Hypothesis

(b) of Theorem 9.1.3. Note that the weak convergence derived in Zaslavski (2006) is in our case the weak
convergence described in (64). Note also that, since the control is bounded in D′ and so is the trajectory,
we can modify the functional ŨT (c) outside a ball in D

′ where both are contained in order to verify the
coercivity assumption (1.9) page 260 (although not recalled in the statement of the theorem, it is indeed
needed). Eventually, using the arguments of Corollary A.6 we can see that Assumption 1 page 259 of Zaslavski
(2006) is satisfied and the maximum (there cited as a minimum) is attained by the golden rule couple (x̄, c̄)
(which is true a fortiori for the modified functional). Q.E.D.

Proof of Theorem 5.5. We divide the long proof into several steps.
Claim 1: ĉ is a maximal control. We consider the trajectory x̂ = x(·;x0, ĉ), starting at x0 and driven by the
control ĉ. The control ĉ is good. Indeed, we let T > 0 be arbitrarily fixed, and we apply Lemma 4.11 with
ρ = 0 and u(r) = r both to ĉ and c̄ deriving

UT (ĉ)−UT (c) = f(M)

∫ M

M−σ(T )

(
x0(τ)− 1

M

)
dτ = f(M)

[∫ M

M−σ(T )

x0(τ)dτ −
{
T

M

}]
≥ −f(M)

which implies ĉ is good. If by contradiction ĉ is not maximal, then there exists a control c̃ in Ux0
and some

T̂ , a > 0 such that for all T ≥ T̂

(65) UT (ĉ)− UT (c̃) < −a.

Now assume R ≥ 3T̂ . We integrate on [0, R] and divide by R the left hand side, obtaining

(66)
1

R

∫ R

0

(UT (ĉ)− UT (c̃)) dT =
1

R

∫ T̂

0

(UT (ĉ)− UT (c̃)) dT +
1

R

∫ R

T̂

(UT (ĉ)− UT (c̃)) dT

where the first integral converges to 0 for R→∞ while, for R large enough, the second is smaller than − 5
6
a

as a consequence of (65). Then for a sufficiently large R one has

(67)
1

R

∫ R

0

(UT (ĉ)− UT (c̃)) dT < −2
3
a.

On the other hand, if x̃ is the trajectory starting at x0 and driven by control c̃, and x̃A(t) the respective
average, from Corollary A.9, one has

(68) UT (ĉ)− UT (c̃) ≥
∫ T

0

d

dt
〈x̂(t)− x̃(t), p〉 dt = 〈x̂(T )− x̃(T ), p〉
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so that, integrating on [0, R] and dividing by R, one gets

1

R

∫ R

0

(UT (ĉ)− UT (c̃)) dT ≥
〈
x̂A(R)− x̃A(R), p0

〉
≥ −1

3
a

for a sufficiently large R, as
〈
x̂A(R)− x̃A(R), p0

〉
→ 0, as R→ +∞, in view of (64): a contradiction.

Claim 2: the control ĉ is not optimal. Assume c1 is the control defined in (33), and x1(t, s) ≡ x1(t, s; c1, x0),
the associated trajectory. With reference to the notation there introduced, we assume also (and the reasons
will be clear in a short while) that N is big enough so that f(sN−1) > 0, which is true as f is continuous
and f(M) > 0. Moreover we assume that x0 satisfies the condition

(69)

∫ sN−1

sN−2

x0(r)dr > 0.

In order to prove ĉ not optimal, it is sufficient to show that there exists a > 0 such that

UTn(ĉ)− UTn(c1) = −a, ∀Tn =
M

N
+ nM,with n ∈ N.

