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INTERNATIONAL BORROWING WITHOUT COMMITMENT AND

INFORMATIONAL LAGS: CHOICE UNDER UNCERTAINTY

GIORGIO FABBRI

Abstract. A series of recent studies in economic growth theory have considered a class
of models of international borrowing where, in the absence of a perfect investment com-
mitment, the borrowing constraint depends on the historical performances of the country.
Thus, a better level of past economic activity gives a higher reputation, thereby increasing
the possibility of accessing the international credit market. This note considers this prob-
lem in a stochastic setting based on the volatility of the internal net capital. We study
how the optimal consumption level and the maximal expected welfare depend on the com-
bined influence of the trajectory of past economic variables and the volatile environment.
In particular, we show how the strength of the history effect and the relative weight of the
historical performance depend on the degree of risk.

Key words and phrases Infinite dimensional dynamic programming, international borrowing,
neutral stochastic differential equation, stochastic growth model.
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1. Introduction

Modeling constraints on access to the international credit market for small or highly
indebted countries is a lively issue at present. A possible approach to address this question
was proposed by Boucekkine and Pintus (2012) based on an intuition of Coen and Sachs
(1986). They relaxed the unrealistic assumption of commitment to investment by considering
the importance of the “historical course” of the economy. In particular they assumed that,
in the impossibility for the debtor country to commit to an investment strategy, the lender
bases its decisions on past investments, and thus the past path of the capital stock.

The no-commitment delay between the past capital measure and the current borrowing
capacity (and thus the current investment possibilities) is the basis of the history effect
emphasized by Boucekkine and Pintus (2012), which allows their model to replicate a series of
macroeconomic instability behaviors, such as growth break and growth reversal phenomena
that are recurrent and well documented (e.g., see Jones and Olken, 2008 or Cuberes and
Jerzmanowki, 2009), and to justify their relationship with the process of financial integration.

Boucekkine et al. (2013) (and a companion paper by Boucekkine et al., 2011) introduced
explicit preferences and optimal saving decisions into the framework of Boucekkine and Pin-
tus’s model, which was originally formulated based on the hypothesis of a fixed exogenous
saving rate à la Solow. In this manner, they studied the welfare implications of financial
globalization in the context of the model. They qualitatively replicated the empirical ob-
servations of Kaminsky and Schmuler (2008), thereby suggesting that financial globalization
can lead to a short-run consumption (and welfare) drop and a long-run gain. In addition,
Boucekkine et al. (2013) emphasized the differential impact of financial integration changing
the historical economic path, where countries with the same initial capital stock but different
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2 G. FABBRI

paths achieve highly variable results after integration into the international financial system,
thereby further demonstrating the importance of history.

In this note, we propose a stochastic version of the model of Boucekkine et al. (2013). In
fact, due to problems of analytical tractability, we employ a constant absolute risk aversion
(CARA) utility function whereas Boucekkine et al. (2013) focused on the constant relative
risk aversion (CRRA) case. Apart from this (and the new stochastic terms), the two models
are identical.

Several determinants of risk need to be considered when a country assesses its borrowing
choices. First, there is a series of exogenous factors related to exposure to international
credit market volatility: as argued, e.g., by Prasad et al. (2007), at least in the early
stages, financial integration is associated with significant increases in the volatilities of both
output and consumption. Second, there is the volatility associated with domestic shocks,
which, as shown by Loayza et al. (2007), has an important role especially in the setting
of the small, typically developing, countries with open economies that we consider in the
present study. In this study, we focus on this second series of phenomena and specifically on
the macroeconomic volatility that affects the structure of production, due, for example, to
production specialization (e.g., see Kraay and Ventura, 2007) or social conflicts (Raddatz,
2007). Thus, the volatility is linked to the level of net capital (capital net of foreign debt)
in our model (see Section 2 for details).

A version of the model without any informational lag was studied by Boucekkine et al.
(2014), whereas we model the absence of commitment to investment à la Boucekkine and
Pintus (2012). A certain number of model predictions, such as the positive effect of volatility
on precautionary saving and then on the long-run growth rate, can be described using the
simpler stochastic one-dimensional model of Boucekkine et al. (2014), but studying the
interaction between the history effect and the risky environment needs to introduce the no-
commitment delay. Thus, we omit the questions that can be answered clearly using the
simpler set-up of Boucekkine et al. (2014), and we focus on those that can only be studied in
the new context: how does the history effect change with the characteristics of the economy
and what is the role of volatility? When is it stronger? Furthermore, does the relative
importance of remote events or more recent facts change in different contexts? In particular,
can we observe some “oblivious” processes?

To answer these questions, we first characterize the optimal planner solution. In Sec-
tion 3, we provide the explicit expression of the optimal consumption in feedback form, we
characterize the optimal capital trajectory as the solution to a suitable stochastic equation
(Theorem 3.2), and we determine the welfare that corresponds to the optimal consump-
tion/saving policy (see Proposition 3.3). These results allow us to consider the structure
of the optimal policy in detail, by decomposing its expression in terms of the contributions
of the present net capital and of the past capital history and by emphasizing the different
weights of different past periods (see Section 3.1). We prove that the total strength of the
history effect is not reduced by the volatile environment. This is an interesting corroboration
of the solidity of the history effect. Is spite of this we show that the relative weights of the
“old” history terms decrease when the environment is more volatile (or in a situation where
individuals are more risk averse), whereas recent events become increasingly important; thus,
the volatility promotes an “oblivious” process.

Similar results have been obtained in economic studies grounded in psychological and
biological research. For example, in the context of memory loss, Hirshleifer and Welch
(2002) observed that “environmental instability causes the value of information to decay,
because information about the past value state becomes less relevant for the current adoption
decision”. However, the main difference is that memory-based behavioral models depend on
bounded rationality (Mullainathan, 2002), where the individuals do not remember the past
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correctly or completely. Conversely here the choice is completely rational: the rational agent
needs to focus more on recent events in a highly volatile environment and to pay less attention
to previous information in order to maximize the future expected utility.

