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Abstract

We build dynamic general equilibrium models with heterogeneous produc-
ers and financial market imperfections. First, we prove the existence of equi-
librium. Second, we investigate the role of financial market imperfection in
growth and land prices. Third, we introduce land dividends, then define and
study land bubbles as well as individual land bubbles.

Keywords: Infinite horizon, general equilibrium, financial market imperfection,
land bubbles.
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1 Introduction

This paper analyzes the impact of the financial market on the economic activities and
study land bubbles with endogenous dividends. We do so by using infinite-horizon
deterministic general equilibrium models with finitely heterogeneous agents and an
imperfect financial market. There are three assets: a consumption good, land used
to produce consumption good, and a financial asset with zero supply.

There are a finite number m of agents who differs on initial resource, borrowing
limit, preference, and production functions.1 At each date, each agent is endowed a
positive amount of consumption good. Agents can use land to produce consumption
good by using their own technology.2 Agents can also invest by buying the financial

∗The authors acknowledges the financial support of the Institut Europlace de Finance Louis
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1In our model, agents can be interpreted as producers.
2We do not take into account the physical capital in this paper. It would be a potential research

in the future.
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asset. In the spirit of Geanakoplos and Zame (2002), Kiyotaki and Moore (1997),
we assume that each agent i can borrow from the financial asset but they must hold
land which is used as collateral. The repayment of agent i does not exceed a fraction
fi ≤ 1 of the income coming from her land.3

Before explore equilibrium analysis, we prove the existence of equilibrium. We
cannot directly use the method of Becker, Bosi, Le Van, and Seegmuller (2015) and
Le Van and Pham (2015) because the financial asset in our model is a short-lived
asset with zero supply while the financial asset in Le Van and Pham (2015) is a
long-lived asset bringing strictly positive exogenous dividend. The challenge is to
prove that the financial asset volume held by each agent is bounded. To overcome
this difficulty, we introduce an intermediate economy with a nominal asset whose
structure is different from that of the financial asset in the original economy. In
this intermediate economy, we can bound the volume of the financial asset, and so
can prove the existence of equilibrium by adapting the method of Becker, Bosi, Le
Van, and Seegmuller (2015) and Le Van and Pham (2015). Last, we construct an
equilibrium of the original economy from an equilibrium of the intermediate economy.
Our method can be used for a large class of general equilibrium models.

We introduce the new concept the dividends of land, denoted by (dt) which are
endogenously determined the following asset pricing equation

qt
pt

= γt+1

(qt+1

pt+1

+ dt+1) (1)

where qt, pt is the price of land and consumption good at date t, and γt+1 is the
endogenous discount factor of the economy from date t to date (t+ 1).

In our framework, land plays 3 different roles: (1) it can be sold, (2) it produces
fruits (consumption good), and (3) it can be used as collateral to borrow. The land
dividend represents two latter roles of land. By the way we can interpret that land
can be resold and bring dividend at each date. The land dividend is proved to be
greater than the lowest marginal productivity but less than the highest marginal
productivity. Note that when the production function of any agent is identical and
linear, we recover the Lucas tree with exogenous dividend.

We then analyze the impact of the financial market on economic activities. The
production activity here is to produce consumption good by using land. Since any
agent can produce, there is a competition on the financial market. Note that in our
framework lenders and borrowers are endogenously identified. We point out several
points.

First, we show that if any agent produces and the financial system is good enough
(in the sense that any agent can totally access to the financial market, i.e. fi = 1
for any i) then the marginal productivities of agents are the same and equal to the
dividend of land. However, there may be some cases where some agents do not
produce. This happens under two conditions: (1) the productivity of these agents
are very low, and (2) agents having high productivity can access totally to the credit
market.

3This income consists the value of land and consumption good produced by using land.
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Second, we prove that if the marginal productivity of some agent is strictly greater
than the land dividend, this agent will borrow until her borrowing constraint is
binding.

Last, we give an analysis at the steady state in a simple case. In the long run the
most patient agent may not hold the entire land stock. This is different from Becker
and Mitra (2012) where they prove the Ramsey’s conjecture that in the long run the
most patient agent holds the entire capital stock. The reason for this difference is
that each agent in our model is a producer while in Becker and Mitra (2012) there
is a unique firm and all consumers rent capital to this firm.

The last part of the paper focuses on land bubbles. In the standard literature,
given an asset, the asset bubble exists if the equilibrium price of this asset is strictly
greater than its fundamental value. However these two variables are endogenous. The
equilibrium price is determined by the market clearing condition. The more critical
concept is the fundamental value of an asset. Considering an asset bringing exogenous
dividends, Kocherlakota (1992), Santos and Woodford (1997) define the fundamental
value of this asset is the sum (over time) of discounted values of dividends. Different
from this literature, land in our paper is used by agents to produce consumption
good and the sequence of land dividends (dt) is endogenously determined by the
asset pricing equation (1). The fundamental value of land is then defined by the sum
of discounted value of land dividends. As discussed above, land dividends represent
the two roles of land: land is used to produce consumption good and as collateral to
borrow, hence the fundamental value of land represents the value of these two roles.
We say that land bubbles exist if the equilibrium price of land is strictly greater than
its fundamental value.

Our definition of the land bubble contributes to the literature studying bubbles of
an asset with endogenous dividends. Let us mention two approaches among others.

The first one introduced by Miao and Wang (2012, 2015) where they consider
bubbles on the firm value with endogenous dividends. They decompose the value of a
firm V (K) havingK units of capital at the beginning into two parts: V (K) = QK+B
where Q represents Tobin’s marginal Q, Q is endogenous. They interpret QK as the
fundamental value of the firm and B as bubbles of the firm value.

The second one is the concept physical capital bubble introduced by Becker, Bosi,
Le Van, and Seegmuller (2015). They define the fundamental value of physical capital
is the sum of discounted value of capital returns (after having been depreciated),
then they say that physical capital bubbles exist if the equilibrium price of physical
capital is strictly greater than its fundamental value. Like physical capital, land in
our framework is also used to produce consumption. However Becker, Bosi, Le Van,
and Seegmuller (2015) assume that there is a unique representative firm while any
agent in our framework can be viewed as a firm.

We investigate whether land bubbles exist. To answer this question, we start by
studying transversality conditions (TVCs). We prove two different kinds of TVCs.
The first one determined with respect to individual discount factors (or individual
expected interest rates) represents the optimality of agents. By contrast the second
one determined with respect to discount factors of the economy (or interest rates of
the economy) shows the behavior of borrowing constraints.
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We then demonstrate that land bubbles are ruled out if borrowing constraints
of any agent are not binding from some date. In other words, bubbles only arise if
borrowing constraints of some agent are binding infinitely many dates. The intuition
is that when borrowing constraints are not binding, the discount factors of any agents
coincide with the discount factor of the economy. In this case, no-bubble condition is
equivalent to no Ponzi scheme. Since TVCs are satisfied, so is no-bubble condition.

Our next finding is to show that when the borrowing limit of any agent equals
1 (the maximum level), endowments are uniformly bounded from above, and tech-
nologies are stationary, there is no land bubble. Our result suggests that rational
land bubble can not appear in a bounded economy (an economy where any funda-
mental variable is uniformly bounded from above and away from zero) with a good
financial system (in the sense that fi = 1 for any i). We also give some examples of
bubble where fi = 0, endowments may tend to infinity, and/or technologies are not
stationary. The two key points of these examples are that (1) there is a fluctuation
on borrowing constraints of agents, and (2) land dividends are low with respect to
endowments.