At some initial time interval, that is, for t in [0,M/N ], we have

x1(t, s) =
N∑

j=0

x0(sj + s− t)χ[0,t](s) + x0(s− t)
N∑

j=1

χ[sj ,sj+t](s)

Afterwards, the solution becomes periodic of period M, and repeatedly equal to

x1(t, s) =





χ[t−M
N

,t](s)
∑N

j=1 x0(sj−1 + s+ M
N
− t) t ∈

[
M
N
,M
]

χ[0,t−M ](s)
∑N

j=1 x0(sj−1 + s+ N+1
N

M − t)+
+χ[t−M

N
,M](s)

∑N
j=1 x0(sj−1 + s+ M

N
− t) t ∈

[
M,M + M

N

]

(the general formula is obtained by replacing t with ξ(t) = t−
[
M
N

]
M − M

N
in the right hand side). Recalling

that for any t in [0,M/N ], we have x1(t, sj) = x0(sj − t), and that
〈
δsj , f

〉
= f(sj),

UM
N
(c1) =

N∑

j=1

f(sj)

∫ M
N

0

x0(sj − t)dt =
N∑

j=1

f(sj)

∫ sj

sj−1

x0(r)dr.

By means of the periodicity of x1 for t ≥M/N, we then derive

UTn(c1) = UM
N
(c1) + n f(M)

[∫ M

M
N

x1(t,M)dt+

∫ M+M
N

M

x1(t,M)dt

]
.

Note that, for M
N

< t < M , we have x1(t,M) = 0, while, for M < t < M + M
N
, we have x1(t,M) =∑N

j=1 x0(sj−1 +M + M
N
− t) so that

∫ M+M
N

M

x1(t,M)dt =
N∑

j=1

∫ M+M
N

M

x0(sj−1 +M +
M

N
− t)dt =

N∑

j=1

∫ sj

sj−1

x0(r)dr = 1

which implies

UTn(c1) =
N∑

j=1

f(sj)

∫ sj

sj−1

x0(r)dr + n f(M).

The difference between such utility and that yielded by means of the Faustmann policy ĉ is then

(70) UTn(ĉ)− UTn(c1) = f(M)

∫ M

M−M
n

x0(r)dr −
N∑

j=1

f(sj)

∫ sj

sj−1

x0(r)dr = −
N−1∑

j=1

f(sj)

∫ sj

sj−1

x0(r)dr =: −a
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Note that a > 0, as the last term of the sum above is strictly positive in view of (69). As a consequence, ĉ
is not optimal. The proof for the case when (69) is not satisfied is easily obtained by applying a control c2
in place of c1 shaped as follows. More precisely, if

m := max

{
j : 1 ≤ j ≤ N − 1,

∫ sj

sj−1

x0(r)dr > 0

}

(a maximum exists as the forest has positive density and extension 1), we define τ := M
N
(N − 1−m), and

(71) c2(t) = c̄ χ[0,τ ](t) + c1(t− τ)χ[τ,+∞)(t)

that is, the control which coincides with c̄ until the associated trajectory x2 yields a positive integral (with
respect to s) on [sN−2, sN−1], and behaves like c1 afterwards.

Claim 3: an optimal control does not exist. We assume by contradiction that c̃(t) ∈ Ux0
is an optimal

control. Then in particular, given any ε > 0, there exists Tε such that

(72) UT (c̃)− UT (ĉ) ≥ −ε and UT (c̃)− UT (c1) ≥ −ε ∀T ≥ Tε.

On the other hand (70) implies , for a sufficiently small ν ∈ [0,M ] not depending on n, that

UT (c1)− UT (ĉ) ≥ a

2
, ∀T ∈ [Tn, Tn + ν].

from which, if nε ∈ N is such that Tn > Tε for all n ≥ nε, we derive also

(73) UT (c̃)− UT (ĉ) ≥ a

2
− ε, ∀T ∈ [Tn, Tn + ν], ∀n ≥ nε.

We show first that

(74) lim inf
n→+∞

1

Tn + ν

∫ Tn+ν

0

(UT (c̃)− UT (ĉ)) dT ≥ νa

4
.

Indeed
∫ Tn+ν

0
(UT (c̃)− UT (ĉ)) dT = A+Bn + Cn, where A ≡

∫ Tnε

0
(UT (c̃)− UT (ĉ)) dT and in view of (72)

Bn ≡
n−1∑

i=nε

∫ Ti+1

Ti+ν

(UT (c̃)− UT (ĉ)) dT ≥ −ε ν (n− nε)

and in view of (73)

Cn ≡
n∑

i=nε

∫ Ti+ν

Ti

(UT (c̃)− UT (ĉ)) dT ≥
(a
2
− ε
)
ν (n− nε + 1)

so that (recall that Tn = nM +M/N), if ω(1/n) is infinitesimal as n→∞, we have

1

Tn + ν

∫ Tn+ν

0

(UT (c̃)− UT (ĉ)) dT ≥ ν

M

(a
2
− 2ε

)
+ ω(1/n).

