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Abstract

In this paper we propose a flexible tool to estimate the risk sensitivity of a high-

dimensional portfolio composed of different classes of assets, especially in extreme

risk circumstances. We build a so-called Cvine Risk Factors Model (CRFM), which

is a non-linear version of a risk factor model in a copula framework. Our tool

allows us to decompose the risk of any asset and any portfolio into specific risk

directions depending on the context. As an application, we compare the sensitivity

of different types of portfolios to extreme risks. We also give an example of a view-

type analysis as usually performed by portfolio managers who examine what their

portfolio becomes under specific circumstances: here we examine the case of a low

inflation context. These analyses allow us to detect changes in the diversification

opportunities over time.
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1 Introduction

Diversification opportunities across asset classes can be limited, depending on the market

configuration (e.g., Clarke et al., 2005, Bender et al., 2010). As a consequence, the

portfolios become more and more complex, with an increasing number of asset classes.

The portfolio manager has therefore to deal with multiple risk sources: without being

exhaustive, equity, interest rates, inflation, business cycle, emerging market, credit, or

liquidity related risks. In such circumstances, it is worth guiding portfolio managers in

evaluating their risk exposure especially in the case of extreme risks.

Thus we are facing three challenges:

- it is impossible to summarize all risk sources with a single factor representative of

”bad times”1 (e.g., Ilmanen, 2011);

- correlations, variances and beta coefficients are not relevant risk measures when the

assets belong to different classes and particularly in situations of extreme risks;

- finally, the risk sources affect the assets in different ways depending on the period

under study. For instance, inflation risk can prompt a positive correlation between stock

and nominal bond returns during high unexpected inflation periods (via positive risk

premium). However, during low unexpected inflation periods, nominal bonds are used to

hedge equity risk (e.g., Campbell et al., 2013).

To deal with the first challenge we refer to multiple risk factor models, but in non-

linear structures.

For the second one, we refer to the copula’s theory to model the links between the

returns of different types of assets.

Finally, concerning the problem of time varying risk exposures, we focus on a limited

period (2001-2013 i.e. the two last financial cycles) to avoid the estimation of complex

and unstable dynamic models possibly including regime shifts2. In particular, we do not

consider time-varying risk discount rates (e.g., Cochrane, 2011) which are for example

driven by time-varying risk aversion (e.g., Cambpell and Cochrane, 1999) or by the busi-

1Bad times refer for example to negative growth, high inflation, deflation, high volatility or correlations
between assets, illiquidity spiral, debt crises, etc...

2Risk factors are indeed reputed to be regime dependent (e.g., Page and Taborsky, 2011).
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ness cycle (e.g., Fama and French, 1989). More generally speaking we do not aim at

modelizing the dynamics of the risk premia associated with different risk sources. How-

ever our tool allows us to account indirectly for time varying premia as we are able to

develop views corresponding to changes in some of them. In the following of the paper,

an example of inflation related views is illustrated. Thus, analyzing the effects of such

changes in the risk premia is very useful for diversification issues. Indeed, changes in

the risk premia involve changes in the diversification opportunities and it is important

for a portfolio manager to asses how the performance of his portfolio may be affected by

changes in the risk premia and to decide how it should be re-balanced.

More generally speaking, beyond diversification issues, being able to assess multiple

interacting financial risk exposures is nowadays crucial since a poor risk management in a

financial institution can lead to an individual or potentially systemic default as witnessed

during the last crisis. Improving the risk measure of a portfolio is henceforth at the core

of regulation issues.

In this regard, the question we mainly address in this paper is the following: what

is the sensitivity of a large and complex multi-asset portfolio to extreme shocks related

to multiple interacting risk sources? We propose a flexible tool to help answer this

question whilst questioning the standard stress testing methods which do not allow to

take into account the increased co-movements between markets during critical periods

(e.g., Alexander and Sheedy, 2008).

Usual risk measures such as correlations and variance are obviously not relevant for

that purpose. Indeed the Gaussian framework is not adapted to characterize the risk of a

complex portfolio, in particular in extreme situations. Non-normality and fat tails can be

captured by ARCH-type models Engle (1987) for single series and by DCC (e.g., Engle,

2002) for multivariate cases. Here we choose to use the copula’s theory which offers, to

our opinion, a more flexible framework. Indeed, Heinen and Valdesogo (2009) outline

some limitations in using the DCC approach. Moreover we do not aim at proposing a

better description of returns than existing downside risk measures (e.g., Ang et al., 2006).

Comparing our results with the ones of these alternative methods, like Weiss (2013) for
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example, is beyond the scope of our paper.

More precisely, the tool we propose allows to specify and estimate what we call a

general C-Vine-Risk Factors (CVRF) dependence structure which is an extension of the

Canonical Vine Market Sector (CVMS) specification introduced by Heinen and Valdesogo

(2009) who are interested in decomposing returns into global (market related) and sector

specific components. The C-Vine structure we use is thus organized and constrained

according to a factorial structure which we specify a priori.

Several papers address the statistical issue of finding the factorial structure that of-

fers the best fit to the data. For example, Tumminello et al. (2007) apply a hierarchical

clustering procedure and estimate a hierarchically nested factor model. Brechmann and

Czado (2013), who model market returns with a R-vine copula structure, use a maxi-

mum spanning tree and adopt a pure statistical approach to discover the link between

the assets. However the resulting relationships between financial series are often not easy

to interpret. Contrary to these authors, we do not aim at finding the best (statistical)

factorial structure, but we rather aim at proposing a tractable factorial dependence struc-

ture which combines a C-Vine factorization with asset’s return decompositions that are

meaningful from a financial point of view. We do not formally test the statistical fit of

the factorial structure to the data, but we check that the simulated returns obtained with

our factorial structure are close to the ones obtained with a standard C-Vine structure.

Moreover we validate our factorial model because it provides us with results which are

consistent with the economic interpretation.

More precisely we work with 35 indexes which cover the main risk sources. Thus, we

identify eight risk factors from eight of the 35 indexes which can be viewed as common

components for our 35 assets and are in the same time mainly driven by the different

risk factors we want to identify: we retain three global indexes that are mostly related to

three risk factors, denoted in the following as real interest rates, inflation, and market risk

factors and five additional indexes which are specifically affected by (European) sovereign

crisis, credit, emerging, commodities and USD related risks. The five latter indexes are

used to emphasis the possibility of dealing with ”custom risks” which are more specific
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to an investor’s portfolio.

We thus successively focus on extreme shocks to the indexes retained as the main

common components of the returns of our assets. Each time, we decompose the response

of any asset (more specifically, the change in its expected return induced by the shock)

into the contributions of the risk factors we want to capture. Accordingly we are able to

quantify the sensitivity of any asset to any extreme shock and to jointly decompose this

sensitivity into the marginal contributions of the risk factors.

This decomposition requires simulations of the returns of all assets after drawing ex-

treme values of unconditional and conditional distribution functions in the CVRF model

framework. For the latter case we develop an original algorithm.

Our CVRF’s core application is thus to propose risk sensitivity analyses for different

benchmark portfolios.

The rest of the paper is organized as follows. In section 2, we present the principles

of C-vine copulas and our C-vine risk factor model. Section 3 is devoted to the practical

implementation with a presentation of the data, a description of the factorial structure

and an explanation of how the different types of simulations are implemented. In Section

4 we develop risk sensitivity analyses for the returns of different benchmark portfolios

and compare their reactions to different types of extreme shocks. Section 5 concludes.

2 The CRVF structure

After recalling some definitions in Copulas’ theory which are useful for what follows, we

make a point on the characterization of conditional independence inside a n-dimensional

copula and finally illustrate how to build a CVRF model.

2.1 Canonical Vine

A n-dimensional Copula C(u1, ...un) is a cumulative distribution function (cdf) with uni-

formly distributed marginals U(0, 1) on [0,1].

First, a copula is useful to characterize the dependence structure of several random
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variables whatever their marginal distribution. Indeed, according to the Sklar’s theorem

(Sklar, 1959) a multivariate cdf F of n random variables X = (X1, ..., Xn) with marginals

F1(x1),...,Fn(xn) can be written as:

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn)), (1)

where C(F1(x1), ..., Fn(xn)) = F (F−11 (u1), ..., F
−1
n (un)) is some appropriate n-dimensional

copula and the F−1i s denote the quantile functions of the marginals. Accordingly, mod-

elling of margins and dependence can be separated. Moreover, for an absolutely con-

tinuous F with strictly increasing, continuous marginal cdf Fi, we get the joint density

function f by differentiating (1),

f(x1, ..., xn) = c1:n(F1(x1), ..., Fn(xn)) · f1(x1) · · · fn(xn), (2)

which is the product of the n-dimensional copula density c1:n(·) and the marginal densities

fi(·).