The methodological contribution. Several previous studies used delay differential equations
(i.e., functional differential equations where the variable appears in delayed form1) to model
several economic phenomena, but Boucekkine and Pintus (2012) were probably the first to
introduce an economic model driven by a neutral differential equation (NDE). In the NDE
case, the “past” of the variable and that of its derivative are included in the equation. NDEs
are harder to study than delay differential equations: the typical regularizing properties of
delay differential equations are not valid in the NDE case (e.g., see Hale and Lunel, 1993)
and the asymptotic properties are more difficult to prove. However, because systems driven
by delay differential equations are already infinite dimensional, a fortiori dealing with NDEs
involves working in an infinite-dimensional set-up.

A further advance in terms of technical complexity was considered by Boucekkine et
al. (2011) and Boucekkine et al. (2013), where they had to deal with an optimal control
problem driven by an NDE to study their model. As argued by Kolmanovski and Myshkis
(1999) (particularly in Chapter 14), the use of the maximum principle is problematic in the
NDE case (indeed most previous studies of the control of NDEs consider robust control and
optimal control is very rare). Boucekkine et al. (2011) studied the problem by using the
tools of dynamic programming in infinite dimensions. A similar approach was already used
for simpler cases of models driven by delay differential equations, see, e.g., Fabbri and Gozzi
(2008).

An additional difficulty is considered in the present note. The optimal control problem is
now driven by a stochastic NDE (i.e., the state equation (7)), i.e., an NDE with an extra
stochastic term. This problem is also approached using dynamic programming in infinite
dimensions. Provided that the positivity condition on the net capital trajectory is satisfied,
we can write the value function expression explicitly and characterize the explicit solution
to the problem in closed-loop form (see Theorem 3.2). To the best of our knowledge, this is
the first optimal control problem driven by a stochastic NDE to be solved in the (not only
economic) literature2. The generalization with respect to the deterministic case is not trivial
because the stochastic term in the state equation entails a second order term in the infinite
dimensional Hamilton–Jacobi–Bellman equation (by contrast, only the first order Fréchet
differential appears in the deterministic case) and a stronger regularity is needed to define
the regular solutions. For further details, Appendix A provides the mathematical apparatus
and the necessary proofs.

Structure of the note. This note is organized as follows. In Section 2, we introduce the
model and its main features. Section 3 presents the analytical results and their economic
implications, while Section 4 gives the conclusions of this study. Appendix A contains the
proofs.

1Some examples in various domains are: Asea and Zak (1999) or Bambi (2008) in terms of growth mod-
els with time-to-build during production, d’Albis et al. (2012) in modeling the learning-by-doing process,
Boucekkine et al. (2005) with a vintage capital model, and Feichtinger et al. (1994) with an advertising
model.

2By contrast, there have been several economic models in the form of optimal control problems driven by
stochastic delay differential equations, e.g., see Gozzi et al. (2009), Federico and Tankov (2014), and Fabbri
and Federico (2014). However, as in the deterministic case, they are more tractable than optimal control
problems driven by stochastic NDEs due to the absence of the delayed derivative term.
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2. The model

We consider a small open economy with an aggregate AK production function, where
K(t) is the capital input at time t and A is the level of technology. At each time point, the
country can borrow on the international credit market at a fixed and exogenous interest rate
r.

We denote by δ the depreciation rate of the capital, C(t) and D(t) are the level of the
aggregate consumption and the stock of net foreign debt at time t, respectively, and N(t) is
noise (as specified below) that perturbs the economy. We assume that the evolution of the
variables satisfies the following equation

(1) K̇(t)− Ḋ(t) = AK(t)− δK(t)− rD(t)− C(t) +N(t).

Excluding the noise N , this is simply the deterministic budget constraint of the economy
described by Boucekkine et al. (2013).

Following Boucekkine and Pintus (2012) and Boucekkine et al. (2013), and in the spirit
of Cohen and Sachs (1986), we assume that the borrowing capacity of the country depends
on the past performance of the economy and particularly that for any t ≥ 0,

(2) D(t) = λK(t− τ),

for some positive exogenous constant (commitment-delay) τ > 0 and some credit multiplier
λ ∈ [0, 1).

We define

(3) S(t) := K(t)−D(t)

as the net capital of the country: the capital net of foreign debt. Of course, by using (2) in
(3), we obtain

(4) S(t) = K(t)− λK(t− τ).

As mentioned in the introduction, we assume that the noise N(t) is associated with the
net capital level. In particular, similar to Boucekkine et al. (2014), we assume that N(t) has
the form

(5) N(t) :=
√

γS(t)
dW (t)

dt
,

where W (t) is the standard Brownian motion defined on a probability space (Ω,F ,P), which
generates the filtration {Fs}s≥0. Setting the parameter γ > 0 allows us to select the strength
of the volatility in terms of the net capital. From (4) and (5), we obtain

(6) N(t) =
√

γ(K(t)− λK(t− τ))
dW (t)

dt

and by using (2) and (6) in (1) we obtain the equation that describes the evolution of the
economy after the consumption process C(·) has been selected:
(7)














d(K(t)− λK(t− τ)) = [(A− δ)K(t)− rλK(t− τ)− C(t)] dt

+
√

γ(K(t)− λK(t− τ)) dW (t)
dt dW (t)

K(s) = KI(s) for all s ∈ [−τ, 0].