Choosing ε ≤ a(2−M/2), and passing to limits we obtain (74).

On the other hand, if we choose γ = x̂(t,M) in Lemma A.8, we make use of Proposition A.2 (note that
that p0(s) = β0sψ(s), 〈δ0, p0〉 = 0, A∗p0(s) = β0χ[0,S](s)) we obtain

〈c̃(t)− ĉ(t), f〉 ≤ 〈c̃(t)− ĉ(t), p0〉 − 〈x̃(t)− x0, A∗p0〉

= − d

dt
〈x̃(t)− x̂(t), p0〉 − 〈x̂(t)− x0, A∗p0〉 = − d

dt
〈x̃(t)− x̂(t), p0〉

where 〈x̂(t)− x0, A∗p0〉 = 0 follows from Remark A.7. Then, for all T, integrating on [0, T ] one derives

(75) UT (c̃)− UT (ĉ) ≤
∫ T

0

d

dt
〈x̂(t)− x̃(t), p0〉 dt = 〈x̃(T )− x̂(T ), p0〉
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Now, we denote by xA(t) the average of the trajectory x, as defined in (63). Integrating on [0, S] both sides
of (75) and dividing by S one has

(76)
1

S

∫ S

0

(UT (c̃)− UT (ĉ)) dT ≤
〈
x̃A(S)− x̂A(S), p0

〉
.

Since ĉ and c̃ are good, by Lemma A.17 one has
〈
x̃A(S)− x̂A(S), p0

〉
S→∞−−−−→ 0, S →∞

which together with (76) contradicts (74). Q.E.D.

A.3.3. Strictly concave utility, null discount

Proof of Theorem 5.9. We set H := L2(0, S), recalling that D →֒ L2(0, S) (with continuous inclusion)
and use this property when necessary without further notice. Since c(t) ∈ L∞(0,+∞;R) we have that
K := sup |x(t)|R < +∞. Let ε > 0 be fixed. We have to prove that there exists t(ε) > 0, such that

(77) i(t) := |x(t)− x̄|H ≤ ε, for all t ≥ t(ε).

Any c ∈ R may be decomposed as follows. We recall that by assumption M is the unique positive maximum
point of f(s)/s (which implies p0(s)− f(s) ≥ 0 for all s ∈ [0, S], and with the equality holding only at s = 0
and s = M). Then, from the continuity of f and for a sufficiently small ξ > 0, there exists ζ(ξ) > 0, with

λ < M − ζ(ξ), such that |s−M | ≥ ζ(ξ) implies p(s)− f(s) ≥ ξ. Note that ζ(ξ)
ξ→0−−−→ 0. Furthermore, since

c is a positive measure with supp(c) ⊆ [λ, S], then

c = cn + cf , with cn = cνξ and cf = c(1− νξ),

where νξ is a [0, 1]-valued smooth cut-off function with νξ(s) ≡ 1 for |s−M | ≤ ζ(ξ)/2 and νξ(s) ≡ 0 when
|s−M | ≥ ζ(ξ). Now, we may assume t > S. As a consequence, in (9) we have T (t)x0(s) = 0 for all s ∈ [0, S],
and T (t− τ)Bc(τ) = 0 for all τ ≤ t− S, so that in (77)

(78) x(t)− x̄ =
∫ t

t−S

T (t− τ)Bc(τ) dτ − x̄ =
∫ t

t−S

T (t− τ)B (c(τ)− c̄) dτ = I1(t, ξ) + I2(t, ξ) + I3(t, ξ),

where

I1(t, ξ) :=

∫ t

t−S

T (t− τ)Bcf (τ) dτ, I2(t, ξ) :=

∫ t

t−S

T (t− τ)B(cn(τ)− |cn(τ)|RδM ) dτ

and I3(t, ξ) :=

∫ t

t−S

T (t− τ)B(|cn(τ)|RδM − c̄) dτ.