Second, the n−dimensional density c1:n can be decomposed as a product of bivariate

copulas. The decomposition is not unique (See a possible decomposition in the trivariate

case in Appendix). To help organize the possible factorization of the joint density, Bedford

and Cooke (2001, 2002) have introduced a graphical model denoted the regular vine.

Regular vines (R-vines) are a convenient graphical model to hierarchically structure pair

copula constructions. A special case of regular vines is the canonical vine where certain

variables play a leading role. Figure 1 shows a canonical vine with five variables. From

the figure, we observe that the variable 1 at the root node is a key variable that plays a

leading role in governing interactions in the data set.

In the first tree, all nodes are associated with the X1, ..., X5 variables. For example,

the edge 12 corresponds to the copula c(F1(x1), F2(x2). In the second tree, the edge 23|1

denotes the copula c(F2|1(x2|x1), F3|1(x3|x1)). The following trees are built according to

the same rules.

Next, in order to organize the dependence structure, it is useful to recall how to
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Figure 1: A five dimensional canonical vine tree

characterize the independence of two variables in terms of copula.

2.2 Conditional independence in canonical vine

For a complete n-dimensional canonical vine, there are n(n−1)/2 bivariate copulas. This

means that the numbers of parameters to estimate is very high for a large size portfolio.

In order to simplify the structure, some conditional independence assumptions may be

useful.

If one refers to the three dimensional case (see B), assuming that X1 plays a leading

role leads to the following factorization:

c23|1(F2|1(x2|x1), F3|1(x3|x1)) = 1

which means that x2 and x3 are independent, conditionally on x1. Hence, the structure

simplifies to:

c(F1(x1), F2(x2), F3(x3)) = c12(F1(x1), F2(x2)) · c13(F1(x1), F3(x3)).
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Generally speaking, for a set of conditioning variables, υ and two variables X, Y ,

assuming that X and Y are conditionally independent given υ, leads:

cxy|υ(Fx|υ(x|υ), Fy|υ(y|υ)) = 1. (3)

Heinen and Valdesogo (2009) use this property to develop a simplified version of

canonical vine, the Canonical Vine Market Sector (CVMS) model. This two-factor model

assumes that each asset depends on the market and on its own sector. To include this

model into a canonical vine structure with the market and the sectors as root nodes,

some conditional independence assumptions need to be introduced: conditionally on the

market, sectoral returns are assumed to be independent and asset returns are independent

once they belong to different sectors. The remaining conditional dependence between

asset returns given the market and the respective sectors is modeled with a multivariate

Gaussian copula. Our CVRF model is an extension of the CVMS model.

2.3 CVine-Risk-Factors model(CVRF)

Referring to Heinen and Valdesogo (2009), we introduce a C-Vine copula based factor

model. Thus we assume that asset returns depend on several risk factors which mainly

explain their dependence structure. Further, we loosen the usual conditional indepen-

dence assumptions and assume that the risk factors can depend on each other while asset

returns can depend on one or several risk factors at the same time. The specification of

the factorial dependence structure is therefore more flexible than in the CVMS setting

and can be used in accordance with any particular view of a portfolio manager.

As shown for example in table 1, the unconditional and conditional dependence struc-

ture can be specified in a symmetric matrix with dummy variables. Among the n = 8

assets in the table, we distinguish between CC-type assets which denotes indexes that

are common components - or ”factors” in the usual sense - for all assets and a-type ones

which refer to the other asset of the database. The random variables are the correspond-

ing returns, ri, i = 1, ..., 8 . If the dummy variable in the ith row and jth column dij
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Table 1: Factorial dependence matrix M s

CC1 CC2 CC3 CC4 a1 a2 a3 a4
f1 1
f2 1 1
f3 1 0 1
f4 1 0 1 1
a1 1 1 0 0 1
a2 1 0 1 0 0 1
a3 1 0 1 1 0 0 1
a4 1 0 1 1 0 1 0 1

is equal to 1, the return of asset aj (or of common component CCj) is related to the

return of asset ai (or common component CCi), conditionally on the returns of any as-

set (or common component) preceding aj (e.g., rj−1,rj−2,...,r1). If dij = 0, the pair is

conditionally independent, and the density of the associated copula is equal to one.

Constraining the previous matrix M s allows us to impose any dependence structure

specified ”a priori”. All diagonal entries are equal to 1 since each asset is obviously linked

with itself, but imposing that all elements of the first column are equal to 1, di,1 = 1

means that the returns of all assets (including the ones of the common components

CC2, CC3 and CC4) depend on the first common component CC1. We can impose

conditional independence or dependence between the common components; here, d3,2 = 0

and d4,3 = 1, respectively mean that CC2 and CC3 are independent, conditionally on CC1,

and CC4 and CC3 are dependent, conditionally on CC1.

Moreover, each asset can share just one common component as well as several ones:

for example, a1 is only related to CC2 conditionally on CC1 while a3 is related to CC3 and

CC4, conditionally on CC1. In the same way, assets can be dependent or independent

on each other given the common components: for example, d8,6 = 1 means that a2 is

related to a4 given the 4 common components while d8,7 = 0 indicates that a3 and a4

are conditionally independent. Moreover, for each pair of related assets (di,j = 1), the

dependence is further characterized by one copula chosen in a set of various bivariate

copulas.

In what follows, we retain the simplified structure which is summarized by Table 3

below and Table 5 in D. We describe it in details in the following section.
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3 Practical implementation

We work with a database composed of 35 indexes (stocks, bonds, currencies and com-

modities) from Bloomberg, the observation frequency is weekly over the period January

5, 2001 to September 27, 2013. A description of the data set is given in the Table 4 in the

Appendix. We define a particular (factorial) structure capturing the following risk direc-

tions: real (interest) rates, inflation, global equity, credit, emerging equity, commodities,

USD. Within the C-vine structure, each conditioning is associated with an underlying

factor and independence assumptions imply that assets earn only up to 4 risk premiums

according to the ”ladder” structure presented in Table 3 given hereafter.

In order to estimate our CVRF model, we use a step-wise procedure. We specify the

marginal distributions for each index in the first step. Next, we look for the best bivariate

copulas which (conditionally or not) characterize the joint distribution of the returns of

all indexes.

3.1 Marginal Distribution

Concerning the marginal distributions, there are different approaches. We have retained

a usual GARCH specification to characterize the dynamics of the demeaned returns. 3

As mentioned before, any other characterization of the marginal distributions could

be retained. The details are given in E (See in particular Table 6). For all indexes, we

find that the GARCH(1,1) with the GED for the residuals give the best specification. We

also observe that the parameters (ν) of the GED distributions are smaller than two in

most cases. This means that most of the distributions have thicker tails than the normal

distribution.

3.2 The choice of copulas and the tail dependencies

Once the marginal parameters are estimated, we transform the standardized residuals

into uniform residuals by using the approach proposed by Meucci (2007). In the second

3Some returns display a weak auto-regressive dynamics but the simulation results are weakly affected.

10



step, we fit a C-Vine copula structure to the set of the standardized residuals while taking

into account the constraints imposed by the factorial structure we retain a priori. The

bivariate copulas are chosen from a set of families: Gaussian, Student t, Clayton, Frank.

Let us recall that the Gaussian and Frank copulas do not allow for any tail dependencies

contrary to the Student and Clayton ones which allow for symmetric and lower tail

dependencies respectively. Note that we do not have retained dynamic copulas. Dealing

with a large portfolio of assets can become very difficult owning to the complexity of

joint multivariate modelling. Some approaches have been proposed (Giot and Laurent,

2003, for a review), but most of them are rather complicated to implement and can give

similar results to simpler methods (Jin and Lehnert, 2011). Based on the dependence

structure, we assume that most tail dependencies are captured by the first three global

indexes. In the second column of Table 2, we report the results about the choice of the

bivariate copulas between each of the three global indexes and the other indexes. About

50% of the bivariate copulas are found with a tail dependence; indeed, among them, we

find about 10% that are Clayton copulas with lower tail dependence and 40% that are

Student t copula with tail dependencies in both sides. Accordingly, we find evidences of

tail dependence between the indexes in our database. In the third column of Table 2, we

have the copula choice between each of the next 5 indexes with others indexes. We can

observe that, while conditionally on the previous indexes, tail dependencies become less

frequent.