As emphasized in the introduction, (7) is an NDE. Indeed, in the expression of K̇(t) described
using this relation, the past of the variable K(t) appears in the form K(t− τ), as well as a

term that depends on the past of the derivative of K, i.e., K̇(t−τ). In fact, (7) is a stochastic

NDE since the stochastic term
√

γ(K(t)− λK(t− τ)) dW (t)
dt dW (t) is also included.
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Similarly to the case of delay differential equations, we have to consider a whole function as
an initial datum, KI(s) for s ∈ [−τ, 0], which is the whole “history” of the variable K in the
interval [−τ, 0]. For technical reasons we only consider the continuous (and deterministic)
initial data KI : [−τ, 0]→ R.

After introducing the non-standard equation that describes the evolution of the capital
stock, we complete the model in a highly classical manner by assuming that the planner
selects the aggregate consumption process C(t) in order to maximize the following welfare
functional

(8) J(C(·)) := E

[
∫ ∞

0
e−ρt

(

−e−ηC(t)
)

dt

]

,

where η > 0 is a fixed parameter that represents the Arrow–Pratt absolute risk aversion
coefficient. As highlighted in the introduction, we work with CARA preferences instead of
the CRRA case to obtain a closed-form solution to the optimal control problem. However,
Appendix A shows that treating this case is still non-trivial.

Since its square root appears in (7), we need to guarantee the positivity of the net cap-
ital S(t) along the admissible trajectories (in fact the strict positivity because we want to
guarantee the uniqueness of the solution of (7), see Appendix A). Thus, we define the set of
admissible consumption processes as:

UKI
:=

{

C(·) : [0,+∞)× Ω→ R :
C(·) is F t − progressively measurable
and S(·)remains strictly positive

}

.

We denote by

(9) V (KI) = sup
C(·)∈UKI

J(C(·))

the value function of the problem, which measures the social welfare when the planner follows
the optimal policy.

If we select τ = 0, as a special case (apart from a normalization of the parameters), we
obtain the exact model studied by Boucekkine et al. (2014). However, they did not consider
delayed terms and this was reduced to a standard one-dimensional stochastic optimal control
problem. In particular, during the evolution of the economic system described by Boucekkine
et al. (2014), there was no role for the value of the capital in the interval [−τ, 0) and they
only needed its initial value K(0).

3. Solution of the model and the results

First, we characterize the solution of the optimal control problem of the planner, i.e.,
maximizing (8) subject to (7). Later, we consider the implications of the results. All of the
proofs are provided in Appendix A, which also gives the Hilbert space set-up that we use to
deal with the problem.

We start with the following lemma by introducing the notations used to describe the
solution of the problem. First, we characterize the constant ξ̄.

Lemma 3.1. Assume that

(10) A− δ − r > 0

and

(11) λ < 1,
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then the equation

(12) ξ =
−(A− δ)e−ξτ + rλ

(

1
2γ + 1

η

)

(e−ξτ − λ) η

has a unique negative solution ξ̄. Moreover, ξ̄ is a strictly increasing function of γ, η, r, and
δ, and a strictly decreasing function of A.

Both the conditions (10) and (11) (which are the same as those used by Boucekkine et al.,
2014) are “technical”: we cannot solve the problem if they are violated. Nevertheless, they
are verified with reasonable choices of the parameters. Given that they are satisfied and that
we can ensure the existence of ξ̄, we introduce the following notations:

a0 := −ξ̄

and

(13) h̄ := a0
(A− δ − r)λ

ea0τ − λ
.

We observe that a0 and h̄ are positive.

We give the solution of the model in the following two theorems. In the first theorem, we
characterize the optimal consumption as a (feedback) function of the state of the problem,
i.e., the path of the capital in the last period τ . By using this expression in the state equation
(7), we obtain a stochastic NDE, its unique solution is the optimal trajectory of the capital
for any t ≥ 0.

Theorem 3.2. Assume that (10) and (11) are verified. Provided that the corresponding
trajectory of S remains strictly positive, the optimal control for the problem (7) - (8) can be
expressed in feedback form as follows:

(14) C = φ(K),

where

(15) φ(K) =
ρ

a0
−

1

η
+

1

η

[

(K(0)− λK(−τ))a0 +

∫ 0

−τ

h̄eξ̄sK(s) ds

]

.

Moreover, under the same assumptions, the optimal trajectory of K is the only solution of
the following stochastic neutral differential equation:
(16)






















d(K(t)− λK(t− τ)) =

[

(A− δ)K(t)− rλK(t− τ)−
ρ

a0
+

1

η

− 1
η

[

(K(t)− λK(t− τ))a0 +
∫ 0
−τ

h̄eξ̄sK(t+ s)
]

]

dt+
√

γ(K(t)− λK(t− τ)) dW (t)

K(s) = KI(s) for all s ∈ [−τ, 0].

In the following theorem, we characterize the value function of the problem. It is the
supremum (indeed the maximum) of the (welfare) functional (8) by varying the consumption
process among all the admissible consumption processes.

Proposition 3.3. Under the same hypothesis as Theorem 3.2, the social welfare obtained
by the planner who implements the optimal consumption policy (i.e., the value function V

of the optimization problem (7) - (8)) can be expressed as an explicit function of the initial
history of the capital path. More precisely, if we introduce

β̄ :=
−1

ξ̄
exp

(

ρ

ξ̄
+ 1

)

> 0,
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V is given by

(17) V (KI) = −β̄ exp

(

−(KI(0)− λKI(−τ))a0 −

∫ 0

−τ

h̄eξ̄sKI(s)

)

.

The optimal trajectory of the capital is given by the solution of (16) and it then has
a complex behavior. Indeed, already in the nonstochastic case (i.e., if we take γ = 0), the
optimal K is characterized as the solution of an NDE and an important transitional dynamic
then arises (see Boucekkine et al., 2011, 2013). Note that we are working with a continuous
and deterministic initial datum KI , thus (17) is well defined.