Last we introduce the concept individual bubble and show the connection between
bubble and individual bubbles. Consider an agent, say i. We take her marginal
productivity as individual land dividend, then use her individual discount factor to
define the individual fundamental value with respect to this agent. We say that
individual bubbles with respect to (w.r.t.) agent i (for short we write i−bubbles)
exist if the market price of land is strictly greater than the individual fundamental
value of land w.r.t. agent i. We find out three points. First, if i−bubbles exist
for some agent i then land bubbles exist, the converse is not true. Second, if the
individual fundamental value of each agent equals the fundamental value then there
is no land bubble. Third, there always exists an agent i such that i-bubbles are ruled
out. Our finding suggests that the way we choose the discount factors to evaluate
the fundamental value plays a very important role on asset bubbles.

The paper is organized as follows. Section 2 presents our framework and pro-
vides some preliminary equilibrium properties. Section 3 investigates the role of the
financial market. Section 4 studies land bubbles. Section 5 concludes.

All formal proofs are gathered in Appendices 6 and 7.

2 The framework

This is an infinite horizon general equilibrium model without uncertainty. The time
is discrete and run from date 0 (initial date) to infinity. There are a finite number
of agents. Let us denote I the set of agents.

Consumption good. There is a single consumption good. At each period t =
0, 1, 2, . . . ,∞, the price of consumption good is denoted by pt and agent i consumes
ci,t units of consumption good. Each agent i is endowed ei,t units of consumption
good.

Land. The total supply of exogenous land is L and its price at date t is denoted
by qt. At date t, if agent i buys li,t+1 units of land with price qt then: (1) on the one
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hand, agent i uses this land to produce Fi(li,t+1) units of consumption good, (2) on
the other hand, agent i can resell land with price qt+1.

The financial market only opens from the initial date. Rt is the gross return
at date t. If agent i buys ai,t units of financial asset at date t−1 then agent i receives
Rtai,t at date t. In this framework, agents can also get credit from financial market.
However, if agents want to borrow, they are required to hold land as collateral. We
will discuss borrowing constraints below.

Each household i takes the sequence of prices (p, q, R) := (pt, qt, Rt)
∞
t=0 as given

and chooses sequences of consumption, land, and asset volume (ci, li, ai) := (ci,t, li,t+1, ai,t+1)
+∞
t=0

in order to maximizes her intertemporal utility

(Pi(p, q, R)) : max
[

+∞
∑

t=0

βt
iui(ci,t)

]

(2)

subject to, for each t,

li,t+1 ≥ 0 (3)

ptci,t + qtli,t+1 + ptai,t+1 ≤ ptei,t + qtli,t + ptFi(li,t) +Rtai,t (4)

Rt+1ai,t+1 ≥ −fi
[

qt+1li,t+1 + pt+1Fi(li,t+1)
]

(5)

where li,0 > 0 are given. We assume that there is no debt before the opening of the
financial market, that is ai,0 = 0.

Borrowing constraint (5) means that agent i can borrow an amount but the
repayment of this amount does not exceed a fraction of the incoming coming from
her land. This fraction is fi which is set by law and less than 1 in order to ensure
that the incoming coming from land of each agent is greater than its debt. fi is the
borrowing limit of agent i.

Condition (5) can also be viewed as a collateral constraint: agents can borrow
but they must have land as collateral. By the way, our model is also related to
the literature on general equilibrium with collateral constraints (Geanakoplos and
Zame, 2002; Kiyotaki and Moore, 1997). Our framework is also related to land-price
dynamics (Liu, Wang, and Zha, 2013).

Remark 1. In Kiyotaki and Moore (1997), they considered two types of agents:
farmer and gatherer whose time preferences are β < β′. Farmer has a linear produc-
tion function and gatherer has a decreasing return to scale production function. They
assumed that Rt

pt
be exogenous and equal to the 1

β′
. They also assumed that fi = 1 for

every i.

Remark 2. Our model is related to the one in Farhi and Tirole (2012). The
difference is that we consider dynamic firms in an infinite-horizon GE model while
they consider firms living for 3 periods in an OLG model.

The economy, denoted by E , is characterized by a list

E := (ui, βi, ei, fi, li,0, Fi).
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Definition 1. A list
(

p̄t, q̄t, R̄t, (c̄i,t, l̄i,t+1, āi,t+1)
m
i=1

)+∞

t=0
is an equilibrium of the econ-

omy E if the following conditions are satisfied:

(i) Price positivity: p̄t, q̄t, R̄t+1 > 0 for t ≥ 0.

(ii) Market clearing: at each t ≥ 0,

good :
m
∑

i=1

c̄i,t =
m
∑

i=1

(ei,t + Fi(l̄i,t))

land :
m
∑

i=1

l̄i,t = L

financial asset :
m
∑

i=1

āi,t = 0.

(iii) Agents’ optimality: for each i, (c̄i,t, l̄i,t+1, āi,t+1)
∞
t=0 is a solution of the problem

(Pi(p̄, q̄, R̄)).

The financial asset in our framework is a short-lived asset with zero supply, which
is different from the long-lived asset bringing exogenous positive dividends in Kocher-
lakota (1992), Santos and Woodford (1997), Le Van and Pham (2015).

2.1 The existence of equilibrium

In what follows, if we do not explicitly mention, we work under the following as-
sumptions.

Assumption 1. For each i, the function Fi is concave, continuously differentiable,
F ′i > 0 and Fi(0) = 0.

Assumption 2. li,0 > 0 for any i, and ei,t > 0 for any i and for any t.

Assumption 3. fi > 0 for any i.

Assumption 4. For each i, the function ui is continuously differentiable, concave,
u′i > 0, u′i(0) =∞.4

Assumption 5. For each i

∞
∑

t=0

βt
iui(Wt) <∞, (6)

where Wt :=
m
∑

i=1

(

ei,t + Fi(L)
)

.

4In the proof of the existence of equilibrium, we do not require u
′
i(0) =∞. This condition is to

ensure that ci,t > 0 for any t, which is used in next Sections.
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Proposition 1. Under the above assumptions, there exists an equilibrium.

We cannot directly use the method of Becker, Bosi, Le Van, and Seegmuller
(2015) and Le Van and Pham (2015) because the financial asset in our model is a
short-lived asset with zero supply. The difficulty is to prove that the asset volume
ai,t is bounded. To overcome this difficulty, we introduce an intermediate economy
with a nominal asset whose structure is different from that of the financial asset in
the original economy. In this intermediate economy, we can bound the volume of the
financial asset, and so can prove the existence of equilibrium by adapting the method
of Becker, Bosi, Le Van, and Seegmuller (2015) and Le Van and Pham (2015): (1) we
prove the existence of equilibrium for each T− truncated economy ET ; (2) we show
that this sequence of equilibria converges for the product topology to an equilibrium
of our economy E .

Last, we construct an equilibrium for the original economy from an equilibrium
of the intermediate economy.

Let us introduce the intermediate economy Ẽ as follows. We only change the
structure of the financial asset. We consider a nominal asset b with the sequence
of returns (rt)t≥1. In this economy, each household i takes the sequence of prices
(p, q, r) = (pt, qt, rt)

∞
t=0 as given and chooses sequences of consumption, land, and

asset volume (ci, li, bi) := (ci,t, li,t+1, bi,t+1)
+∞
t=0 in order to maximizes her intertemporal

utility
+∞
∑

t=0

βt
iui(ci,t) subject to sequences of budget and borrowing constraints. Her

maximization problem is

(P̃i(p, q, r)) : max
[

+∞
∑

t=0

βt
iui(ci,t)

]

(7)

subject to, for each t,

li,t+1 ≥ 0 (8)

ptci,t + qtli,t+1 + bi,t+1 ≤ ptei,t + qtli,t + ptFi(li,t) + rtbi,t (9)

rt+1bi,t+1 ≥ −fi
[

qt+1li,t+1 + pt+1Fi(li,t+1)
]

(10)

where li,0 ≥ 0 is given and there is no debt before the opening of the financial market,
that is bi,0 = 0.