In next steps we will estimate the H-norm of I1(t, ξ), I2(t, ξ) and I3(t, ξ).
Step 1: A preliminary estimate. We start by estimating the quantity |cf |D′ . Given x ∈ Π, and c ∈ R, from

Remark A.13 and from the concavity of u follows

θ(c) = θ(c)− θ(c̄) = u(〈c̄, f〉)− u(〈c, f〉) + α0 〈p, c− c̄〉
≥ −α0 〈c− c̄, f〉+ α0 〈c− c̄, p0〉 = α0 〈c− c̄, p0 − f〉 = α0 〈c, p0 − f〉 ≥ α0ξ|cf |R,

as c is positive and 〈c̄, p0 − f〉 = 0. Observe that D →֒ C0([0, S]) with continuous inclusion so that R →֒ D′,
and in particular |cf |D′ ≤ C|cf |R for some fixed positive constant C > 0. Then from the previous inequalities
follows that

(79) |cf |D′ ≤ C|cf |R ≤ C

α0ξ
θ(c), ∀x ∈ Π, ∀c ∈ R.

As observed in Remark A.13, the estimate does not depend on x.
Step 2: Estimate on I1(t, ξ). Note that ‖T (t)‖L(D′) ≤ 1, so that (79) implies

|I1(t, ξ)|H ≤ ‖B‖L(D′)

∫ t

t−S

|cf (τ)|D′ dτ ≤
C‖B‖L(D′)

α0ξ

∫ t

t−S

θ(c(τ)) dτ
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which implies that for some modulus ω1 one has

|I1(t, ξ)|H ≤ ω1(1/t; ξ).

Step 3: Estimate on I2. Given φ ∈ D and any c ∈ R, one has

| 〈c− |c|RδM , φ〉 | ≤ |c|R max
|s−M|≤ζ(ξ)

|φ(s)− φ(M)| ≤ |c|R
∫ M+ζ(ξ)

M−ζ(ξ)

|φ′(s)| ds

≤
√
2ζ(ξ) |c|R

(∫ M+ζ(ξ)

M−ζ(ξ)

|φ′(s)|2 ds
)1/2

≤
√
2ζ(ξ) |c|R|φ|D

which in particular gives, for any τ ∈ [t− S, t],

(80) |cn(τ)− |cn(τ)|RδM |D′ ≤
√
2ζ(ξ) |cn(τ)|R ≤

√
2ζ(ξ) K

and then |cn(·)− |cn(·)||L2(t−S,t;D′) ≤
√
S
√
2ζ(ξ) K. By means of Proposition 3.1 page 212 of Bensoussan

et al. (2007) (whose assumptions were checked in the proof of Proposition 3.3 (ii)), the the L2(t− S, t;D′)-
norm can be estimated by means of the H-norm of the convolution defining I2 so to obtain

|I2(t, ξ)|H ≤ C
√
2ζ(ξ)

√
SK ≤ ω2(ξ)

where C is a constant independent on the control c(·) and ω2 is a modulus (with ω2(ξ)
ξ→0−−−→ 0, uniformly

with respect to t).
Step 4: Estimate on I3(t, ξ). In order to estimate I3(t, ξ) we need to define, besides ξ, some other param-

eters. Since u is strictly convex and differentiable, recalling that α0 = u′(〈c̄, p0〉), β0 = 〈c̄, p0〉 and defining
βη = (1 + η)〈c̄, p0〉 = (1 + η)β0, one may consider γ > 0 and 0 < η < 1 such that

γ = u(β0)− u(βη) + α0ηβ0 > 0.

and moreover

∆ = −[u′(βη)− α0] < 0

since u′ is strictly decreasing. Note that γ as a function of η is strictly increasing and attains the value zero

at η = 0, so that its inverse η(γ) is well defined and enjoys the same property, in particular η(γ)
γ→0−−−→ 0. As

a consequence, ∆ may itself be regarded as a function of γ, with ∆(γ)
γ→0−−−→ 0.