Table 2: Families of bivariate copulas

Copula with
first 3 indexes

Copula with
next 5 indexes

Gaussian 33% 36%
Student t 40% 30%
Clayton 7% 3%
Frank 19% 30%

Total 100% 100%
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3.3 Factorial structure and dependence

In this section, we present the ”ex ante” factorial structure as an ”input” needed to specify

our model. This structure is undoubtedly not unique and depends on the viewpoints of

the portfolio manager. However, economic theory can be useful to specify the factorial

structure.

Asset returns can be decomposed as the sum of a risk free rate and risk premium

which depend on the exposures to several risks. Specific realized bond premium (e.g.,

Credit) and realized equity premium are often calculated as the spread between the

corresponding asset returns and the nominal bond return of a benchmark (US, AAA-

rated, etc.). Regarding commodities and currencies, the link with risk free rate is not

clear or nil and must be confirmed empirically. We use a long term Treasury bond instead

of cash to get the ”risk-free” rate as it better matches the investment horizon of a strategic

allocation.

In what follows, we suppose that real rate and inflation risks affect all others indexes;

that is why we consider the real rate risk as the first pivotal factor and then the inflation

risk as a second one. Once we remove the nominal bond rate factor (split into real rate

and inflation risk factors), we get a set of risk factors related to equity, credit, etc. We

choose the equity risk as the next pivotal factor since stock markets best reveal the general

risk aversion of the investors. This global market risk factor thus captures the last link

with all remaining risk factors. Stressing the three first indexes allows us to spread a

negative shock to all asset returns included in our database.

Furthermore, we define ”residual” factors as those obtained once we have controlled

asset returns from the first three risks (labeled global factors). Assets in our portfolio per-

mit us to capture such residual risks like credit Euro debt, emerging market, commodities

or USD related risks.

All in all, we retain eight risk factors with three global factors and five more specific

ones (called ”residual” hereafter). They can be represented by Table 3.

The first global risk factor is captured from the return of the World Inflation Linked
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Table 3: Risk exposure and asset classes
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Bonds4. The second global factor is the inflation risk factor which is measured through the

World Government Bond Index once the real rate risk is removed. The MSCI World Index

is used to identify the third risk factor (equity risk factor). The five other risk factors

are defined respectively from the indexes: IBOXX Euro Sovereigns, Average Corporate

Bonds, MSCI Emerging, DJUBS Commodity and Dollar Index. See Table 3.

The structure can be specified in a symmetric matrix as proposed in section 2.2. It

is described in Table 5. The first three indexes are linked with all the indexes. However,

each index from the fourth to the eighth one is related only to some selected assets. In

general, the latter indexes are connected to assets which are from the same asset class

with common exposures to a given risk. Nevertheless, some particular assets can be linked

to different specific indexes as they share multiple risk exposures. For example the FX

Emerging index is not only linked with the emerging index but also with the currency

4Major exposures are US, UK and France. Inflation protected bonds index provides a good proxy for
an imperfectly estimated real interest rate risk factor, especially because theses bonds can be temporarily
prone to liquidity concerns as in 2008. TIPS (US case) are the assets that are considered as risk-free by
long-term investors (US) who care about real return (e.g., Ilmanen, 2011).
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index.

Table 5 displays Kendall’s taus which are consist of average rank correlations between

assets and the considered factors (labeled by column). For each column, we have the

average rank correlation between the corresponding factor and the assets. Note that the

Kendall’s tau here in this case measures the conditional dependence between the index

in each row and the index in each column with both of them conditioning on the indexes

in previous columns (if they are not independent). By using these dependence measures,

we can give an overview of the relationships between the risk factors and the assets.

The results we obtain for the Kendall’s taus are globally consistent with what is

expected from an economic point of view.

Let us focus first on the dependencies between the real rate factor (captured by the

returns of inflation linked bonds) and the other assets. It is negatively related to equity

returns and positively to bonds while, in absolute terms, the rank correlation is quite

obviously much higher for bonds than for equities. Theoretically, we would expect a

positive correlation between equities and the real rate factor as higher real rates make

the discount rates rise, lowering the price of equities (expressed as the sum of discounted

future cash flows). But given the low inflation and the occurrence of flight-to-quality

periods observed through our sample, government bonds have been considered as safe

haven assets, leading to this negative correlation between real rate factor and equity

returns. On the contrary, high yield bond, commodity and currency returns do not

exhibit significant correlation with real rate returns, specific risk premia contributing the

most as developed thereafter. Only gold and European currencies display a significant

dependence. Opportunity cost can explain the negative correlation between Gold and

real rate since Gold is a non-interest bearing asset.

The second global factor accounts for the inflation effect. As expected, US and UK

inflation linked bonds indexes (most represented in the world index) have no inflation

sensitivity while Euro inflation linked bonds index shows some residual inflation sensi-

tivity. However, this negative relation with inflation (positive rank correlation) is much

lower than for traditional government bonds (nominal rate). This phenomenon may be
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due to higher liquidity concerns in the Euro inflation linked bonds index than in the

world inflation linked bonds index. Government bond indexes are almost equally sensi-

tive to inflation and to real rate. Nevertheless, we find higher Euro and German inflation

sensibilities which are intuitive outcomes (central banks fear inflation).

Regarding risky assets, equities are similarly positively related to inflation. The link

between equities and inflation depends mainly on the source of inflation: a demand driven

inflation causes a positive relation with stock returns; a supply driven inflation causes a

negative correlation (Lee, 2009). In our sample, inflation is mainly driven by demand.

Interestingly enough, oil has the highest positive rank correlation with inflation. This

result is consistent with the fact that oil has the best inflation hedging ability. Precious

metals index (gold) has a weak link with inflation confirming the fact that gold is not

really an inflation hedge. Gold is regarded as a safe haven against financial turmoil and

US dollar weakness (Ilmanen, 2011).

The third global factor is useful to capture risk aversion through stock market (eq-

uity risk factor). All risky assets are positively related to that factor. We notice that

government bonds have a weak but negative rank correlation with this risk. We expected

such a relation because the studied period encompassed flight-to-quality episodes. On

the contrary, Euro government bonds are positively related to risk aversion reflecting the

Euro-area debt concerns which occurred at the end of the sample. As expected, corpo-

rate and emerging bonds (premia) have positive rank correlations with equity risk. The

high-yield sensitivity is naturally higher than the one of the investment grade.

We now turn to residual risk factors5. We find a positive exposition of emerging

bonds to the credit factor, which is consistent with the fact that emerging bond spread is

generally viewed as a measure of an emerging economy’s creditworthiness. Besides, the

rank correlation is slightly higher than the one with the emerging factor. All currencies

or any baskets of currencies have a negative correlation with the USD factor because

all studied currencies are short USD whereas our factor is long USD. It is worth noting

that gold could be seen as a currency and seems to be negatively related to the USD

5Except for emerging equity risk, the word ”residual” is suitable because we have taken our risk
aversion factor into account in each specific risk.
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factor confirming its dollar hedge ability in case of USD weakness. Asian stocks show

the most important rank correlation with emerging equity risk reflecting the weight of

Asian countries within the emerging index. As stated previously, oil has the highest rank

correlation with the commodity factor because of its weight in the global commodity

index.

3.4 Return simulations

In this section, we implement two types of simulations with ”unconditional” and ”condi-

tional” shocks.

3.4.1 General Simulation

To run the simulations, we proceed as follows. First, by using the estimated parameters

for the different copulas and the algorithm 2 described in Aas et al. (2009), we simulate

N samples from an I dimensional canonical vine for the next period, i.e. û1:I,T+1. Then,

the inverse error distribution functions (G−1) produce a sample of standardized residuals,

i.e. ẑ1:I,T+1 = G−1(û1:I,T+1). Finally, according to the GARCH equation (19) in E, the

estimated GARCH parameters are used to compute the demeaned return forecasts for

i = 1 : I,

r̂i,T+1 = µ̂i + σ̂i,T+1ẑi,T+1

with the variance forecast,

σ̂2

i,T+1 = ω̂i + α̂iσ̂
2

i,T ẑ
2

i,T + β̂iσ̂
2

i,T

3.4.2 Simulation with extreme unconditional shocks

In the following, we focus on the simulations of uniforms from the vine structure. The

process transformation from uniforms to returns remains the same as before. First, we

introduce the simulations with unconditional shocks.
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With the tool we can implement simulations in accordance to an extreme behavior

of one index. Indeed, instead of drawing all the û1:I between 0 and 1, we draw samples

from an extreme zone (for example from 0 to 0.05) for the stressed variable ûi, i ∈

{1, ..., I}. Since the dependence structure is supposed to be unaffected by the shock, a

stress situation for one factor impacts not only the variables which are directly related to

this factor but also the other variables in an indirect way, by affecting the key factor at

the root node of the C-Vine (which is related to all variables). This means that a sharp

decrease of one factor can cause the distress of the whole portfolio if other assets depend

positively on this factor. The algorithm is given in Brechmann et al. (2013).