Since li,t ≤ L for any i, t, we can use (9) and the induction argument, to prove
that the asset volume bi,t is bounded from above if pt, qt, rt are bounded from above.

Definition 2. A list
(

p̄t, q̄t, r̄t, (c̄i,t, l̄i,t+1, b̄i,t+1)
m
i=1

)+∞

t=0
is an equilibrium of the econ-

omy Ẽ if the following conditions are satisfied:

(i) p̄t, q̄t, r̄t+1 ∈ (0,+∞) for any t ≥ 0.
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(ii) Market clearing: at each t ≥ 0,

good :
m
∑

i=1

c̄i,t =
m
∑

i=1

(ei,t + Fi(l̄i,t))

land :
m
∑

i=1

l̄i,t = L

financial asset :
m
∑

i=1

b̄i,t = 0.

(iii) Agents’ optimality: for each i, (c̄i,t, l̄i,t+1, b̄i,t+1)
∞
t=0 is a solution of the problem

(P̃i(p̄, q̄, r̄)).

By changing variables (ai,t := bi,t/pt−1, Rt := rtpt−1), it is easy to prove the
following result.

Lemma 1. If
(

p̄t, q̄t, r̄t, (c̄i,t, l̄i,t+1, b̄i,t+1)
m
i=1

)+∞

t=0
is an equilibrium for the economy

Ẽ then
(

p̄t, q̄t, R̄t, (c̄i,t, l̄i,t+1, āi,t+1)
m
i=1

)+∞

t=0
, where āi,t := b̄i,t/p̄t−1, R̄t := r̄tp̄t−1, is an

equilibrium for the economy E .

See Appendix 7 for a proof of the existence of equilibrium for the economy Ẽ .
Note that in this proof, we allow for non-stationary production functions. However,
in this paper (except Section 4.3.1), we assume that the technology is stationary for
the sake of simplicity.

2.2 Preliminary properties of equilibrium

Let
(

p, q, R, (ci, li, ai)
m
i=1

)

be an equilibrium.

We write all first order conditions (henceforth FOCs) for the economy E . Denote
by λi,t the multiplier with respect to the budget constraint of agent i and by ηi,t+1,
µi,t+1 ≥ 0 the multipliers with respect to constraints (3), (5). We have

βt
iu
′
i(ci,t) = λi,tpt (11)

λi,tpt = (λi,t+1 + µi,t+1)Rt+1 (12)

λi,tqt = (λi,t+1 + fiµi,t+1)(qt+1 + pt+1F
′
i (li,t+1)) + ηi,t+1 (13)

ηi,t+1li,t+1 = 0 (14)

µi,t+1

(

Rt+1ai,t+1 + fi
[

qt+1li,t+1 + pt+1Fi(li,t+1)
]

)

= 0 (15)

Remark 3. Since we allow for F ′i (0) <∞, there may be some agent who do not use
land to produce.

We define γi,t+1 the individual discount factor of agent i from date t to date t+1
and Qi,t the discount factor of agent i from initial date to date t

γi,t+1 :=
βiu

′
i(ci,t+1)

u′i(ci,t)
, Qi,0 := 1, Qi,t := γi,1 · · · γi,t =

βt
iu
′
i(ci,t)

u′i(ci,0)
. (16)

The following transversality condition is one of fundamental results of our paper.
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Proposition 2 (Transversality condition). We have

lim
t→∞

Qi,t(
qt
pt
li,t+1 + ai,t+1) = 0 (17)

∞ >
∞
∑

t=0

Qi,tci,t =
(

Fi(li,0) +
q0
p0
li,0

)

+
∞
∑

t=0

Qi,tei,t

+
∞
∑

t=1

Qi,t

(

1 + fi
µi,t

λi,t

)(

Fi(li,t)− li,tF
′
i (li,t)

)

. (18)

Interpretation. We see that
∞
∑

t=1

Qi,t

(

1+ fi
µi,t

λi,t

)(

Fi(li,t)− li,tF
′
i (li,t)

)

is the total

gain of the productive process of agent i, which is divided in two parts:

- gain from the pure production process:
∞
∑

t=1

Qi,t

(

Fi(li,t)− li,tF
′
i (li,t)

)

.

- gain from the financial market (due to the financial market’s imperfection):
∞
∑

t=1

Qi,tfi
µi,t

λi,t

(

Fi(li,t)− li,tF
′
i (li,t)

)

.

Lemma 2. Assume that fi > 0 for any i. Then, we have

pt+1

Rt+1

= max
i∈{1,...,m}

βiu
′
i(ci,t+1)

u′i(ci,t)
. (19)

We define the discount factor γt+1 of the economy from date t to t + 1, and the
discount factor Qt of the economy from initial date to date t as follows

γt+1 := max
i∈{1,...,m}

βiu
′
i(ci,t+1)

u′i(ci,t)
, Q0 := 1, Qt := γ1 . . . γt, ∀t ≥ 1. (20)

Note that γi,t ≤ γt for any t and for any i.
We rewrite borrowing constraint (5) as

Qt+1
Rt+1

pt+1

ai,t+1 ≥ −fiQt+1

[qt+1

pt+1

li,t+1 + Fi(li,t+1)
]

. (21)

According to definition of (Qt) and (19), we see that Qt =
Rt+1

pt+1

Qt+1. Therefore, (5)

is equivalent to

Qtai,t+1 ≥ −fiQt+1

[qt+1

pt+1

li,t+1 + Fi(li,t+1)
]

(22)

Proposition 3 (Fluctuation of borrowing constraints). 1. For each i, there are
only 2 cases

(a) there does not exist lim
t→∞

(

Qtai,t+1 + fiQt+1

(qt+1

pt+1

li,t+1 + Fi(li,t+1)
)

)

.

(b) lim
t→∞

(

Qtai,t+1 + fiQt+1

(qt+1

pt+1

li,t+1 + Fi(li,t+1)
)

)

= 0.
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2. We have, for each i,

lim inf
t→∞

(

Qtai,t+1 + fiQt+1

(qt+1

pt+1

li,t+1 + Fi(li,t+1)
)

)

= 0. (23)

Remark 4. There are two kinds of transversality conditions. The first one is (17)

which is determined by the individual discount factor
βt
iu
′
i(ci,t)

u′i(ci,0)
. The second one is

(23) based on the economy’s discount factor Qt.

Remark 5. All results in this Section still hold for non-stationary production func-
tions.

3 The role of the financial market

For each t ≥ 0, we define

dt+1 := min
i∈{1,...,m}

F ′i (li,t+1), d̄t+1 := max
i∈{1,...,m}

F ′i (li,t+1). (24)

We have the following result

Lemma 3. We have

γt+1

(qt+1

pt+1

+ dt+1) ≤
qt
pt
≤ γt+1

(qt+1

pt+1

+ d̄t+1). (25)

According to Lemma 3, we introduce the land dividends as follows.