Now we rewrite I3(t, ξ) as the sum of four terms and estimate them separately:

(81) I3(t, ξ) =

∫ t

t−S

T (t− τ)B(|cn(τ)|RδM − c̄) dτ ≡ I31(t, ξ) + I32(t, ξ) + I33(t, ξ) + I34(t, ξ)

=

∫ t

t−S

(
|cn(τ)|R − 1

M
− η − θ(|cn(τ)|RδM )

∆

)
T (t− τ)BδM dτ

+

∫ t

t−S

(
θ(|cn(τ)|RδM )− θ(c(τ))

∆

)
T (t− τ)BδM dτ

+

∫ t

t−S

(
θ(c(τ))

∆

)
T (t − τ)BδM dτ + η

∫ t

t−S

T (t − τ)BδM dτ.

To estimate I34(t, ξ) it suffices to observe that for every we fixed γ,

(82) |I34(t, ξ)|H ≤ ‖B‖|δM |D′Sη =: ω34(γ; ξ)

where ω34 is a local modulus.
Next, to estimate I33(t, ξ) Remark A.15 implies

(83) |I33(t, ξ)|H ≤ ‖B‖|δM |D′
∫ t

t−S

∣∣∣∣
θ(c(τ))

∆

∣∣∣∣ dτ ≤ ω33(1/t; γ, ξ).
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for some local modulus ω33. Then, to estimate I32(t, ξ), we note that

|θ(c(τ))− θ(cn(τ))| ≤ ωθ(|cf |D′) ≤ ωθ ((C/α0ξ)θ(c(τ)))

so that, as a consequence of Remark A.15 for a sufficiently large t, the quantity θ(c(τ)) is infinitesimal, at
least outside a subset of [t− S, t] of arbitrarily small Lebesgue measure, so that one has

∫ t

t−S

|θ(c(τ))− θ(cn(τ))|
∆

dτ ≤ ω̂(1/t; γ, ξ)

for some local modulus ω̂. Moreover, in view of (80) one has

|θ(|cn(τ)|RδM )− θ(cn(τ))| ≤ ωθ(||cn(τ)|RδM − cn(τ)|D′) ≤ ωθ(
√
2ζ(ξ)K)

so that
∫ t

t−S

|θ(|cn(τ)|RδM )− θ(cn(τ))|
∆

dτ ≤ ω̌(γ; ξ),

for some modulus ω̌. Hence, once set ω32 = ‖B‖|δM |D′ (ω̂ + ω̌), one derives

(84) I32(t, ξ) ≤ ω32(1/t; γ, ξ).

We are left with the estimate on I31. By definition of θ(c) and concavity of u

−θ(c) + α0 〈c− c̄, p0〉+ γ − α0η 〈c̄, p0〉 = u (β0)− u (βη) ≤ u′ (βη) 〈c− (1 + η)c̄, f〉

where we used first the definition of θ(c) and the strict concavity of u. Recalling that 〈c̄, p〉 = 〈c̄, f〉 = β0,
we obtain

θ(c) ≥ γ + α0 〈c, p0〉 − α0β0 − α0ηβ0 − u′(βη) 〈f, c〉+ u′(βη)(1 + η)β0

so that, once set the expression above becomes

θ(c) ≥ γ − ηα0∆+
〈
c− c̄, α0p− u′(βη)f

〉
.

For c ≡ |cn(t)|RδM the previous inequality reads

ϕ(τ) := |cn(t)|R − 1

M
− η − θ(|cn(t)|RδM )

∆
≤ 0.

Now note that, as a consequence of (78), step 2 and step 3, (81) (82) (83) (84), Hölder inequality and the
fact that 〈x(t)− x̄, ψ〉 = 0, one has

|〈x(t)− x̄− I31(t, ξ), ψ〉| =
∣∣∣∣
∫ t

t−S

ϕ(τ) 〈T (t− τ)BδM , ψ〉 ds
∣∣∣∣+|〈I1 + I2 + I32 + I33 + I34, ψ〉| ≤ ω31(1/t; γ, ξ),

with ω31 =
√
S(ω1 + ω2 + ω32 + ω33 + ω34). Now since

〈T (t− τ)BδM , ψ〉 = 〈δ0 − δM , T ∗(t− τ)ψ〉 = ψ(t− τ)− ψ(t− τ +M)

the previous estimate may be rewritten as

∣∣∣∣
∫ t

t−S

ϕ(τ)(ψ(t− τ)− ψ(t− τ +M)) dτ

∣∣∣∣ ≤ ω5(1/t; γ, ξ)