3.4.3 Simulation with extreme conditional shocks

Moreover we can apply shocks from conditional distributions which are interpreted as

shocks to specific risk sources. First of all, some definitions of risk sources need to be

clarified. The unconditional distribution of an index-factor f summarizes a set of different

risk sources, whereas the conditional distribution of factor fi given another factor fj can

be interpreted as a combination of the remaining risk sources when the risk associated

with fj has been removed. By considering the gap between the returns associated with

the unconditional and conditional distributions, we can isolate the effect of a specific risk.

More generally speaking, if we want to apply a shock to the i− th specific risk, it has

to involve the conditional cumulative distribution functions F (xi|x1, x2, ..., xc). In this

case, we adapt the simulations for C-Vine copulas involving conditional distributions.

For j ≤ c or j > i, the sampling procedure from F (xj|x1, x2, ..., xj−1) is the same as the

one described before. However, sampling from F (xj), c < j ≤ i given F (xi|x1, x2, ..., xc)

has to be modified. We develop a new algorithm to specifically deal with simulations

involving conditional shocks (See F).
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4 Applications to portfolio management in critical

contexts

In this section we illustrate how to use the CVRF model for portfolio management. First,

we show how to measure the sensitivity of any asset to extreme shocks to any other asset

and we decompose the corresponding response into the marginal contributions of the

different risk factors. In what follows we just focus on extreme shocks to the 7 first

indexes6 of our data base, since they mainly drive the co-movements of the assets and

may consequently dramatically increase the risk of a portfolio in case of extreme events.

Indeed, limiting the stress tests to this type of extreme shocks is natural when we extend

the same type of analysis to portfolios as presented in a second stage.

4.1 Sensitivity of assets to extreme shocks

We focus on two types of sensitivity analyses. In the first one, we apply an extreme shock

to each of the first eight indexes, we measure the global sensitivity of any asset to these

shocks and we decompose the sensitivity into the marginal contributions of the different

risk factors.

The second one consists in measuring the sensitivity of any asset to a specific risk.

Thus we are rather interested in the response of any asset to an extreme shock applied

to a relevant index i conditionally on the preceding indexes.

4.1.1 Marginal contributions of the risk factors

Our analyses refer to the risk factors represented by the ladder structure displayed in

Table 3. For the first type of sensitivity analysis, we proceed as follows.

We successively consider extreme shocks to each of the 8 first indexes, i = 1, ..., 8.

For each of these shocks, we decompose the responses of any index j of our data base

into the marginal contributions of the different risk factors. Note that this decomposition

6We do not consider the Dollar index. A negative shock on the dollar index induces a positive effect
on the other indexes. Besides, in general, currencies are indirectly invested in a portfolio through foreign
assets.
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depends on the origin of the shock.

Suppose that we want to measure the total sensitivity of index j to a shock to one of

the first eight indexes, for example index i.

First we compute the ”total sensitivity” (γ(j/i)) of index j to an extreme shock to

index i :

γ(j/i) = E(Rj|Fi(Ri) < 5%)− E(Rj) (4)

where E(Rj|Fi(Ri) < 5%)) denotes the expected return of asset j when the (uncondi-

tional) distribution Fi(Ri) is stressed in its extreme negative part and E(Rj) is the return

obtained from a general simulation without shock.

The expected return E(Rj) gives us a benchmark value corresponding to a situa-

tion without shock. Moreover, according to section 3.4.2, an extreme shock to i simply

corresponds to a draw in the extreme (negative) part of Fi(Ri) and one can obtain by

simulation the expectation of the return of any index j conditionally on this shock. The

sensitivity of index j to the extreme shock to index i is simply calculated as the difference

between the conditional and the non-conditional expected returns.

At a second stage, we decompose the previous sensitivity into the marginal contri-

butions of the different risk factors, which have an effective impact on the asset. 7 The

decomposition of the total sensitivity can be obtained as follows, by using the simulation

process described in section 3.4.3.

First, for any index j, we calculate the marginal contribution of the real rate risk

(RR) to the sensitivity as:

γRR(j/i) = E(Rj|Fi(Ri) < 5%)− E(Rj|Fi|1(Ri) < 5%) (5)

where E(Rj|Fi|1(Ri) < 5%) is the return of index j when the conditional distribution

Fi|1(Ri|R1) is stressed. By conditioning on the return of the first index which is a proxy

7For example, if the shock comes from the first index, we can only identify the contribution of the
real rate risk factor. In that case, we can not measure the contributions of the other risk factors because
they do not impact the first index according to Table 3.
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for the real rate risk, the corresponding risk is indeed removed from index i. For example,

in the case where i = 5, there are only three risk factors underlying the conditional dis-

tribution Fi|1(Ri|R1)): inflation, equity market and credit. Consequently, the sensitivity

of index j to the conditional shock to index i given R1 comes only from the exposition

to the three remaining risk factors. The difference between the responses obtained for

the two cases gives us the marginal contribution of the first real rate risk to the total

sensitivity.

The simulations are performed according to the algorithm given in F. Similarly, we

define the marginal contribution of inflation (INF) and market (M) risk as :

γINF (j/i) = E(Rj|Fi|1(Ri) < 5%)− E(Rj|Fi|1,2(Ri) < 5%) (6)

γM(j/i) = E(Rj|Fi|1,2(Ri) < 5%)− E(Rj|Fi|1,2,3(Ri) < 5%) (7)

Finally, the contributions of the residual risks (RES) to the total sensitivity are com-

puted as:

γRES(j/i) = E(Rj|Fi|1,2,3(Ri) < 5%)− E(Rj) (8)

where E(Rj|Fi|1,2(Ri) < 5%) and E(Rj|Fi|1,2,3(Ri) < 5%) denote the expected return

of index j conditionally on extreme draws from the conditional distributions Fi|1,2 and

Fi|1,2,3.

In the following we denote the set of the previous equations (4) to (8) as (F1).

The total sensitivity is obviously obtained as the sum of the previous marginal contri-

butions. Note that the ”Residual” contribution to the sensitivity includes the exposition

of asset j to both specific risk factors (Credit Emerging, etc.) and idiosyncratic risks.

Tables 7 and 8 summarize the results for the sensitivity decompositions we obtain. All

results reported in these tables concern deviations from the mean. It is worth outlining

that our methodology captures complex linkages between financial assets as it enables to
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identify risk transmission channels of a specific stress. The following paragraphs gather

the most interesting results together.

We notice that the contribution of the real rate risk to the sensitivities is negligible

for the risky assets when the world equity market index is stressed (see the column ”Real

rate” of Table 8). However, in the same case, fixed income assets increase through the

first two factors to the same extent (see the positive numbers in columns ”Real Rate”

and ”Inflation” of Table 8). More precisely, we find from our simulations that US equity

index should loose around -19.9% a month while US government bond (7-10 years) is

expected to rise by +2.9% a month. US government bonds appear as safe haven assets in

our sample. This performance of +2.9% is decomposed into +1.3% for real rate marginal

effect, +1% for inflation marginal effect and 50bp for market risk marginal effect. The

economic reason of this result lies in an increase of the recession risk, meaning lower

Central Banks interest rates (lower inflation and less activity).

Such results are useful for risk diversification issues. In this case, higher diversification

is obtained for the government bond indexes because the contributions of the two first

risk factors to their total sensitivities are positive in the case of a negative shock to the

MSCI World Index.

The way the shocks spread across risk factors are not the same for all indexes. For ex-

ample, the expected return of the Euro Area Equity index (MSCI EMU) roughly decreases

in the same magnitude (-1.5%) than the Germany Government Bond index (-1.8%) when

we stress our corporate bond index (cf. column ”Total” of Table 7). This observation

is just a result of our conditional analysis of returns, but our methodology enables us

to go a step further and to gauge the contribution of each risk factor. Indeed, we are

thus able to highlight that the spreading is completely different. Indeed, the main chan-

nel for Germany Government bonds is the real rate risk while the market risk has no

marginal effect. On the contrary, for the Euro Area Equity index, the negative corporate

bond shock negatively spreads only through the equity market risk, a result that can be

explained by an increase in the risk aversion or by growth concerns associated with a

negative credit shock. This result is consistent with the economic intuition.
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Some Government bonds shouldn’t be considered as perfect hedges against equity risk.