Definition 3. (Dividends of land)
We define dividends of land (dt)t by

qt
pt

= γt+1

(qt+1

pt+1

+ dt+1). (26)

Note that dividends of land are endogenously determined. In our framework, the
land’s structure is the following: if agents buy land at date t, they can: (1) resell land
at date t+1, (2) use land as collateral in order to borrow from financial market and
(3) receive an amount of consumption good from their production process. Definition
3 states that two latter roles of land can be represented by dividends of land. By the
way, we interpret that land can be resold and give dividends at each date. Condition
(26) can be viewed as an asset pricing equation or non-arbitrage condition.

According to (25), we see that land dividend dt is greater than the lowest marginal
productivity dt but less than the highest marginal productivity d̄t.

In what follows we will show other properties of land’s dividends.

Proposition 4. We have dt+1 = d̄t+1 if fi = 1 for any i or (5) is not binding for
any i.
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We can interpret fi = 1 as a total access of agent i to credit market. Proposition
4 indicates that the land’s dividend equals the highest marginal productivity if any
one can totally access to credit market or borrowing constraints of any agent are not
binding.

This following result shows that if every agent buys land, then the land’s dividend
equals the lowest marginal productivity.

Proposition 5. Consider the date t. Assume that li,t+1 > 0 for every i. We then
have,

qt
pt

= γt+1

(qt+1

pt+1

+ dt+1

)

. (27)

And then, we have dt+1 = dt+1.

We point out some consequences of Propositions 4 and 5.

Corollary 1. Assume that F ′i (0) = +∞ for every i. We have dt = dt for any t.

Corollary 2. (Equal marginal productivities)
Assume that µi,t = fiµi,t and li,t > 0. We have F ′i (li,t) = dt for such i.

Corollary 3. Assume that fi = 1 and F ′i (0) = ∞ for any i. We have dt = F ′i (li,t)
for every i, t.

3.1 Who buys land? Who needs credits?

In this section, we examine which agents produce and which agents need to borrow.
Let us start by the following result.

Proposition 6. If li,t+1 > 0 then F ′i (li,t+1) ≥ dt+1.
If F ′i (li,t+1) > dt+1 then borrowing constraint (5) of agent i is binding.

The first statement indicates that if an agent buys land, its marginal productivity
must be greater than land dividends.

The second one shows that if an agent has marginal productivity which is strictly
greater than land dividend, she will borrow until her borrowing constraints are bind-
ing. In other word this agent needs credit.

The following result shows that agents having low productivity do not buy land
to produce.

Proposition 7. Consider the agent i. Assume that there exists an agent j such that
fj = 1 and F ′i (0) < F ′j(L). We have li,t = 0 for every t.

We note that Proposition 7 holds whatever the form of the utility function and
the size of the discount rate βi. We now point out some implications of Proposition
7.

This result is in line with Proposition 1 in Le Van and Pham (2015) where they
proved that no one invests in the productive sector if the productivity of this sector
is too low.
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We can interpret fj = 1 as a total access of agent j to credit market. In this case,
any agent, say i, having low productivity so that F ′i (0) < F ′j(L) never produce.

If we interpret agents as countries, our economy becomes the world economy with
free trade. Each country i is endowed li,0 units of land. Our result indicates that
when the trade is totally free and the international financial market is good enough
(in the sense that fi = 1 for any i), countries with low productivity never produce
and land in these countries will be held by other countries with high productivity.

However, when there exist financial (or political) frictions characterized by fj < 1,
the analysis becomes more complex.

3.2 A steady state analysis

In this section, we assume that no agent holds endowment, that is ei,t = 0 for every
i, t. For simplicity, we also assume that there are two agents, say i and j, with
different rates of time preference βi < βj.

We will give steady state analysis.

Lemma 4. Assume that ei,t = 0 for any i, t and Fi(li) = Ail
α
i , where α ∈ (0, 1), for

any i. Assume that there are two agents i and j with βi < βj. Then there is a unique
steady state (up to scalar of prices) determined by

R

p
=

1

βj

(28)

(q

p

)
1

1−αL =
( αAi

1
βi+fi(βj−βi)

− 1

)
1

1−α

+
( αAj

1
βj
− 1

)
1

1−α

(29)

li =
( αAi

1
βi+fi(βj−βi)

− 1

p

q

)
1

1−α

, lj = L− li (30)

Rai + fi
[

qli + pFi(li)
]

= 0, ai + aj = 0. (31)

Who will own land in the long-run?

With Cobb-Douglas production functions, we see that li > 0 and lj > 0. Each agent
holds a strictly positive amount of land to produce them-self. This is different from
the result in Becker and Mitra (2012) where the most patient agent holds the entire
stock of capital in the long-run.

There are two reasons for this difference.
First, in Becker and Mitra (2012) there is a unique representative firm and con-

sumers cannot produce while agents in our framework can produce by using their
technologies and they can be viewed as heterogeneous credit-constrained firms.

Second, capital returns in Becker and Mitra (2012) are determined by the marginal
productivity of the representative firm while in our framework land dividends which
can be interpreted as land returns are determined by ”non-arbitrage” condition (26).

12



The role of borrowing limit

Corollary 4. The price of land q

p
increases in fi.

The intuition is that when fi increases, agent i can borrow more, and then land
demand will increase which do increase the price of land.

Corollary 5. The output in the long run Y := Fi(li) + Fj(lj) is increasing in bor-
rowing limit fi

The reason is intuitive: the higher level of fi, the more quantity agent with higher
productivity can borrow, and therefore the more output is produced.

4 Land bubbles

We know that Qt+1 = γt+1Qt. Combining with (26), we get

Qt

qt
pt

= Qt+1

(qt+1

pt+1

+ dt+1

)

. (32)

We have

q0
p0

= γ1(
q1
p1

+ d1) = Q1d1 +Q1
q1
p1

= Q1d1 +Q1γ2(
q2
p2

+ d2) = Q1d1 +Q2d2 +Q2
q2
p2

= . . . =
T

∑

t=1

Qtdt +QT

qT
pT

, ∀T ≥ 1. (33)

Definition 4. The fundamental value of the land is defined by

FV0 :=
∞
∑

t=1

Qtdt (34)

Interpretation. As discussed above, land dividends represent the two roles of
land: land is used to produce consumption good and as collateral to borrow, hence
the fundamental value of land represents the value of these two roles.

Definition 5. (bubble)
We say that land bubbles exist if the market price (in term of consumption good)

of the land is greater than its fundamental value, i.e.,
q0
p0

> FV0.

As in Montrucchio (2004), Le Van, Pham, and Vailakis (2014) we have

Proposition 8. The three following statement are equivalent

(i) Land bubbles exist.
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(ii) lim
t→∞

Qt

qt
pt

> 0.

(iii)
∑∞

t=1

ptdt
qt

< +∞.

Since dt ≥ min
i

F ′i (li,t) ≥ min
i

F ′i (L) > 0 for every t, we have

Corollary 6. If land bubble exists, we have
∑∞

t=1
pt
qt
< +∞.

We see here that the existence of land bubbles implies that the land price tends
to infinity. However this fact only holds for the stationary technology. In Section
4.3.1, we will discuss more about this issue.

Interest rates and bubbles

According to (19), we see that Qt =
p1
R1

p2
R2

. . .
pt
Rt

. According to (33), we have

∞
∑

t=1

Qtdt ≤ q0/p0 < ∞. We also have dt ≥ min
i

F ′i (li,t) ≥ min
i

F ′i (L) > 0 for every t,

hence we get
∞
∑

t=1

Qt <∞.