V (KI) depends on the initial datum KI in terms of the expression

(18)

(

−(KI(0)− λKI(−τ))a0 −

∫ 0

−τ

h̄eξ̄sKI(s)

)

.

It allows us to separate, in the expression of the optimal feasible welfare, the weight of
different past points of the historical capital path. Formally, this does not differ greatly
from the expressions that appear in the value functions of various models driven by delay
differential equations (e.g., see Fabbri and Gozzi, 2008; or Boucekkine et al., 2010) but, if we
compare (18) with the corresponding expressions in Fabbri and Gozzi (2008) or Boucekkine
et al. (2010), we can see that there is a specific role for the value of the past capital at
time −τ . This is attributable to the NDE nature of the dynamics of our economy. From an
economic viewpoint, this is not too surprising because given (4), the term KI(0)− λKI(−τ)
represents the initial value of the net capital.

3.1. The effect of the volatility on the memory effect. At time t, consider the expres-
sion of the optimal consumption in feedback form given by (15), where the dependence on
the state K is again given in terms of

(19) (K(t)− λK(t− τ))a0 +

∫ 0

−τ

h̄eξ̄sK(s+ t) ds

= a0

[

(K(t)− λK(t− τ)) + (A− δ − r)λ

∫ 0

−τ

eξ̄s

e−ξ̄τ − λ
K(s+ t) ds

]

.

Due to (4), this can be rewritten, with the exception of the common factor a0, which does
not affect the relative weights of the various terms, as

(20)

[

S(t) + (A− δ − r)λ

∫ 0

−τ

eξ̄s

e−ξ̄τ − λ
K(s+ t) ds

]

=: S(t) + H (t).

This depends on two elements: the net capital S at time t and a weighted integral of the
path of the capital stock in the interval [t − τ, t], that we denote by H (t). The past path
of the economy influences the current optimal choices only through the value of H (t) and
we can use this expression to understand the strength of the history effect and the relative
weight of each point of the past history in determining the optimal policy.

Let us analyze in detail the structure of (20). The information about the present state of
the economy is contained in the variable S(t); its weight in the whole expression, equal to
its multiplicative coefficient, is 1. The weight given to the (information about the) stock of

the capital at time t + s, where s ∈ [−τ, 0), is (A − δ − r)λ eξ̄s

e−ξ̄τ−λ
ds so the total weight of

the information concerning the past behavior of the economy is

(A− δ − r)λ

∫ 0

−τ

eξ̄s

e−ξ̄τ − λ
ds =

(A− δ − r)λ

e−ξ̄τ − λ

(

1

ξ̄

(

1− e−ξ̄τ
)

)

=: I.
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This is the measure of the strength of the history effect. One can easily see, computing the
derivative of such an expression, that, as long as the term (A− δ − r) remains positive, I is
increasing in ξ̄. Since the parameters γ and η influence the expression of I only through the
value of ξ̄, we can conclude, thanks to Lemma 3.1, that I is increasing in γ and η so that the
global history effect is not compromised by the introduction of the stochastic term; on the
contrary its role tends to augment when the volatility of the system (or the risk aversion)
rises.

Digging deeper we can understand how the importance of different past periods varies
when we change the parameters γ and η. As we observed, the weight given at time t to
the information (i.e. the value of the capital stock) related to the period t − s is (A − δ −

r)λ eξ̄s

e−ξ̄τ−λ
ds. This means that the way different past times contribute to the history effect

and then to I depends on the discounting term eξ̄s and then on the value of ξ̄: the higher ξ̄
the higher the relative importance of recent time periods. We know, from Lemma 3.1, that ξ̄
is increasing in the volatility parameter γ and the absolute risk aversion η; we can conclude
that when they increase, the relative weights of the “old” historical terms in determining the
value of H (t) in (20) decrease, whereas the recent events become increasingly important.

To confirm this fact, we can also consider the variation in the weights of different terms of
the capital stock path relative to the present net capital. For a fixed s ∈ [−τ, 0], the term (A−

δ− r)λ eξ̄s

e−ξ̄τ−λ
is increasing in ξ̄ if s ∈

(

−τ + λeξ̄τ , 0
]

and decreasing if s ∈
[

−τ,−τ + λeξ̄τ
)

,

thus if we increase γ or η the older events loose importance also compared with S(t), the
variable that describes the present state of the economy. So in a more volatile environment
(or in a situation where the individuals are more risk averse) the older history decreasingly
determines the optimal present decisions and the optimal policy depends increasingly on the
present state of the system and recent events.

4. Conclusions

Based on an idea proposed by Coen and Sachs (1986), Boucekkine and Pintus (2012) first
introduced a model where, in the absence of investment commitment, the debt possibilities
of a country depend on its past capital path. Under this assumption, they identified the
roles of historical performance and trends in the globalization process, where countries with
the same initial capital but different paths are affected in diverse ways by their integration
in the international financial market. Boucekkine et al. (2013) studied the “neoclassical”
counterpart of this model by considering the effect of the historical course on the optimal
policy and welfare.

In this note, we considered the volatility of the internal net capital and we demonstrated
how the importance of the history effect and its composition change in terms of the degree
of risk. In particular, we showed that, even if the total strength of the history effect is not
reduced by the volatile environment, the relative weights of the older parts of the historical
path decrease in a more risky situation whereas the importance of the present economic
variables and the recent past increase; thus, an “oblivious” process occurs.