The dependence between the global risk aversion factor (market risk) and credit bond

indexes proves that a negative shock to stocks (growing risk aversion) negatively spreads

out to the assets exposed to credit risk. Indeed, the returns of these bonds decrease (as

the negative numbers displayed in column ”Equity Market/risk aversion” of Table 8, e.g.

High Yield Bonds) while the (expected) sovereign bond returns increase (as the positive

number in the same column, e.g. government bonds). However, the return of the Euro

Sovereigns Index decreases because it can also be considered as exposed to the credit

risk. This positive dependence with market risk is consistent with the strong positive

link between the European equity markets and the ”peripheral” sovereign spreads during

the Euro debt crisis reflecting the fears this crisis placed on the future of the Euro zone.

Finally, when we stress the Dollar Index, we noticed that the Emerging Europe and

Latin America equity indexes have the highest sensitivity among equity indexes to a falling

USD. When we stress the commodity index, we have a negative impact for risky assets

through the risk aversion factor. This is specific to our observation period along with

commodity prices being driven by demand (rapid increase of consumptions in emerging

countries).

To conclude this section, the results show us that the diversification opportunities

provided by certain assets could be limited or even disappear. This could be due to

the fact that the ”hedging” risk factor effects reduce (those which positively react to a

negative shock to the stressed assets). Another reason could be that the contribution of

the risk factor becomes negative due to either temporary or structural critical economic

situations (e.g. Euro Area ”peripheral” sovereign bonds were likely to be unrelated to

Market risk before the Debt Crisis and solvency issues but this is not the case over our

sample period).

4.1.2 Benchmark risk sensitivities

In the previous sensitivity analysis, we measure the exposure of any asset to each risk

factor for any stressed index. For example, we get the real rate risk exposures for a shock
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applied to each of the eight main indexes. This gives us several exposures of a given asset

to the same risk. In what follows, we rather focus on the exposure of any asset to a given

risk and we retain the asset’s response to a shock to the one index which is the most

representative for this risk.

Accordingly, we measure the sensitivities of any asset j to the different risk factors

according to the following equations ((9) to (16)) denoted hereafter formulas (F2 ).

The benchmark Real Rate (RR) risk sensitivity of asset j is given by:

γRR(j) = γ(j/1) = E(Rj|F1(R1) < 5%)− E(Rj) (9)

Similarly, the benchmark Inflation (INF) risk, is defined as:

γINF (j) = γ(j/2)− γRR(j/2)

= E(Rj|F2|1(R2) < 5%)− E(Rj) (10)

while the benchmark Market(M) risk sensitivities is computed as follows:

γM(j) = γ(j/3)− γRR(j/3)− γINF (j/3)

= E(Rj|F3|1,2(R3) < 5%)− E(Rj) (11)

Concerning the specific risk sensitivities, the definition depends on the type of risk.

For the benchmark Euro Debt risk (ED) and the benchmark Credit Risk (CR), the

sensitivities are specified as:

γED(j) = γ(j/4)− γRR(j/4)− γINF (j/4)

= E(Rj|F4|1,2(R4) < 5%)− E(Rj) (12)

γCR(j) = γ(j/5)− γRR(j/5)− γINF (j/5)

= E(Rj|F5|1,2(R5) < 5%)− E(Rj) (13)
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As a matter of fact, it is reasonable to remove the ”nominal rate” component from

bond index returns in order to evaluate these specific risk factors.

The benchmark Emerging Market risk (EM) sensitivity of asset i is given by:

γEM(j) = γ(j/6)− γRR(j/6)− γINF (j/6)− γM(j/6)

= E(Rj|F6|1,2,3(R6) < 5%)− E(Rj) (14)

In that case, an index or a portfolio are sensitive to this specific risk only if they include

emerging assets. We make such a choice because if we didn’t remove market risk factor,

we wouldn’t be able to disentangle global ”beta” from emerging ”beta”.

Finally the benchmark Commodity Risk (CO) sensitivity is defined as the total sen-

sitivity:

γCO(j) = γ(j/7) = E(Rj|F7(R7) < 5%)− E(Rj) (15)

We make this choice because commodities do not exhibit a clear relationship with nominal

interest rate, neither empirically nor theoretically. We can find a graphical representation

of formulas (F2) from Table 3. For example the Credit risk is obtained as the sum of the

Equity Market Risk Aversion and the Credit Risk Factors on the fifth row.

In the next section we turn to sensitivity analyses for portfolios instead of single assets.

4.2 Sensitivity analysis for portfolios

In this section, we compare the sensitivity of different portfolios to different types of

extreme shocks.

We perform the two previous types of sensitivity analyses by just replacing the return

of an asset j by the return of a portfolio P in the formulas (F1) and (F2). Then the

different types of sensitivity of portfolio P are obtained as linear combinations of the
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sensitivities of the individual assets:

γRisk(P/i) =
J∑

j=1

wjγRisk(j/i) (16)

where J is the total number of assets in the portfolio, the wj, j = 1, ..., J define the

composition of the portfolio and the γRisk(j/i) are the risk sensitivities of asset j to a

shock to asset i for the different risks.

Similarly, we can define the different benchmark risk sensitivities as:

γRisk(P ) =
J∑

j=1

wjγRisk(j) (17)

4.3 Sensitivities comparison for a panel of portfolios

In this section, we focus on different portfolios. We begin with describing how the port-

folios are composed. Then we implement two types of sensitivity analyses.

First, we compare the reactions of the different portfolios of our panel to extreme

shocks to the risk factors by using formulas (F2) given in section 4.2. Second, we develop a

view type analysis where the point is to examine the changes in the global and decomposed

sensitivities of the portfolios when the inflation risk is supposed to be zero. Thus we refer

to the decompositions of the global sensitivities into the marginal contributions of the

different risk factors according to formulas (F1) and the shock is applied to the Euro

Sovereigns index: this case refers to the last sovereign crisis in the Euro area which

happened in a low inflation context.

Let us precise which portfolios we retain for the sensitivity analysis.

4.3.1 Portfolio allocations

For the sake of simplicity, before constructing the portfolios, we gather assets into four

baskets according to asset classes: Nominal Government Bonds, Other bonds (including

Inflation linked, Corporate, High Yield Bonds), Equity, Commodity. For each group, we

compute the equally weighted average return of the indexes in the basket. Portfolios are
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then composed of these four baskets.

More precisely, we examine traditional as well as risk-based portfolios:

• Minimum Variance Portfolio;

• Maximum Diversification Portfolio (e.g., Choueifaty et al., 2013);

• Three portfolios composed according to risk budgeting rules8;

– Low Risk Budgeting portfolio with weights 30%, 50%, 15%, 5%, respectively

for Nominal Government Bonds, Other bonds, Equity and Commodity;

– Equal Risk Contribution (ERC) Portfolio (e.g., Maillard et al. 2010);

– High Risk Budgeting portfolio with weights 10%, 10%, 70%, 10%;

• Balanced allocation with weights 20%, 30%, 45%, 5%;

• High risk allocation with weights 10%, 20%, 60%, 10%.

All allocations in capital are reported in Figure 2. Note that the portfolios are ranked

in the order of an increasing risk from left to right.

4.3.2 Comparison of the Benchmark Risk Sensitivities of the portfolios

In the following, we examine at first the sensitivities of the four baskets we have defined to

extreme shocks to the different risk factors. Second, we examine the ones of the portfolios

in our panel.

The sensitivities of the four baskets to the risk factors are given in Table 9.

We remark that the government bonds are immunized against all risks but negatively

exposed to real rate and inflation risks, while the ”other bonds” are less exposed to

inflation risk but sensible to market and credit risks. In accordance with the economic

intuition, credit assets (”other bonds”) are jointly exposed to real rate and equity risk.

Equities are mainly affected by market risk but also positively exposed to real rate

and inflation risks (with a higher sensitivity to inflation). As expected, equities are also

8In risk budgeting strategies the portfolio manager is interested in risk allocations rather than in
capital allocations. Thus the weights associated with the different assets in the portfolio are chosen
according to their contributions to the risk. Here we assess the risk of a position in terms of volatility.
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exposed to emerging risk since our equity basket includes developed and emerging equity

indexes. Finally, commodities are mainly related to the commodity risk factor but also

positively react to inflation risks.

Concerning the portfolios, we can distinguish between defensive and aggressive port-

folios. The allocation in risky assets (equities and commodities) ranges from 10% to 30%

for defensive portfolios and from 50% to 70% for the aggressive one (Figure 2).

The risk-based allocations (Minimum Variance, Maximum Diversification, Low Risk

Budgeting, ERC and High Risk Budgeting) are rather defensive as they correspond to

higher investments in bonds which are less volatile than stocks and commodities, whereas

our traditional portfolios (Balanced Allocation and High Risk Allocation) are aggressive

portfolios because of their higher volatility.