By definition of ψ we have 0 ≤ ψ(t − τ) − ψ(t − τ +M) ≤ 1, moreover ϕ(τ) ≤ 0, so that the integrand of
the last equation is always negative. Moreover, from the definition of ψ(s) it is easily shown that on some
interval [t1, t2] ⊆ [0, S] one has ψ(t− τ)− ψ(t− τ +M) ≥ c for a suitable c > 0. As a consequence

c

∫ t2

t1

|ϕ(t− σ)| dσ ≤
∫ t2

t1

|ϕ(t− σ)| |(ψ(σ)− ψ(σ +M))| dσ ≤ ω5(1/t; γ, ξ).
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Now, since the previous equation holds for all t iterating the argument [S/(t2 − t1)] + 1 times, we obtain

∫ S

0

|ϕ(t− σ)| dσ ≤ 1

c

S

(t2 − t1)
ω5(1/t; γ, ξ) = ω4(1/t; γ, ξ).

We are now ready to draw the conclusion. It is sufficient to choose, in order, ξ, γ sufficiently small and t(ε)
sufficiently large to derive from all of the previous steps that t ≥ (ε) implies i(t) ≤ ε, as we intended to
show. Q.E.D.
Proof of Theorem 5.10. In view of Proposition 4.14 it is sufficient that we compare c̄ to good controls.
Indeed for any good control c, Theorem 5.9 implies

lim
T→+∞

∫ T

0

d

dt
[〈x̄− xx̄,c(t), α0p0〉] dt = lim

T→+∞
〈x̄− xx̄,c(T ), α0p0〉 = 0.

so that

liminf
T→∞

(
UT (c̄)− UT (c)

)
= liminf

T→∞

∫ T

0

(
UT (c̄)− UT (c) +

d

dt
[〈x̄− xx̄,c(t), α0p0〉]

)
dt

= liminf
T→∞

∫ T

0

[u (〈f, c̄〉)− u (〈f, c(t)〉)− α0 〈x(t), A∗p0〉+ 〈c(t), p0〉]udt ≥ 0

where the last inequality follows from Corollary A.6. Q.E.D.
Proof of Theorem 5.12 To prove (i) we first build the candidate optimal control c̃ as limit of a suitable
sequence. We consider the quantity

(85) S ≡ sup
c∈U

K,λ
x0

(
limsup

T→+∞
[UT (c)− UT (c̄)]

)
,

(S possibly equal to +∞). Let {cn} be a maximizing sequence in UK,λ
x0

, and let θ be the function defined in
(56). Then for T > 0, we have

(86) UT (cn)−UT (c̄) = −
∫ T

0

(
θ(cn(t)) +

d

dt
α0 〈xn(t), p0〉

)
dt = −

∫ T

0

θ(cn(t)) dt−α0 〈xn(T )− x0, p0〉 .

Since |p0|∞ < +∞ and |xn(t)|L1 = |x0|L1 = 1 then |α0 〈xn(t)− x0, p0〉 | ≤ 2α0|p0|∞, so that, being θ(cn(t))
positive for all t, it may happen either (a) limT→+∞ (UT (cn)− UT (c̄)) = −∞, which we may exclude as
{cn} is a maximizing sequence, or (b) lim infT→+∞ (UT (cn)− UT (c̄)) ≥ −∞, the latter implying cn is a
good control. Note also that from (86) and the positivity of θ follows also

UT (cn)− UT (c̄) ≥ −2α0|p0|∞

implying that S < +∞. Hence with no loss of generality, we may assume that cn are good controls. Note
also that Lemma A.14 and Theorem 5.9 imply that for any good control in UK,λ

x0
, c the following limit exists

and is finite:

lim
T→+∞

(UT (c)− UT (c̄)) = − lim
T→+∞

∫ T

0

(
θ(c(t)) +

d

dt
α0 〈x(t), p0〉

)
dt = −Lc − α0 〈x̄− x0, p0〉 ,

so that (85) implies

(87) S = lim
n→∞

lim
T→+∞

[UT (cn)− UT (c̄)] .