We write γt =
pt
Rt

= 1
1+ρt

where ρt is interpreted as the real interest rate of the
economy at date t. Note that these interest rates may be negative. The condition
∞
∑

t=1

Qt <∞ is rewritten as follows

∞
∑

t=0

1
t
∏

s=1

(1 + ρs)

<∞. (35)

We can interpret that real interest rates are not ”too low”. We also see that there
exists an infinite sequence of date (tn)n such that ρtn > 0 for any n.

According to Proposition 8, land bubbles exist if and only if

lim
t→∞

1
t
∏

s=1

(1 + ρs)

qt
pt

> 0. (36)

This condition implies that there exists the following limit

lim
t→∞

qt+1

pt+1
qt
pt

1

1 + ρt+1

= 1. (37)

We obtain that if land bubbles exist, in the long-run the rate of growth of land
prices is equal to the gross interest rate.
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4.1 No-bubble results

Proposition 9. Assume that for each i, Qt/Qi,t is uniformly bounded from above.
Then there is no bubble.

We write γi,t =
1

1+ρi,t
, where ρt is interpreted as the the real expected interest rate

of agent i at date t. Note that these interest rates may be negative. According to
Proposition 9, if bubble exists there exists an agent i such that her expected interest
rates are high w.r.t. those of the economy in the sense that

T
∏

s=1

1 + ρi,t
1 + ρt

T→∞
−−−→∞.

We point out some consequences of Proposition 9

Corollary 7. Assume that there exists T > 0 such that µi,t+1 = 0 for any t ≥ T and
for any i. Then there is no land bubble.

The intuition of this result is that when µi,t+1 = 0 for any t ≥ T and for any i,
the discount factors of any agents coincide with the discount factors of the economy.
In this case, no-bubble condition is equivalent to no Ponzi scheme. Since TVCs are
satisfied, so is no-bubble condition.

Proposition 7 implies that if borrowing constraints of all agents are not binding,
then there is no bubble. In other words, we have

Corollary 8. If land bubbles exist, there exists an agent i and an infinite sequence
of dates (tn)n such that borrowing constraints of agent i are binding at each date tn,
i.e, for any tn

Rtnai,tn = −fi
[

qtnli,tn + ptnFi(li,tn)
]

. (38)

This result is mentioned in Kocherlakota (1992) where he considers the borrowing
constraints: xi,t ≥ x where xi,t is the asset quantity held by agent i at date t and
x ≤ 0 is an exogenous bound. He claims that lim inf

t→∞
(xi,t−x) = 0 and interprets this

means that borrowing constraints of agent i are frequently binding.

We define the aggregate output of the economy at date t by Yt :=
m
∑

i=1

(ei,t+Fi(li,t)).

We then define the present value of the aggregate output by

∞
∑

t=0

QtYt. (39)

We prepare our main result in this section by following claims whose proofs are
presented in Appendix 6.

Lemma 5. If sup
i,t

ei,t < ∞ and technologies are stationary, the present value of the

aggregate output is finite.
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Lemma 6. Assume that sup
i,t

ei,t < ∞ and technologies are stationary. Given an

equilibrium, we have that Qt

(

qt
pt
li,t+1 + ai,t+1

)

is uniformly bounded from below and
from above as well.

Lemma 7. Assume that sup
i,t

ei,t < ∞ and technologies are stationary. Given an

equilibrium, there exist the following limits.

lim
t→∞

Qt

(qt
pt
li,t+1 + ai,t+1

)

= lim
t→∞

(

Qt

qt
pt
li,t +Qt−1ai,t

)

(40)

for each i.

Lemma 8. Assume that sup
i,t

ei,t < ∞ and technologies are stationary. Given an

equilibrium, if there exists T such that

fi
(qt
pt

+
Fi(li,t)

li,t

)

li,t ≥ (
qt
pt

+ dt)li,t (41)

for every t ≥ T . Then lim
t→∞

Qt

(

ai,t+1 +
qt
pt
li,t+1

)

≤ 0.

By using these above results, we obtain the main result of this section.

Proposition 10. Assume that sup
i,t

ei,t <∞, technologies are stationary, and fi = 1

for every i. Then, land bubbles are ruled out at equilibrium.

Our result indicates that there is no land bubble at equilibrium when the financial
system is good enough (in the sense that fi = 1 for any i), exogenous endowments
are bounded from above, and the technology is stationary. We also notice that our
result still holds for any technology with the form Ai,tFi where Ai,t is bounded from
above and away from zero for any i.

Proposition 10 is in line with the result in Kocherlakota (1992), Santos and Wood-
ford (1997), Huang and Werner (2000), Le Van, Pham, and Vailakis (2014), where
they prove that bubbles are ruled out if the present value of the aggregate endow-
ment is finite. Indeed, the asset in Kocherlakota (1992) is a particular case of the
land in our model for the case where Fi,t(X) = ξtX for any X. Proposition 10 also
shows that land bubbles are ruled out in model in Kiyotaki and Moore (1997).

Proposition 10 suggests that land bubbles only appear when technologies are
non-stationary or agents cannot easily access to financial market, i.e., fi < 1. We
will present some examples of bubbles in Section 4.3.1, where these conditions are
violated.

4.2 Bubbles vs i−bubbles

According to (13), we have

qt
pt

=
λi,t+1pi,t+1

λi,tpt

(qt+1

pt+1

+ F ′i (li,t+1)
)

+
fiµi,t+1pt+1

λi,tpt

(qt+1

pt+1

+ F ′i (li,t+1)
)

+
ηi,t+1

λi,tpt
(42)
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We then use (11) and (12) to get that

qt
pt

= γi,t+1

(qt+1

pt+1

+ di,t+1

)

(43)

where

di,t+1 :=
(

F ′i (li,t+1) +
ηi,t+1

λi,t+1pt+1

)

+ fi
( γt+1

γi,t+1

− 1
)(qt+1

pt+1

+ F ′i (li,t+1)
)

(44)

We call di,t+1 the individual dividend of agent i at date t + 1. di,t+1 is divided into

two terms. The first term Xi,t+1 := F ′i (li,t+1) +
ηi,t+1

λi,t+1pt+1

represents the return from

the production process. Note that Xi,t+1li,t+1 = F ′i (li,t+1)li,t+1. The second term

fi
(

γt+1

γi,t+1
− 1

)(qt+1

pt+1

+F ′i (li,t+1)
)

can be interpreted as the collateral return. Note that

the collateral return is equal to zero if fi = 0 or the discount factors of agent i and
of the economy are identical.

The asset pricing equation (43) shows the way that agent i evaluates the price of
land. With the individual discount factor γi,t+1, once agent i buys land she will be
able to resell land with price qt+1 and expect to receive di,t+1 units of consumption
good as dividends. Since the individual discount factor γi,t+1 is less than that of
economy γt+1, the individual dividend di,t+1 expected by agent i is greater than the
dividend dt+1 of the economy.

According to (43) and by using the same argument in (33), we obtain

q0
p0

=
T

∑

t=1

Qi,tdi,t +Qi,T

qT
pT

, ∀T ≥ 1. (45)

Definition 6. (individual-bubble) FVi :=
∞
∑

t=1

Qi,tdi,t is called the i-fundamental

value of land. We say that i-land bubbles exist if q0/p0 >
∞
∑

t=1

Qi,tdi,t.

The concept i−bubble is related to bubbles of durable goods and collateralized as-
sets in Araujo, Pascoa, and Torres-Martinez (2011). Given an equilibrium, Araujo,
Pascoa, and Torres-Martinez (2011) provide asset pricing conditions (Corollary 1,
page 263) based on the existence of what they call deflators and non-pecuniary re-
turns which are not necessarily unique. They then defined bubbles associated to
each deflators and non-pecuniary returns. In our framework, for each equilibrium,
we give closed formulas for two types of deflators. They are (γt) and (γi,t) which we
call discount factors and individual discount factors respectively.