Similar behaviors have also been identified in economic models grounded in psychological
research. Compared with our study, the main difference of these results are that they are
obtained in the context of the “bounded rationality” of individuals due to the limited and
imperfect abilities of human memory. The situation we consider is radically different because
the planner is completely aware of what has happened and completely informed about the
future (stochastic) evolution of the economy.
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The dynamics of the model was described by a stochastic NDE. To the best of our knowl-
edge, the solution of the planner’s optimization problem is the first optimal control problem
driven by a stochastic NDE that has been solved explicitly in the literature.
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Appendix A. Some results on NDE and the description of the problem in the Hilbert space
setting

In this appendix we show how to solve the model i.e. how to study the optimal control problem (7)-(8).
The problem is approached using the dynamic programming in infinite dimension. This means that, as a
first step, the state equation is reformulated as an equivalent evolution equations in a suitable Hilbert space
(introduced in Appendix A.1). In the new (infinite dimensional) state equation (that is (29)) the lags in time
disappear and the state equation reads as a standard stochastic evolution equation in the infinite dimensional
space. To perform this first step we use first the results of Burns et al. (1983) and Kappel and Zhang (1986)
for deterministic NDE (Appendix A.2) and then we introduce the noise (Appendix A.3).

Once we have completed this first step and we have rewritten the functional in the infinite dimensional
formalism as well, we treat the problem (Appendix A.4) using the dynamic programming. So we need to
write and solve the second-order infinite dimensional Hamilton-Jacobi-Bellman (HJB) equation associated to
the problem (that is (31)) and use the solution (that will be proved to be the value function of the problem)
to characterize the optimal solution in feedback form (see the proofs of Theorem 3.2 and Proposition 3.3). A
similar approach is used in the economic literature for some models driven by deterministic delay differential
equations (see e.g. Fabbri and Gozzi, 2008 or Boucekkine et al., 2010). Of course, even if here we use a similar
method, the structure of the problem and then the solution is deeply different because: (i) we deal with the
infinite dimensional version of an NDE equation (ii) the problem is stochastic so the infinite dimensional HJB
is of the second order while in the deterministic case only the first order Fréchet differential appears in the
HJB.

A.1. Some definition. We denote by L2(−τ, 0) the space of the real square integrable functions defined on

(−τ, 0). It is a Hilbert space when endowed with the scalar product 〈f, g〉L2 :=
∫ 0

−τ
f(s)g(s) ds. We consider

the Hilbert space M2 := R × L2(−τ, 0) (with the scalar product 〈(x0, x1), (z0, z1)〉M2 := x0z0 + 〈x1, z1〉L2).
M2 will be the ambient space where setting our problem. It can be proved (see Burns et al. (1983) Theorem
2.3, page 102) that the operator

(21)







D(G) :=
{

(x0, x1) ∈M
2 : x1 ∈W

1,2(−τ, 0), x0 = x1(0)− λx1(−τ)
}

G(x0, x1) := ((A− δ)x1(0)− rλx1(−τ), ∂x1)

(being ∂x1 the derivative of the function x1 as a real function) is the generator of a C0-semigroup3 etG on
M2.

Chosen (xI0, x
I
1) ∈M

2 and P in L2
loc[0,+∞) we consider the following evolution equation in M2:

(22)

{

ẋ(t) = Gx(t)− (1, 0)P (t)
x(0) = (xI0, x

I
1).

3Actually, in our specific case, it is a C0-group (see Burns et al. (1983) Theorem 2.4, page 108). See
Bensoussan et al. (2007) for the definitions of C0-semigroup and C0-group.
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We say that x ∈ C([0,+∞);M2) is a weak solution of (22) if, for every ψ ∈ D(G∗), the function 〈x(·), G∗ψ〉

belongs to4 W 1,2
loc (0,+∞;M2) and

(23)

{

d
dt
〈x(t), ψ〉 = 〈x(t), G∗ψ〉 − P (t) 〈(1, 0), ψ〉

〈x(0), ψ〉 =
〈

(xI0, x
I
1), ψ

〉

.

It can be proved (see Bonsoussan et al. (2007) Proposition 3.2, page 1315) that (22) admits a unique weak
solution that can be expressed in the following mild form

(24) x(t) := e
tG(xI0, x

I
1)−

∫ t

0

e
(t−s)G(1, 0)P (s) ds.

A.2. The NDE in the deterministic case. Consider now x0 ∈ R, x1 ∈ L
2(−τ, 0) and the neutral differ-

ential equation6

(25)















K̇(t) = λK̇(t− τ) + (A− δ)K(t)− rλK(t− τ)− P (t)

K(0)− λK(−τ) = x
I
0

K(s) = x
I
1(s) s ∈ [−τ, 0].

If P is in L2
loc[0,+∞) (see Burns et al. (1983), page 109) such an NDE has a unique (generalized in the sense

of Kappel and Zhang (1986)) solution φx0,x1,P (·).

The nice fact (see Burns et al. (1983), Theorem 3.1 page 110) is that the unique generalized solution K(·)
and the unique mild/weak solution x(·) = (x0(·), x1(·)) of (22) are strictly linked. Indeed if we denote, for
any t ≥ 0,

(26)

{

Kt : [−τ, 0]→ R

Kt(s) := K(t+ s)

we have that, for t ≥ 0,

(27) x(t) = (x0(t), x1(t)) =
(

K(t)− λK(t− τ),Kt

)

and then the study of the NDE can be partly reduced to the study of the evolution equation in M2.

A.3. The stochastic case. When P is stochastic of the form P (t) = C(t)+N(t)Ẇ (t), as in (7), the evolution
equation related to the (stochastic) NDE is then

(28)

{

dx(t) = (Gx(t)− (1, 0)C(t)) dt+ (1, 0)N(t) dW (t)
x(0) = (xI0, x

I
1)

in particular, since, by (27), x0(t) = 〈x(t), (1, 0)〉 is equal to S(t) = K(t) − λK(t − τ), when N(t) has the

form N(t) :=
√

K(t)− λK(t− τ) dW (t)
dt

=
√

x0(t)
dW (t)

dt
, the previous equation becomes

(29)

{

dx(t) = (Gx(t)− (1, 0)C(t)) dt+ (1, 0)
√

〈x(t), (1, 0)〉 dW (t)
x(0) = (xI0, x

I
1).