Table 10 summarizes the benchmark risk sensitivities obtained for the different port-

folios.

Concerning the benchmark REAL RATE risk, the defensive portfolios are signifi-

cantly more sensitive, compared to the more traditional allocations which are little or

not impacted by a shock to the real rate risk factor. It illustrates the stress observed

in June 2013, which penalized risk-based funds (defensive allocation). Indeed, after Ben

Bernanke announced the future reduction of the Federal Reserve Asset Purchase Pro-

gram, long term interest rates spiked, although inflation remained limited. This rise in

real rates did not affect equity markets durably but ERC-based portfolios suffered.

About the benchmark INFLATION risk, we notice that the ERC portfolio is nearly

insensitive to this risk. The High (respectively Low) Risk Budgeting portfolio is positively

(respectively negatively) exposed to inflation risk. These results indicate that investors

who are likely to suffer from a rise in inflation should take into consideration the High

Risk Budgeting portfolio methodology for their portfolio construction in order to obtain

a balance mix of market risk and inflation risk (hedge).

For the benchmark MARKET risk, as expected, the more traditional allocations are

significantly more exposed, compared to the Risk Based Allocations, because they are

more invested in risky assets.
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Concerning the benchmark CREDIT risk, it is worth emphasizing that the expected

return of the aggressive portfolio decreases in a larger magnitude than the one of the

defensive portfolios when we stress our corporate bond index (cf. column CREDIT). The

reason is that the credit risk is related to the market risk.

Finally, for the EMERGING and COMMODITY risks, we observe that they have a

higher impact on riskier portfolios because of the larger weights on these assets. However,

when it comes to commodity risk, it is worth noting that we can have a portfolio with

a relative small weight on a specific asset, which is however exposed to spillover effects

through equity market risk. For example, if one focuses on the reaction of the Balanced

portfolio to a commodity shock, one observes a 3.9% decrease in the return, but with a

weight of only 5% for the commodities.

In the next section, we show how to develop a view type analysis where the point is

to examine how the sensitivities of a portfolio change for a particular scenario, and, more

specifically, for a scenario without inflation.

4.3.3 Example of view: scenario with low inflation risk

Here we investigate the behavior of the different portfolios under a zero inflation scenario.

We refer to the computations of the global sensitivities and their decompositions into the

marginal contributions of risk factors (according to formulas (F1)). The results in Table

11 give us the total sensitivities and their decompositions when we apply an extreme

shock to the Euro zone sovereign bonds (IBOXX Euro Sovereigns index). In the lower

part of the table, we report the total sensitivities of the different portfolios, when there

are no inflation risk sensitivity.

To give some intuitions on the view exercises, let us look at the situation of the Euro

zone in 2014. The inflation declined to very low levels but remained positive (almost zero).

In such an economic context, we could assume that inflation risk almost disappears (at

least temporarily); thus, the contribution of the inflation risk factor should be zero (a

significant increase in inflation normally implies a negative shock to the inflation factor).

Ceteris paribus, a stress to the Euro Sovereigns index would cause a loss to the holder
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of the High Risk allocation portfolio (the portfolio with high capitalization in the risky

assets). We indeed observe a 2.5% decrease in the monthly return, whereas the total gain

is equal to 1.5% when inflation is not supposed to be zero. That discrepancy is mainly

due to the negative contribution of the market risk (-2.7%) and the absence of positive

effect of the inflation factor. This means that a critical context in the euro zone combined

with a low inflation could seriously harm the risky portfolio by eliminating the benefits

resulting from inflation.

It is worth noting that imposing views on the contributions of factors does not need

any additional simulations; moreover, calculations are very simple since all effects are

additive. Note that the view exercise, although based on a quantitative value, can initially

be conceived qualitatively (e.g., Meucci, 2010). For instance, a view on a return can be

discretized into five states (highly positive, positive, zero, negative, highly negative).

Similarly, if we assume symmetric distributions, we could have views on the factors’

contributions according to the following pattern: α × marginal contribution with α =

−2,−1, 0, 1, 2.

5 Conclusion

The aim of this paper was to show the practical usefulness of vine copula based models

for portfolio management in the case of a large number of assets. We have proposed

a CVFR model combining a Canonical Vine and a factorial-type dependence structure

specified a priori. Accordingly a portfolio manager can easily use this model to impose any

dependence structure reflecting his own risk perception and to decompose the returns into

risk factors which are crucial to his opinion (bond, equity, inflation, credit for example),

while taking into account complex relationships between the different assets that can not

be summarized by simple correlations.

As an application, we have examined the case of a set of 35 indexes of different types

- stock, bonds, commodities, currencies. We used a GARCH approach for the marginal

distributions. As to copula results, evidences of tail dependence are found between a
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significant number of indexes.

The factorial-type structure we have specified a priori includes eight indexes as com-

mon components from which we have identified eight different risk factors corresponding

to real rate, inflation, market, credit, (European) sovereign debt, Emerging, Commodity

and USD risks.

The core applications of our model are sensitivity analyses for each asset of our

database to extreme shocks to any other asset and particularly to the eight first indexes

which mainly account for the co-movements of the assets. Of particular importance is the

decomposition we propose for each (total) sensitivity into the marginal contributions of

the risk factors. Moreover our computations take into account the complex dependence

structure among the 35 indexes we retain, including the tail dependencies which are par-

ticularly crucial in case of extreme shocks. All our results are obtained from simulations.

In this regard, our approach is semi-parametric.

We have also applied two types of sensitivity analyses to portfolios. For that purpose

we have chosen seven types of portfolios, the ones composed according to traditional rules,

the others with risk-based allocations. First, we have compared the sensitivities of these

portfolios to extreme shocks to the risk factors. Generally speaking, we can claim that the

risk-based portfolios are more sensible to the real rate risk while the traditional ones are

more exposed to the market risk and the specific risks. Moreover, the latter ones benefit

from inflation shocks, which is not the case for the former ones. Besides, we show that

the inflation risk could be diversified away with an appropriate balanced portfolio (ERC)

while real rate risk and market (equity) risk remain thus the most important concerns

which can only be diversified away within a more trivial and concentrated portfolio.

Second, referring to the recent sovereign crisis in Europe, in the general context of

low inflation, we have developed a view-type analysis and examined the changes in the

responses of the portfolios of our panel to extreme shocks applied to the Euro Sovereigns

index when the inflation risk is supposed to be nil. In that case, our results tend to prove

that risky portfolios loose their advantage compared to the risk-based portfolios in case

of a Sovereign crisis in a low inflation context.
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All these sensitivity analyses show that our model is well adapted to provide a portfolio

manager with a general measure of the exposition of a wide range of assets and portfolios

to various risk sources especially in critical (extreme risk) circumstances. Moreover, the

decompositions of the sensitivities we propose into the contributions of the risk factors

should help a portfolio manager to choose a mix of asset classes that best diversifies

his risks while also reflecting his views on the global economy and financial markets, as

summarized by the factorial-type structure he retains a priori.

These sensitivity analyses allow to detect diversification opportunities. Indeed, ac-

cording to the results we obtain, certain positive risk contributions to the sensitivity

under a negative shock may decrease or even disappear for some assets, depending on the

economic context. This means that in this case these assets are less attractive in building

a diversified portfolio.

Natural directions for future research are diverse. First of all, we can construct a

portfolio under the constraint of being hedged against a given risk (factor). Indeed,

using directly hedged allocations to a factor as a method of portfolio construction or as

analysis tool provides target allocations which protect to some extent the portfolio from

some financial markets shocks on certain residual factors. Moreover, if we refer to the

drying-up of liquidity at the end of 2008 or the abundance carried by the Quantitative

Easing (FED&ECB) it would be interesting to introduce an additional liquidity factor.

In addition, for the sake of transparency and simplicity, we have decided to extract the

factors from return series of representative and well diversified indexes. We could also

refer to unobservable components issuing from statistical models (regressions, orthogonal

components) instead of observable market indexes. We can even imagine to implement

our analysis by using benchmark factor indexes that regulators could design in order to

provide a common framework to measure the risks of financial institutions.
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A CVine copulas

According to Kurowicka and Cooke (2007) a regular vine (R-vine) on n variables consists

first of a sequence of linked trees T1, ..., Tn−1 with nodes Ni and edges Ei for i = 1,...,

n, where T1 has nodes N1 = 1, ..., n and edges E1, and for i = 2,..., n-1, Ti has nodes

Ni = Ei−1 . Moreover, two edges in tree Ti are joined in tree Ti+1 only if they share a

common node in tree Ti (See Brechman and Czado (2013) for a detailed presentation). A

special case of R-vines which is often considered are canonical vines (C-vines). A C-vine

is a R-vine if each tree Ti has a unique node with degree d− i, the root node.