By using the same argument in Proposition 8, we obtain the following result.

Proposition 11. The following statements are equivalent

(i) i-land bubbles exist.

(ii) lim
t→∞

Qi,t

qt
pt

> 0.
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(iii)
∑∞

t=1

ptdi,t
qt

< +∞.

We now state our results showing the connection between two concepts: bubble
and i−bubble.

Proposition 12. There exists an agent i such that i−bubble is ruled out.

Proposition 13. 1. If i-land bubbles exist for some agent i then land bubbles
exist.

2. FV0 ≤ FVi for any i. Moreover, if FV0 = FVi for any i then FV0 = FVi =
q0/p0 for any i, i.e. there is neither bubble nor i−bubble.

Note that in Section 4.3.1 we present an example where i−bubble does not exist
for any i while bubble may arise.

We next introduce the following concept.

Definition 7 (Strong bubble). We say that strong bubble exists if the asset price
is strictly greater than every individual value of land, i.e. q0 > max

i
FVi.

It is easy to see that if strong land bubbles exist then i−bubble exists for any i.
However this is impossible because of Proposition 12. In other words, we have the
following result.

Proposition 14. Strong land bubbles are ruled out.

Our concept strong bubble is related to the concept speculative bubble in Werner
(2014) where he considers an asset bringing exogenous dividends in a model with
ambiguity. Werner (2014) defines the asset’s fundamental value under agent’s i beliefs
is the sum of discounted expected future dividends under her beliefs. He then says
that speculative bubble exists if the asset price is strictly higher than every agent’s
fundamental value.

The readers may ask why strong bubbles are ruled out while speculative bubbles
in Werner (2014) may exist. It is hard to compare these two results since the two
concepts of bubbles are defined in two different frameworks (with and without am-
biguity). Another reason may be the linearity of utility functions: In our paper, we
impose Inada condition for utility functions to ensure that ci,t is strictly positive at
equilibrium while Werner (2014) works with linear utility function. If we consider

linear utility functions, the ratio
pi,t+1λi,t+1

pi,tλi,t

may be higher than
βiu

′
i(ci,t+1)

u′i(ci,t)
= βi.

As a result, it is easy to have a situation where the asset price q0/p0 may be greater

than
∞
∑

t=1

βt
idi,t which can be interpreted as the fundamental value with respect to

agent i. Hence strong bubbles may exist. To sum up, in the theoretical point of
view, the existence of bubbles depends on the way we define the asset’s fundamental
value which is an ambiguous concept.
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4.3 Land bubbles when the economy has no financial sector

We focus on the case where there is no financial market. In this section, we allow
for non-stationary production functions. We rewrite the problem of each agent. The
household i takes the sequence of prices (p, q) = (pt, qt)

∞
t=0 as given and chooses

sequences of consumption and land (ci, li) := (ci,t, li,t+1)
+∞
t=0 in order to maximize her

intertemporal utility

(Pi(p, q)) : max
[

+∞
∑

t=0

βt
iui(ci,t)

]

(46)

subject to, for each t, : li,t+1 ≥ 0 (47)

ptci,t + qtli,t+1 ≤ ptei,t + qtli,t + ptFi,t(li,t), (48)

where li,0 > 0 is given.

Definition 8. A list
(

p̄t, q̄t, (c̄i,t, l̄i,t+1)
m
i=1

)+∞

t=0
is an equilibrium of the economy with-

out financial market if the following conditions are satisfied:

(i) Price positivity: p̄t, q̄t > 0 for t ≥ 0.

(ii) Market clearing: at each t ≥ 0,

good :
m
∑

i=1

c̄i,t =
m
∑

i=1

(ei,t + Fi,t(l̄i,t))

land :
m
∑

i=1

l̄i,t = L.

(iii) Agents’ optimality: for each i, (c̄i,t, l̄i,t+1)
∞
t=0 is a solution of the problem (Pi(p̄, q̄)).

If we consider the linear technology Fi,t(x) = ξtx for every i, the structure of land
becomes the same structure of asset in Kocherlakota (1992), Santos and Woodford
(1997), Huang and Werner (2000). If Fi = 0 for every i, the land becomes pure
bubble asset as in Tirole (1985). In this case, the fundamental value of this asset is
zero.

Let
(

p, q, (ci, li)
m
i=1

)

be an equilibrium.

Firstly, we write all FOCs for the economy E . Denote by λi,t the multiplier with
respect to the budget constraint of agent i and by µi,t+1 the multiplier with respect
to the borrowing constraint li,t+1 ≥ 0

βt
iu
′
i(ci,t) = λi,tpt (49)

λi,tqt = λi,t+1(qt+1 + pt+1F
′
i,t+1(li,t+1)) + µi,t+1 (50)

µi,t+1li,t+1 = 0. (51)

We also define dividends of land as follows.

qt
pt

= γt+1

(qt+1

pt+1

+ dt+1). (52)
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where γt+1 is the discount factor of the economy from date t to date t + 1:

γt+1 := max
i∈{1,...,m}

βiu
′
i(ci,t+1)

u′i(ci,t)
. We define the discount factor of the economy from

initial date to date t as follows: Q0 := 1, Qt :=
t
∏

s=1

γs, ∀t ≥ 1. Then the fundamental

value of the land is defined by FV0 :=
∞
∑

t=1

Qtdt. We say that land bubbles exist

q0/p0 > FV0.

4.3.1 Examples of land bubbles

We now construct equilibria with bubbles. We assume that there are two agents A
and B. with non-stationary technologies FA,t(L) = AtL, FB,t(L) = BtL, and utility
functions uA(x) = ln(x) = uB(x).

Let eA,2t = eB,2t+1 = 0 for any t and the land supply L = 1.
We need the following conditions to ensure FOCs and to identify what are the

discount factors of the economy (γt).

βA(
βBeB,2t

1 + βB

+ A2t)(
βAeA,2t+1

1 + βA

+ A2t+1) < βB

eB,2t

1 + βB

eA,2t+1

1 + βA

(53)

βB(
βAeA,2t−1

1 + βA

+B2t−1)(
βBeB,2t

1 + β
+B2t) < βA

eB,2t

1 + βB

eA,2t−1

1 + βA

(54)

βA(
βBeB,2t

1 + βB

+ A2t)(
βAeA,2t+1

1 + βA

+B2t+1) ≤ βB

eB,2t

1 + βB

eA,2t+1

1 + βA

(55)

βB(
βAeA,2t−1

1 + βA

+B2t−1)(
βBeB,2t

1 + β
+ A2t) ≤ βA

eB,2t

1 + βB

eA,2t−1

1 + βA

. (56)

Note that these conditions are satisfied if βA = βB = β, and A2t, B2t <
(1−β)eB,2t

1+β

and A2t+1, B2t+1 <
(1−β)eA,2t+1

1+β
for any t.