Using Theorem 3.3 page 97 in Gawarecki and Mandrekar (2010) one can see that such stochastic differential
equation in M2 has a unique solution if the control C(·) belongs to the set of admissible controls

Ux(0) :=

{

C(·) : [0,+∞)× Ω→ R :
C(·) is F t − progressively measurable
and x0(·) = 〈x(·), (1, 0)〉 remains a.s. strict positive

}

.

Finally, the optimal control problem described in Section 2 is equivalent to the optimal control problem
driven by (29) with functional

(30) J(C(·)) := E

[
∫ ∞

0

e
−ρt

(

−e−ηC(t)
)

dt

]

and set of admissible controls Ux(0).

4The set x ∈ C([0,+∞);M2) is the (Banach) space of the M2-valued continuous functions defined on

[0,+∞) while W 1,2
loc (0,+∞;M2) is the set of the M2-valued functions defined on [0,+∞) whose restrictions

to [0, L] belong, for any L > 0, to the Sobolev space W 1,2(0, L;M2) (i.e. the space of the square integrable,
M2-valued functions defined on [0, L] having square integrable derivative).

5Bensoussan et al. (2007) prove the result for an abstract generator of a C0-semigroup on an abstract
Hilbert space that can be specified, as a particular case, as the operator G we are considering and the Hilbert
space M2.

6In (7) the value K(0)− λK(−τ) does not appear explicitly but, since we only consider continuous initial
data KI , it can be derived. Here, in line with the approach of Burns et al. (1983), we emphasize its value.
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A.4. Results for the model.

Proof of Lemma 3.1. The left hand side of

ξ =
−(A− δ)e−ξτ + rλ

(

1
2
γ + 1

η

)

(e−ξτ − λ) η

is strictly increasing, its limit for ξ → −∞ is −∞ and its value in 0 is 0 while the right-hand side, when ξ
is negative, is decreasing (observe that (10) implies in particular (A− δ) > 0), its limit for ξ → −∞ is finite
and its value in 0 is negative. Then there exists a unique negative root of the equation ξ̄.

It is easy to see the right hand side is a strictly increasing function of γ, η, δ and r and a decreasing
function of A. This fact gives the second claim. �

We are ready now to prove Theorem 3.2 and Proposition 3.3. Indeed the two proofs come together using
the dynamic programming: we first identify the HJB equation of the system, we look for an explicit solution
and we prove that the feedback induced by such a solution is optimal, proving at the same time that the
found solution is in fact the value function of the problem. The details of the proof are below.

Proof of Theorem 3.2 and Proposition 3.3. We want to apply the dynamic programming to the problem
rewritten in the Hilbert space formulation. So we need first to write the HJB equation of the system.

Given p = (p0, p1) ∈M
2 with p0 > 0 and C ∈ R we denote by

HCV (p, C) :=
(

−〈(1, 0), p〉C − e−ηC
)

the current value Hamiltonian of the system and by

H(p) := sup
C≥0

HCV (p, C) =
1

η
〈(1, 0), p〉

[

−1 + ln

(

1

η
〈(1, 0), p〉

)]

its Hamiltonian. The (infinite dimensional) HJB related to the problem (29)-(30) is defined as follows:

(31) ρv(x) = 〈x,G∗Dv(x)〉+
1

2
γ 〈x, (1, 0)〉D2

v(x) [(1, 0), (1, 0)] +H(Dv(x)).

Observe that, in fact, for a fixed p, HCV (p, C), has a unique point of maximum, as a function of C, and
it is given by

C = −
1

η
ln

(

1

η
〈(1, 0), p〉

)

.

We look for a solution of the HJB of the form

(32) v(x) = −βe−〈a,x〉

where β is some positive constant and a = (a0, a1) an element of M2 with a1 of the form

(33) a1(s) = he
ξs

for some real constants h and ξ. Whenever v is a function of the form (32)-(33) we can compute explicitly

its Fréchet derivatives obtaining Dv(x) = βe−〈a,x〉a and D2v(x) = −βe−〈a,x〉a⊗ a.
As shown in Boucekkine et al. (2011) Proposition 5.3, the expression of the adjoint G∗ of G is given by

(34)







D(G∗) =
{

(y0, y1) ∈M
2 : y1 ∈W

1,2(−τ, 0) and (A− δ − r)λy0 + λy1(0)− y1(−τ) = 0
}

G
∗(y0, y1) = ((A− δ)y0 + y1(0),−∂y1)

so Dv(x) ∈ D(G∗) if and only if (A− δ − r)λa0 + λa1(0)− a1(−τ) = 0. So Dv(x) ∈ D(G∗) for all x ∈M2 if
and only if

(35) a0 = h
e−ξτ − λ

(A− δ − r)λ
.

In order to be able to give a meaning to all the terms of the HJB equation we assume that such a condition
is verified, in this case we can compute G∗Dv(x) and we obtain, thanks to (34),

G
∗
Dv(x) = βe

−〈a,x〉
G
∗(a) = βe

−〈a,x〉

(

(A− δ)e−ξτ − rλ

(A− δ − r)λ
h,−hξeξs

)

.