Now, set h > 0 and L2
h([0,+∞);D′) the Hilbert space of all functions φ : [0,+∞)→ D′ such that the norm∫ +∞

0
e−ht|φ(t)|2D′ dt < +∞. It is a tedious but standard proof that UK,λ

x0
is a sequentially weakly compact

subset of L2
h([0,+∞);D′). Hence from {cn(·)} one may extract a subsequence weakly converging to some

c̃(·) ∈ L2
h([0,+∞);D′) and c̃(·) ∈ UK,λ

x0
.

Next we show that c̃ is optimal. Note that

lim inf
T→+∞

(UT (c̃)− UT (c)) ≥ lim inf
T→+∞

[UT (c̃)−UT (c̄)]−limsup
T→+∞

[UT (c)− UT (c̄)] ≥ lim inf
T→+∞

[UT (c̃)−UT (c̄)]−S
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so that it is enough to prove that liminfT→+∞[UT (c̃)−UT (c̄)] ≥ S to derive the positivity of the right hand
side, and the conclusion. We start by proving that

lim sup
T→+∞

[UT (c̃)− UT (c̄)] = S.

By definition of S, the left hand side is smaller than the right hand side, while the reverse inequality is
obtained by observing that c 7→ limsupT→+∞[UT (c) − UT (c̄)] is a concave functional on UK,λ

x0
(note that

UK,λ
x0

is a convex subset of L2
h([0,+∞);D′)) so that passing to limits one obtains

lim
n

lim
T→+∞

[UT (cn)− UT (c̄)] ≤ S.

Note that, since {cn(·)} is a maximizing sequence for the limsup, it is also maximizing for the liminf, more
precisely

sup
c∈U

K,λ
x0

[
lim inf

T→+∞
(UT (c)− UT (c̄))

]
= sup

c∈U
K,λ
x0

[
limsup

T→+∞
(UT (c)− UT (c̄))

]
= S.

Then, arguing as before about concavity of c 7→ liminfT→+∞[UT (c)− UT (c̄)], one derives

lim inf
T→+∞

[UT (c̃)− UT (c̄)] = S

and the conclusion. To prove (ii), let c be a good admissible control, x the associated trajectory, and R > 0:

1

R

∫ R

0

(UT (c)− UT (c̄)) dT =
1

R

∫ R

0

∫ T

0

θ(c(t)) +
d

dt
α0 〈x(t), p0〉 dt dT

=
1

R

∫ R

0

∫ T

0

θ(c(t)) dt dT +
α0

R

∫ R

0

[〈x(T )− x̄, p0〉 − 〈x0 − x̄, p0〉] dT.

On one hand, Lemma A.14 implies the first addendum converges to Lc when R→∞, on the other hand, as
a consequence of Theorem 9.1.3 p. 260 in Zaslavski (2006) (crf. proof of Proposition 5.5 for details)

1

R

∫ R

0

〈x(T )− x̄, p0〉 dT =

〈
1

R

∫ R

0

x(T ) dT − x̄, p0
〉
→ 0, R→∞.

Hence

lim
R→+∞

1

R

∫ R

0

(UT (c)− UT (c̄)) dT = Lc + α0 〈x̄− x0, p0〉 ,

so that the limit exists and is finite. We can now argue as in the proof of part (i) and prove that, given c in

UK,λ
x0

, there exists a control c̃ that maximizes limsupR→+∞
1
R

∫ R

0
(UT (c)− UT (c̄)) dT in UK,λ

x0
. Indeed

lim sup
R→+∞

1

R

∫ R

0

(UT (c̃)− UT (c)) dT

≥ lim sup
R→+∞

1

R

∫ R

0

(UT (c̃)− UT (c̄)) dT − lim sup
R→+∞

1

R

∫ R

0

(UT (c)− UT (c̄)) dT ≥ 0

and this implies limsupT→∞
(
UT (c̃)− UT (c)

)
≥ 0, for all c in UK,λ

x0
, hence c̃ is maximal in UK,λ

x0
. Q.E.D.

Remark A.18 The control that we have proved to be maximal is exactly the one that minimizes

lim
T→∞

∫ T

0

θ(c(t)) dt.