We will construct an equilibrium
(

pt, qt, (ci,t, li,t+1)i∈I
)

t
as follows. Let us nor-

malize by setting pt = 1 for any t.
Allocations: for each t ≥ 0,

lA,2t = L, lA,2t+1 = 0, lB,2t = 0, lB,2t+1 = L (57)

cA,2t = q2tL+ A2tL, cB,2t + q2tL = eB,2t (58)

cA,2t+1 + q2t+1L = eA,2t+1, cB,2t+1 = q2t+1L+B2t+1L. (59)

The land prices are given by

q2t =
βB

1 + βB

eB,2t, q2t+1 =
βA

1 + βA

eA,2t+1. (60)

In Appendix 6.3.1, we check that this is an equilibrium. In this example, we have

γ2t+1 =
βBu

′
B(cB,2t+1)

u′B(cB,2t)
, d2t+1 = B2t+1 (61)

γ2t =
βAu

′
A(cA,2t)

u′A(cA,2t−1)
, d2t = A2t. (62)
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According to Proposition 8, land bubbles exist if and only if
∞
∑

t=0

dt
qt
<∞ which is

equivalent to

∞
∑

t=0

A2t

eB,2t

+
∞
∑

t=0

B2t+1

eA,2t+1

<∞. (63)

It means that land dividends are low with respect to endowments. The intuition
of the existence of bubble in our example is the following: agent B does not have
endowment at the date 2t + 1 and has logarithm utility (which satisfies Inada con-
dition). This agent needs to smooth her consumption, and hence she accepts to buy
land with price q2t+1 ≥

βA

1+βA
eA,2t+1 which does not depend on the productivity of

agents. The lower productivity, the lower dividend, the lower the fundamental value
of land. As a consequence, when dividends tend to zero, the land price will be higher
than the land’s fundamental value.

Remark 6 (bubble vs i−bubble). For each i = A,B we can verify that lim
t→∞

βt
iu
′
i(ci,t)qt =

0. It means that i−bubble does not exist for any i. However bubble may arise.

Corollary 9. Consider our example. Assume that At = Bt = A for any t. Then
land bubbles exist if and only if

∞
∑

t=0

1

eB,2t

+
∞
∑

t=0

1

eA,2t+1

<∞. (64)

Corollary 9 illustrates Proposition 10. Here with stationary production function
and fi = 0 for any i, land bubbles may appear if endowments tend to infinity. In

this example, we see that land bubbles exist if and only if
∞
∑

t=1

1/qt <∞. By the way,

this result also illustrates Corollary 6.

Corollary 10. Consider our example. Assume that eA,2t+1 = eB,2t = e > 0 for any
t. Then land bubbles exist if and only if

∞
∑

t=0

(A2t +B2t+1) <∞. (65)

This result is consistent with the one in Le Van, Pham, and Vailakis (2014)
where they give an example of financial asset bubble under condition that the sum
of exogenous dividends is less than 1. Our result is also related to Bosi, Le Van
and Pham (2014) where they show that physical capital bubbles arise if the sum of
capital returns is finite.

Land bubbles and prices

Corollary 6 points out that with stationary technologies, if land bubbles exist then
the land price must tend to infinity. However, in our example with non-stationary
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technologies, the land prices are given by q2t = q2t+1 = β

1+β
et+1. We see that the

land prices can be increasing or decreasing over time and bubbles exist. Our result is
in line with Weil (1990) where he gives an example of bubble with decreasing asset
prices. His model is a particular case of our model (when we take At = Bt = 0 for
any t ≥ T , i.e. land will not give fruits from some date).

Pure bubbles

We consider At = Bt = 0. In this case, the fundamental value of land is zero and an
equilibrium is bubbly if the prices of land are strictly positive, i.e., qt > 0 for any t.
This is called pure bubble (Tirole, 1985). We see that in our example there exists
an equilibrium with pure bubbles.

5 Conclusion

In our general equilibrium models with many agents, we discussed about the role of
financial market on the economy. Agents with high productivity would borrow until
their borrowing constraints bind and produce while agents with low productivity
lend and do not produce. In the long-run the most patient may not hold the entire
of land stock.

We defined the endogenous land dividends and studies land bubbles. Under
standard assumptions, land bubbles are ruled out if the borrowing limit of any agent
equals 1 and the production functions are stationary. When no one can borrow land
bubbles may arise. Note that land bubbles may exist whenever land prices increase
or decrease.

We also point out that the existence of bubbles of an asset depends not only on
the structure of this asset but also the way we choose the discount factors to evaluate
the fundamental value of the asset.

6 Appendix: formal proofs

6.1 Proofs for Section 2.2

Proof of Lemma 2. According to (12), we have λi,tpt ≥ λi,t+1Rt+1 for every i.
Since fi > 0 for any i, it is easy to see that there exists an agent i whose borrowing

constraint (5) is not binding. Thus µi,t+1 = 0 which implies that λi,tpt = λi,t+1Rt+1.
As a result, we get (19).

Proof of Proposition 2. Denote xi := (li, ai) = (li,t, ai,t)t. We say xi is feasible if
for every t we have li,t ≥ 0 and

Rtai,t ≥ −fi(qtli,t + ptFi(li,t)) (66)

qtli,t+1 + ptai,t+1 ≤ ptei,t + qtli,t + ptFi(li,t) +Rtai,t. (67)

We claim that: if xi is feasible then (xi,0, . . . , xi,t, λxi,t+1, λxi,t+2, . . .) is also fea-
sible for each t ≥ 1 and λ ∈ [0, 1).
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We have to prove that:

qtλli,t+1 + ptλai,t+1 ≤ ptei,t + qtli,t + ptFi(li,t) +Rtai,t (68)

and

λqsli,s+1 + λpsai,s+1 ≤ psei,s + λqsli,s + psFi(λli,s) + λRsai,t (69)

λRsai,s+1 + fi(λqs+1li,s+1 + ps+1Fi(λli,s+1)) ≥ 0 (70)

for each s ≥ t.
(69) and (70) are proved by using the fact that Fi(λx) > λFi(x) for every λ ∈

[0, 1). (68) is clear if qtli,t+1 + ptai,t+1 < 0. If qtli,t+1 + ptai,t+1 ≥ 0, we have

qtλli,t+1 + ptλai,t+1 ≤ qtli,t+1 + ptai,t+1 ≤ ptei,t + qtli,t + ptFi(li,t) +Rtai,t. (71)

By using the same argument in Theorem 2.1 in Kamihigashi (2002),5 we obtain
that lim sup

t→∞
λi,t(qtli,t+1 + ptai,t+1) ≤ 0.

We now have

λi,t(ptci,t + qtli,t+1 + ptai,t+1) = λi,t(ptei,t + qtli,t + ptFi(li,t) +Rtai,t) (72)

λi,tptai,t+1 = (λi,t+1 + µi,t+1)Rt+1ai,t+1 (73)

λi,tqtli,t+1 = (λi,t+1 + fiµi,t+1)(qt+1 + pt+1F
′
i (li,t+1))li,t+1 (74)

µi,t+1

(

Rt+1ai,t+1 + fi(qt+1li,t+1 + pt+1Fi(li,t+1))
)

= 0 (75)

According to (73) and (74), we have

λi,t(qtli,t+1 + ptai,t+1) (76)

= (λi,t+1 + fiµi,t+1)(qt+1 + pt+1F
′
i (li,t+1))li,t+1 + (λi,t+1 + µi,t+1)Rt+1ai,t+1

= λi,t+1Rt+1ai,t+1 + λi,t+1

(

qt+1 + pt+1F
′
i (li,t+1)

)

li,t+1

+ µi,t+1

(

Rt+1ai,t+1 + fi
(

qt+1 + pt+1F
′
i (li,t+1)

)

li,t+1

)

(77)

Therefore, combining with (75), we get

λi,t(qtli,t+1 + ptai,t+1)− λi,t+1Rt+1ai,t+1 − λi,t+1

(

qt+1li,t+1 + pt+1Fi(li,t+1)
)