Summarizing we are trying to find a solution of (31) of the form (32)-(33) such that a0, ξ and h satisfy
(35). Let us write explicitly the terms appearing in (31) in this case:

ρv(x) = −ρβe−〈a,x〉,
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(36) 〈x,G∗Dv(x)〉 = βe
−〈a,x〉

〈

(x0, x1),

(

(A− δ)e−ξτ − rλ

(A− δ − r)λ
h,−hξeξs

)〉

= βe
−〈a,x〉

h
(A− δ)e−ξτ − rλ

(A− δ − r)λ
x0 − βe

−〈a,x〉
hξ

〈

x1, e
ξs
〉

L2
,

(37)
1

2
γ 〈x, (1, 0)〉D2

v(x) [(1, 0), (1, 0)] =
1

2
γx0

(

−βe−〈a,x〉 〈a, (1, 0)〉2
)

= −βe−〈a,x〉
1

2
γ

(

h
e−ξτ − λ

(A− δ − r)λ

)2

x0

and

(38) H(Dv(x)) =
1

η

〈

(1, 0), βe−〈a,x〉a
〉

[

−1 + ln

(

1

η

〈

(1, 0), βe−〈a,x〉a
〉

)]

=
1

η
βe
−〈a,x〉

a0

[

−1 + ln

(

βa0

η

)

− 〈x, a〉

]

= βe
−〈a,x〉 1

η

(

h
e−ξτ − λ

(A− δ − r)λ

)(

−1 + ln

(

βh

η

e−ξτ − λ

(A− δ − r)λ

))

− βe−〈a,x〉
1

η

(

h
e−ξτ − λ

(A− δ − r)λ

)2

x0 − βe
−〈a,x〉 1

η

(

h
e−ξτ − λ

(A− δ − r)λ

)

h
〈

x1, e
ξs
〉

L2
.

Now we substitute such expressions in (31), we obtain (simplifying the multiplicative term βe−〈a,x〉 and
arranging a little the terms):

(39) 0 = x0A1 + h
〈

x1, e
ξs
〉

L2
A2 +A3

where

A1 :=

(

(A−δ)e−ξτ−rλ

(A−δ−r)λ
h−

(

1
2
γ + 1

η

)(

h e−ξτ−λ
(A−δ−r)λ

)2
)

A2 :=
(

−ξ − 1
η

(

h e−ξτ−λ
(A−δ−r)λ

))

A3 :=
(

ρ+ 1
η

(

h e−ξτ−λ
(A−δ−r)λ

)(

−1 + ln
(

βh

η
e−ξτ−λ

(A−δ−r)λ

)))

.

Since (39) has to be verified for all choice of x, then there exists a solution of (31) of the form (32)-(33) such
that a0, ξ and h satisfy (35) if and only if A1, A2 and A3 vanish. A2 = 0 implies

(40) ξ = −
1

η

(

h
e−ξτ − λ

(A− δ − r)λ

)

i.e. ξ = −
a0

η
.

Using this fact in A1 we have A1 = h
(A−δ−r)λ

(

(A− δ)e−ξτ − rλ+
(

1
2
γ + 1

η

)

(

e−ξτ − λ
)

ξη
)

that is zero if ξ

is a solution of ξ = −(A−δ)e−ξτ+rλ
(

1
2
γ+ 1

η

)

(e−ξτ−λ)η
. As shown in Lemma 3.1, thanks to (10) and (11) such an equation has

a unique negative solution that we denoted by ξ̄. Then we take ξ = ξ̄. Thanks to (40) we can find the value

of h: h = h̄ := −ηξ̄ (A−δ−r)λ

e−ξ̄τ−λ
. The last parameter is β and we can determine it using the condition A3 = 0.

It gives 0 = ρ + ξ̄ − ξ̄ ln
(

−βξ̄
)

and then β = β̄ := −1
ξ̄

exp
(

ρ

ξ̄
+ 1

)

. Eventually, we have proved that, called

ā = (ā0, ā1) :=
(

h̄ e−ξ̄τ−λ
(A−δ−r)λ

, h̄eξ̄s
)

=
(

−ηξ̄, h̄eξ̄s
)

, the function

(41) v(x) = −β̄e−〈ā,x〉

is a solution of the HJB.

In the next steps of the proofs we will prove that such a solution can be used to find the optimal control
in feedback form and that it is indeed the value function of the problem.

The feedback associated to (41) is defined as follows:

(42)

{

φ : M2 → R

φ(K) := argmaxC H(Dv(x), C) = − 1
η
ln

(

1
η
〈(1, 0), Dv(x)〉

)

= − 1
η
ln

(

1
η

〈

(1, 0), β̄e−〈ā,x〉ā
〉)

The related trajectory in M2 is the solution of the following stochastic evolution equation in M2 (found using
the feedback (42) in (29))

(43)

{

dx(t) =
(

Gx(t) + (1, 0) 1
η
ln

(

1
η

〈

(1, 0), β̄e−〈ā,x〉ā
〉))

dt+ (1, 0)
√

〈x(t), (1, 0)〉 dW (t)

x(0) = (xI0, x
I
1).
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Observe that, by hypothesis, the control defined by the feedback is admissible (i.e. it belongs to Ux(0)) that
is S(t) = 〈x(t), (1, 0)〉 remains strictly positive along the trajectory driven by the feedback and then the term
√

〈x(t), (1, 0)〉 in the previous equation is well defined (see Remark A.1 on that).

Let us prove that the feedback defined in (42) is optimal, namely that the solution x∗(·) of (43) is indeed
the trajectory of the system along the optimal path and that the corresponding control C∗(t) := φ(x∗(t)) is
the optimal control of the problem.

Define ω(t, x) the following function

(44)

{

ω : [0,+∞)×M2 → R

ω(t, x) := e−ρtv(x).