The general n-dimensional canonical vine (CVine) copula density can be written as

following:

c1:n(F1(x1), ..., Fn(xn)) =
n−1∏

j=1

n−j∏

i=1

cj,j+i|1,...,j−1 (18)

(F (xj|x1, ..., xj−1), F (xj+i|x1, ..., xj−1))

where cj,j+i|1,...,j−1 denotes the bivariate copula between the distributions of xj and xj+i

taken conditionally on x1, ..., xj−1.

B Factorization of a trivariate density

Here we present in details a possible factorization of a joint three-dimensional density

function as a product of bivariate copulas and marginal densities.

f(x1, x2) = c12(F1(x1), F2(x2)) · f1(x1) · f2(x2),

and the first conditional density is:

f(x2|x1) = c12(F1(x1), F2(x2)) · f2(x2).

32



In the same way, one possible decomposition of the second conditional density f(x3|x1, x2)

is:

f(x3|x1, x2) = c23|1(F2|1(x2|x1), F3|1(x3|x1)) · f(x3|x1),

where c23|1 is the bivariate copula, applied to the transformed variables F2|1(x2|x1) and

F3|1(x3|x1)). Decomposing f(x3|x1) further, leads to:

f(x3|x1, x2) = c23|1(F2|1(x2|x1), F3|1(x3|x1)) · c13(F1(x1), F3(x3)) · f3(x3).

Combining the equations above, one obtains the joint density of the three variables as a

product of marginal densities and bivariate conditional copulas:

f(x1, x2, x3) = c23|1(F2|1(x2|x1), F3|1(x3|x1)) · c12(F1(x1), F2(x2))

·c13(F1(x1), F3(x3)) · f1(x1) · f2(x2) · f3(x3).

Note that Joe (1996) showed that conditional cdf’s of the form F (x|υ) where υ is a vector,

can be derived recursively from marginal cdf’s by

h(x, υ,Θ) = F (x|υ) =
∂Cx,υj |υ−j

(F (x|υ−j), F (υj|υ−j))

∂F (υj|υ−j)
,

where υ−j denotes the set υ without the jth index. h(·) is the conditional distribution

function and Θ denotes the set of parameters for the copula of the joint distribution

function of x and υ. Let h−1(u, υ,Θ) be the inverse of the conditional distribution function

that will be used in the simulation.
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C Description of data set

Table 4: Description of data set

Factorial Model Data Author’s indexes
CLASS NAME SOURCE/TICKER CLASS NAME SOURCE/TICKER
Fixed Income Citigroup WGBI All Maturities SBWGL index Fixed

Income
Average Corporate Bonds Average of 4 indexes*

Fixed Income IBOXX Euro Sovereigns QW1A Index IBOXX Euro Investment Grade Bonds IB8A Index
Fixed Income Citigroup US GBI 7 to 10 Years SBUS70L Index IBOXX US Investment Grade Bonds IBOXIG Index
Fixed Income Citigroup UK GBI 7 to 10 Years SBUK70l Index CS Western Euro High Yield Bonds DLJWVLUE Index
Fixed Income Citigroup Germany GBI All Matu SBDML Index IBOXX US High Yield Bonds IBOXHY Index
Fixed Income Barclays World Inflation Linked Bonds BCIW1T Index FX FX COMMO Average of 5 indexes**
Fixed Income Euro MTS Inflation Linked Bonds EMTXIGC Index AUD-USD AUDUSDCR Curncy
Fixed Income Citigroup US Inflation Linked Bonds SBUSILSI index NZD-USD NZDUSDCR Curncy
Fixed Income Barclays UK Inflation Linked Bonds BCIU1T index NOK-USD NOKUSDCR Curncy
Fixed Income Average Corporate Bonds Author’s calculation CAD-USD CADUSDCR Curncy
Fixed Income IBOXX Euro Investment Grade Bonds IB8A Index ZAR-USD ZARUSDCR Curncy
Fixed Income IBOXX US Investment Grade Bonds IBOXIG Index FX FX EMERGENT Average of 8 indexes**
Fixed Income CS Western Euro High Yield Bonds DLJWVLUE Index BRL-USD BRLUSDCR Curncy
Fixed Income IBOXX US High Yield Bonds IBOXHY Index MXN-USD MXNUSDCR Curncy
Fixed Income JPM EMBI Global Diversified JPGCCOMP Index KRW-USD KRWUSDCR Curncy
Equity MSCI World NDDLWI Index THB-USD THBUSDCR Curncy
Equity MSCI North America NDDLNA Index IDR-USD IDRUSDCR Curncy
Equity MSCI EMU NDDLEMU index PHP-USD PHPUSDCR Curncy
Equity MSCI Europe Ex EMU NDDLEXEU Index TRY-USD TRYUSDCR Curncy
Equity MSCI Pacific Ex Japan NDDLPXJ Index PLN-USD PLNUSDCR Curncy
Equity MSCI Emerging NDLEEGF Index * volatility-inverse-weighted
Equity MSCI Emerging Latin America MXLA index ** equally-weighted
Equity MSCI Emerging Asia MXMS index
Equity MSCI Emerging Europe MXMU index
Commodity DJUBS Commodity DJUBSTR Index
Commodity DJUBS Prcioud Metal DJUBSPR index
Commodity DJUBS Indudtrial Metal DJUBSIN index
Commodity DJUBS Agriculture DJUBSAG index
Commodity DJUBS Petrolum DJUBSPE index

FX DOLLAR INDEX DXY Index
FX EUR-USD EURUSDCR Curncy
FX CHF-USD CHFUSDCR Curncy
FX GBP-USD GBPUSDCR Curncy
FX FX COMMO Author’s calculation
FX FX EMERGENT Author’s calculation
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D Dependence structure

Table 5: Kendall’s tau
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Citigroup WGBI All Maturities 0.60
MSCI World -0.21 -0.20
IBOXX Euro Sovereigns 0.51 0.54 0.17
Average Corporate Bonds 0.38 0.17 0.29 -1

MSCI Emerging -0.12 -0.19 0.50 - -
DJUBS Commodity ns2 -0.20 0.15 - - 0.17
DOLLAR INDEX -0.14 0.05 -0.11 - - - -
Euro MTS Inflation Linked Bonds 0.45 0.14 0.12 0.40 - - - -
Citigroup US Inflation Linked Bonds 0.68 ns ns - - - - -
Barclays UK Inflation Linked Bonds 0.62 ns -0.08 - - - - -
IBOXX Euro Investment Grade Bonds 0.46 0.34 0.16 0.33 0.42 - - -
IBOXX US Investment Grade Bonds 0.47 0.30 0.15 - 0.42 - - -
CS Western Euro High Yield Bonds ns -0.07 0.24 ns 0.43 - - -
IBOXX US High Yield Bonds ns -0.07 0.29 - 0.48 - - -
Citigroup US GBI 7 to 10 Years 0.55 0.47 -0.09 - - - - -
Citigroup UK GBI 7 to 10 Years 0.56 0.42 -0.07 - - - - -
Citigroup Germany GBI All Matu 0.54 0.54 -0.06 0.36 - - - -
EUR-USD 0.12 ns 0.09 - - - - -0.81
CHF-USD 0.18 ns ns - - - - -0.67
GBP-USD 0.08 ns 0.08 - - - - -0.52
MSCI North America -0.19 -0.17 0.82 - - - - -
MSCI EMU -0.23 -0.18 0.71 - - - - -
MSCI Europe Ex EMU -0.21 -0.19 0.71 - - - - -
MSCI Pacific Ex Japan -0.09 -0.17 0.49 - - - - -
JPM EMBI Global Diversified 0.15 ns 0.32 - 0.28 0.17 - -
MSCI Emerging Latin America -0.10 -0.17 0.50 - - 0.38 - -
MSCI Emerging Asia -0.08 -0.17 0.40 - - 0.73 - -
MSCI Emerging Europe -0.05 -0.18 0.38 - - 0.38 - -
FX COMMO ns -0.12 0.25 - - 0.22 0.23 -0.41
FX EMERGENT ns -0.11 0.33 - - 0.27 - -0.36
DJUBS Precious Metals 0.11 -0.09 0.06 - - 0.17 0.28 -0.20
DJUBS Industrial Metals ns -0.17 0.24 - - 0.19 0.35 -0.06
DJUBS Agriculture ns -0.11 0.12 - - - 0.43 -0.07
DJUBS Petrolum 0.06 -0.21 0.08 - - 0.14 0.53 0.06

1”-” indicates an independence assumption.
2non significant, according to a standard non parametric significant test for the Kendall’s tau.
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E Characterization of the marginal distributions

Here we present the different results concerning the best marginal distributions for each

of the 35 indexes.