Consider an admissible control C̃(·) ∈ Ux(0) and the related trajectory x̃(·). Chosen T > 0. We have, using

the Ito formula (see Gawarecki and Mandrekar (2010), Theorem 2.9 page 627),

(45) E

[
∫ T

0

e
−ρt

(

−e−ηC̃(t)
)

dt

]

− v(x(0)) + E [ω(T, x̃(T ))]

= E

[
∫ T

0

e
−ρt

(

−e−ηC̃(t)
)

dt

]

− E [ω(0, x̃(0))− ω(T, x̃(T ))]

=

∫ T

0

e
−ρt

(

−e−ηC̃(t)
)

dt+ E

[

∫ T

0

∂ω

∂t
(t, x̃(t)) + 〈G∗Dω(t, x̃(t)), x̃(t)〉 −

〈

Dω(t, x̃(t)), (1, 0)C̃(t)
〉

+
1

2
D

2
ω(t, x̃(t))[(1, 0), (1, 0)] 〈x̃(t), (1, 0)〉

]

=

∫ T

0

e
−ρt

HCV (Dv(x̃(t), C̃(t))) dt

+ E

[

∫ T

0

∂ω

∂t
(t, x̃(t)) + 〈G∗Dω(t, x̃(t)), x̃(t)〉+

1

2
D

2
ω(t, x̃(t))[(1, 0), (1, 0)] 〈x̃(t), (1, 0)〉

]

.

Since v(·) is a solution of (31) we have

(46)
∂ω

∂t
(t, x̃(t)) = −ρe−ρt

v(x̃(t)) = −e−ρt (ρv(x̃(t)))

= −e−ρt

[

〈x̃(t), G∗Dv(x̃(t))〉+
1

2
γ 〈x̃(t), (1, 0)〉D2

v(x̃(t)) [(1, 0), (1, 0)] +H(Dv(x̃(t)))

]

.

Using last expression in (45) we get

(47)

E

[
∫ T

0

e
−ρt

(

−e−ηC̃(t)
)

dt− v(x(0)) + ω(T, x̃(T ))

]

= E

[
∫ T

0

e
−ρt

(

HCV (Dv(x̃(t), C̃(t)))−H(Dv(x̃(t)))

]

= E

[
∫ T

0

e
−ρt

(

HCV (Dv(x̃(t), C̃(t)))− sup
C≥0

HCV (Dv(x̃(t)), C)

]

≤ 0.

We can observe that

E

[
∫ T

0

e
−ρt

(

−e−ηC̃(t)
)

dt

]

is a decreasing function of T (the integrand is always negative) so it admits a limit (possibly equal to −∞)
for T → +∞. Since we are looking for an optimal solution we can restrict our attention to the set of controls
C̃(·) s.t. such a limit is finite (the proof will show that the control induced by the feedback satisfies this
condition and then such a set is non-void), moreover one can also see that, along the admissible trajectories,

ω(T, x̃(T ))
T→+∞
−−−−−→ 0. So we can pass to the limit in (47) and we find

(48) J(C(·))− v(x(0)) = E

[
∫ +∞

0

e
−ρt

(

−e−ηC̃(t)
)

dt

]

− v(x(0)) ≤ 0

In other words, for all admissible controls C̃(·), one has

(49) J(C(·)) ≤ v(x(0)).

7Indeed here we need a slightly extended version of the result of Gawarecki and Mandrekar (2010) that
can be easily obtained (thanks to an approximation argument) using that Dv is D(G∗)-valued and uniformly
continuous on bounded subsets as D(G∗)-valued function.
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Since C∗(t) satisfied (42) for all t ≥ 0, then along the trajectory x∗ driven by C∗ the integrand in the right
hand side of (48) is always zero and then J(C(·))− v(x(0)) = 0 i.e.

J(C∗(·)) = v(x(0)).

This fact together with (49), since C̃(·) is a generic admissible control, proves that

(50) v(x(0)) = J(C∗(·)) = sup
C̃(·)∈Ux(0)

J(C̃(·))

and then (using the second equality of such an expression) the optimality of C∗(·).

This also means that v is the value function of the problem, indeed

v(x(0)) = sup
C̃(·)∈Ux(0)

J(C̃(·))

and the right hand side is the definition of value function.
�

Remark A.1 (On the positivity). Let us observe what happens when τ converges 0. In this case, from (12)

one can see that ξ̄
τ→0
−−−→ −(A−δ)+rλ

(

1
2
γ+ 1

η

)

(1−λ)η
=: µ, a0

τ→0
−−−→ 1

1−λ
A−δ−rλ
1
2
γ+ 1

η

and β̄
τ→0
−−−→ − 1

µ
exp

(

ρ

µ
+ 1

)

.

Finally (since the trajectories of K are a.s. continuous so K(−τ) converges to K(0) and the integral term

goes to zero when τ vanishes), the feedback defined in (15) converges to C = φ(K) := α
η
K − 1

η
+ ρ(1−λ)

α
. This

is indeed the expression of the feedback control found by Boucekkine et al. (2014). If we use this expression in
the state equation of the case τ = 0, we can identify a sufficient condition on the parameters that ensures that
the trajectory driven by the feedback remains positive. Observe that in the case τ = 0 there is not delay and
S(t) = (1 − λ)K(t) so S remains positive and then the related control is admissible. It can be seen that, for

τ = 0, a sufficient condition for the positivity (if the initial capital is positive) is 1
η(1−λ)

−
ρ
(

1
2
γ+ 1

η

)

A−δ−rλ
> γ

2(1−λ)

(it is the same kind of condition one has e.g., for the Cox-Ingersoll-Ross interest rate model, see e.g. Theorem
2.2 and Remark 2.2 (page 79) by Mishura and Posashkova, 2008).

In the case τ > 0 the situation is more complex. Since the system is driven by a stochastic neutral
differential equation, and the literature about positivity of the solution of a stochastic NDE equation is almost
void, we cannot quote specific results. So we could not identify, explicitly, a restriction on the set of the
parameters that ensures that the trajectory of S along the trajectory driven by the feedback remains positive
in the general case.
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bd. François Mitterrand, 91025 Evry cedex, France.