Let ri,t denote the return of the ith asset at time t. We estimate the marginal dis-

tribution with demeaned return (r̃i,t). For each index, a GARCH(1,1) with generalized

error distribution (GED) residuals model can be described as follows:

ri,t = µi + ǫi,t

ǫi,t = σi,tzi,t, zi,t ∼ GEDi(ν) (19)

σ2

i,t = ωi + αiǫ
2

i,t−1 + βiσ
2

i,t−1

For each marginal model, we have a list of parameters for different equations: (µ) in the

mean equation, (ω, α, β) in the variance equation and (ν) for the innovation distribution.

Standardized residuals from the model are given by

ẑi,t =
(ri,t − µ̂i)

σ̂i,t

By using the Bayesian information criterion (BIC), we select the best model from a

list of possible models. The volatility specification we chose the most commonly used

GARCH(1,1). Besides, the innovation distribution can be selected among Gaussian,

Student t and generalized error distribution. Estimation results of marginal distributions

can be found in 6.
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Table 6: Marginal distribution parameters. The 35 indexes have the same specifica-
tion: GARCH(1,1)-GED. From distribution parameters, we observe that nearly all the
distributions have thicker tails than that of the normal distribution.

1 2 3 4 5 6 7

µ 0.0011 0.0008 0.0008 0.0009 0.0011 0.0025 0.0008
ω 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
α 0.0650 0.0529 0.1801 0.0912 0.1427 0.1282 0.0609
β 0.9005 0.9082 0.7693 0.8498 0.8336 0.7949 0.9173
ν 1.4342 1.9641 1.5545 1.5719 1.4693 1.4459 1.5076

Distribution GED GED GED GED GED GED GED

8 9 10 11 12 13 14

µ -0.0004 0.0010 0.0012 0.0013 0.0010 0.0012 0.0013
ω 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
α 0.0635 0.1341 0.1042 0.0722 0.0787 0.0757 0.1279
β 0.9005 0.8156 0.8517 0.9171 0.8872 0.9035 0.8758
ν 1.9646 1.5131 1.4429 1.6323 1.7285 1.3339 1.1749

Distribution GED GED GED GED GED GED GED

15 16 17 18 19 20 21

µ 0.0011 0.0012 0.0011 0.0010 0.0007 0.0008 0.0004
ω 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
α 0.1285 0.0444 0.0489 0.0629 0.0579 0.0845 0.1038
β 0.8628 0.9424 0.9418 0.9221 0.9150 0.8594 0.8469
ν 1.0000 1.6900 1.8114 1.9413 1.9377 1.8676 2.0295

Distribution GED GED GED GED GED GED GED

22 23 24 25 26 27 28

µ 0.0010 0.0005 0.0010 0.0016 0.0019 0.0029 0.0022
ω 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001
α 0.1596 0.1557 0.2337 0.1247 0.2879 0.1094 0.1605
β 0.7938 0.8243 0.7277 0.8465 0.6732 0.8304 0.7787
ν 1.4232 1.5776 1.4394 1.5346 1.1229 1.5044 1.5654

Distribution GED GED GED GED GED GED GED

29 30 31 32 33 34 35

µ 0.0026 0.0012 0.0012 0.0024 0.0015 0.0005 0.0020
ω 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
α 0.1070 0.0948 0.1507 0.0570 0.0990 0.1121 0.0835
β 0.8355 0.8643 0.7909 0.9144 0.8789 0.8503 0.8826
ν 1.3569 1.4903 1.3839 1.3983 1.7459 1.6148 1.6667

Distribution GED GED GED GED GED GED GED

F Algorithm for conditional simulations

Let us consider the i−th specific risk characterized by the conditional cumulative distribu-

tion function F (xi|x1, x2, ..., xc) with 1 < c < i. First, sample ωj, j = 1, ..., i−1, i+1, ..., n

independent uniform on [0,1], and ωi uniform on a defined interval [Min,Max] ∈ [0, 1].

37



Then, we set

ω1 = F (x1)

ω2 = F (x2|x1)

.. = ...

ωc = F (xc|x1, x2, ..., xc−1)

ωc+1 = F (xc+1|x1, x2, ..., xc, xi)

.. = ...

ωi−1 = F (xi−1|x1, x2, ..., xi−2, xi)

ωi = F (xi|x1, x2, ..., xc)

ωi+1 = F (xi+1|x1, x2, ..., xi)

.. = ...

ωn = F (xn|x1, x2, ..., xn−1)

V = (νj,k), j ∈ 1, ..., n; k ∈ 1, ..., j is an lower triangular matrix to store the conditional

distribution function and Θ = (θj,k), j ∈ 1, ..., n; k ∈ 1, ..., j is the matrix of parameters.

We can easily get xi = wi. Like in the general algorithm, the first for loop runs over the

variables from 2 to c. In this for loop, we have two other sub-for loops. The first one

samples the variable xj, j ∈ 2, ..., c with the h−1 function and the second one gives the

conditional distribution function needed for sampling the xj+1 by using the h-function.

The variable xi is sampled in the following procedure xi = F−1(wi|x1, x2, ..., xc). The

second for loop runs over the variables from c + 1 to n. For sampling the variable

xj, c < j < i, we need the corresponding conditional distribution which is computed

in the If loop, F (xj|x1, x2, ..., xj−1) = F−1(wj, F (xi|x1, x2, ..., xj)) where the argument

F (xi|x1, x2, ..., xj) is computed at the end of the last for loop. Then, a for loop samples

the variable xj, c < j < n with the h−1 function. The remaining part of the algorithm

provides the conditional distribution functions as arguments required for sampling the

next variable.
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Algorithm 1 Simulate sample from a C-vine model given the conditional distribution.
Generates one sample x1,x2...xn.

Sample ω1,ω2,...,ωi−1,ωi+1,...,ωn independent uniform on [0,1].
Sample ωi uniform on a defined interval [Min,Max] ∈ [0, 1].
x1 = ν1,1 = wi

for j ← 2, ..., c
νj,1 = wj

for k ← j − 1, ..., 1
νj,1 = h−1(νj,1, νk,k, θj,k)

end for
xj = νj,1
for l ← 1, ..., j − 1
νj,l+1 = h(νj,l, νl,l, θj,l)

end for
if j=c then
νi,1 = wi

for k ← c, ..., 1
νi,1 = h−1(νi,1, νk,k, θi,k)

end for
xi = νi,1
for p← 1, ..., c
νi,p+1 = h(νi,p, νp,p, θi,p)

end for
end if

end for
for j ← c+ 1, ..., i− 1, i+ 1, ..., n
νj,1 = wj

if j < i then
νj,1 = h−1(νj,1, νi,j, θi,j)

end if
for k ← j − 1, ..., 1
νj,1 = h−1(νj,1, νk,k, θj,k)

end for
xj = νj,1
if j < n then
for l ← 1, ..., j − 1
νj,l+1 = h(νj,l, νl,l, θj,l)

end for
end if
if j < i then
νi,j+1 = h(νi,j, νj,j, θi,j)

end if
end for
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With this algorithm, we can sample from a C-vine model given that the conditional

distribution F (xi|x1, x2, ..., xc) belongs to a given interval. This means that we can cap-

ture the outcome for all variables (returns) in the extreme case where the value of the

conditional distribution is drawn between 0% and 5% for instance.

G Sensitivity analysis for the assets
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Table 7: Decomposition of sensitivity for different indexes following shocks to fixed income indexes
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Table 8: Decomposition of sensitivity for different indexes following shocks to risky indexes
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H Sensitivity analysis for portfolios

Figure 2: Allocations
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Table 9: Benchmark Factor Sensitivity of components
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Table 10: Benchmark Factor Sensitivity of portfolios
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Table 11: Sensitivity Decomposition under low inflation
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de l’Institut de Statistique de l’Université de Paris 8, 229-231.

[32] Tumminello, F.L., Mantegna, R.N. 2007. Hierarchically nested factor model from

multivariate data. EPL (Europhysics Letters), 78 30006.

[33] Weiss, G. 2013. Copula-GARCH versus dynamic conditional correlation: an empiri-

cal study on VaR and ES forecasting accuracy. Review of Quantitative Finance and

Accounting, Vol. 41(2), 179-202.

47