= λi,t+1

(

qt+1 + pt+1F
′
i (li,t+1)

)

li,t+1 + µi,t+1

(

Rt+1ai,t+1 + fi
(

qt+1 + pt+1F
′
i (li,t+1)

)

li,t+1

)

− λi,t+1

(

qt+1li,t+1 + pt+1Fi(li,t+1)
)

(78)

= −λi,t+1pt+1(Fi(li,t+1)− li,t+1F
′
i (li,t+1)) + µi,t+1

(

Rt+1ai,t+1 + fi
(

qt+1 + pt+1F
′
i (li,t+1)

)

li,t+1

)

− µi,t+1

(

Rt+1ai,t+1 + fi
(

qt+1li,t+1 + pt+1Fi(li,t+1)
)

)

(79)

= −λi,t+1pt+1(Fi(li,t+1)− li,t+1F
′
i (li,t+1))− fiµi,t+1pt+1(Fi(li,t+)− li,t+1F

′
i (li,t+1))

(80)

5In Kamihigashi (2002), he worked with positive allocations. Our model is different from that
in Kamihigashi (2002) because ai,t may be negative.
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By summing (72) from t = 0 to T , and then using (78), we obtain that

T
∑

t=0

λi,tptci,t + λi,T (qtli,T+1 + pTai,T+1) =
T

∑

t=0

λi,tptei,t + λi,0(q0li,0 + ptFi(li,0) +R0ai,0)

+
T

∑

t=1

pt(λi,t + fiµi,t)(Fi(li,t)− li,tF
′
i (li,t)).

(81)

Under Assumption (5), the utility of agent i is finite, we have that

∞
∑

t=0

λi,tptci,t =
∞
∑

t=0

βt
iu
′
i(ci,t)ci,t ≤

∞
∑

t=0

βt
iui(ci,t) <∞. (82)

Combining with lim sup
t→∞

λi,t(qtli,t+1 + ptai,t+1) ≤ 0, we obtain that there exists the

sum
∞
∑

t=0

λi,tptei,t +
∞
∑

t=1

pt(λi,t + fiµi,t)(Fi(li,t)− li,tF
′
i (li,t)) <∞.

We now use (81) to get that lim
t→∞

λi,t(qtli,t+1 + ptai,t+1) exists and it is non positive.

We again use (72) and note that qtli,t+ptFi(li,t)+Rtai,t ≥ 0 (because of borrowing
constraint) to obtain that lim inf

t→∞
λi,t(ptci,t + qtli,t+1 + ptai,t+1) ≥ 0.

(82) implies that lim
t→∞

λi,tptci,t = 0. As a result, we get lim inf
t→∞

λi,t(qtli,t+1 +

ptai,t+1) ≥ 0. Therefore, we have lim
t→∞

λi,t(qtli,t+1 + ptai,t+1) = 0 and then

∞ >
∞
∑

t=0

λi,tptci,t =
∞
∑

t=0

λi,tptei,t +
∞
∑

t=1

pt(λi,t + fiµi,t)(Fi(li,t)− li,tF
′
i (li,t))

+ λi,0(q0li,0 + ptFi(li,0) +R0ai,0). (83)

By combining with the fact that Qi,t =
βt
iu
′
i(ci,t)

u′i(ci,0)
=

λi,tpt
λi,0p0

, we obtain (17) and

(18).

Proof of Proposition 3. Assume that there exists lim
t→∞

(

Qtai,t+1+fiQt+1

[qt+1

pt+1

li,t+1+

Fi(li,t+1)
]

)

> 0. Hence, there exists a date T ≥ 1 such that borrowing constraint (5)

is not binding for every t ≥ T. Therefore, λi,tpt = λi,t+1Rt+1 for every t ≥ T . As a
consequence, there exists a constant Ci ∈ (0,∞) such that Qt = Ciλi,tpt for every

t ≥ T . According to transversality condition (17), we get lim
t→∞

Qt

(

ai,t+1+
qt
pt
li,t+1

)

= 0.

According to (18), we have lim
t→∞

Qtci,t = lim
t→∞

Qtei,t = 0. Therefore, by using (72),

we get

lim
t→∞

Qt

(Rt

pt
ai,t +

qt
pt
li,t + Fi(li,t)

)

= 0.

Since fi ∈ [0, 1] and Qt
Rt

pt
= Qt−1, we obtain the statement (b).

(23) is proved by using the same argument.
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6.2 Proofs for Section 3

Proof of Lemma 3. According to (13), we obtain
qt
pt
≥ γt+1

(qt+1

pt+1

+ dt+1).

We prove the second inequality. We see that there exists an agent, say i, such
that li,t+1 > 0. Thus, ηi,t+1 = 0. Therefore, we have

λi,tqt = (λi,t+1 + fiµi,t+1)(qt+1 + pt+1F
′
i (li,t+1))

≤ (λi,t+1 + µi,t+1)(qt+1 + pt+1F
′
i (li,t+1)) ≤

λi,tpt
Rt+1

(qt+1 + pt+1d̄t+1). (84)

By combining with Lemma 2, we get the second inequality in (25).

Proof of Propostion 4. According to (25), we obtain dt+1 ≤ d̄t+1.
Since fi = 1 for any i or (5) is not binding for any i, we always have µi,t+1 =

fiµi,t+1 for every i. So, we get

qt
pt

= γt+1

(qt+1

pt+1

+ F ′i (li,t+1)
)

+
ηi,t+1

λi,tpt
≥ γt+1

(qt+1

pt+1

+ F ′i (li,t+1)
)

for any i. Therefore dt+1 ≥ d̄t+1. As a result, we have dt+1 = d̄t+1.

Proof of Proposition 5. Since li,t+1 > 0 at equilibrium, and then ηi,t+1 = 0. As a
consequence, we obtain, for every i, t,

λi,tpt = (λi,t+1 + µi,t+1)Rt+1 (85)

λi,tqt = (λi,t+1 + fiµi,t+1)(qt+1 + pt+1F
′
i (li,t+1)). (86)

We see that, for every i, t,

qt =
λi,t+1 + fiµi,t+1

λi,t

(qt+1 + pt+1F
′
i (li,t+1)) ≤

λi,t+1 + µi,t+1

λi,t

(qt+1 + pt+1F
′
i (li,t+1))

= γt+1(qt+1 + pt+1F
′
i (li,t+1))

Therefore, we obtain that
qt
pt
≤ γt+1

(qt+1

pt+1

+ dt+1)
)

.

We also see that
qt
pt
≥ γt+1

(qt+1

pt+1

+ dt+1

)

.

As a result, we get (27).

Proof of Proposition 6. According to FOCs, we get

qt =
λi,t+1 + fiµi,t+1

λi,t+1 + µi,t+1

λi,t+1 + µi,t+1

λi,t

(qt+1 + pt+1F
′
i (li,t+1)) +

ηi,t+1

λi,t

.

Therefore, we obtain
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1 =
λi,t+1 + fiµi,t+1

λi,t+1 + µi,t+1

qt+1 + pt+1F
′
i (li,t+1)

qt+1 + pt+1dt+1

+
ηi,t+1

λi,tqt
(87)

If li,t+1 > 0, we obtain ηi,t+1 = 0. By combining with fi ≤ 1, we get dt+1 ≤ F ′i (li,t+1).
If (5) is not binding, we have µi,t+1 = 0 which implies that dt+1 ≥ F ′i (li,t+1),

contradiction.

Proof of Proposition 7. Since fj = 1, (13) implies that

qt
qt+1 + pt+1F ′j(lj,t+1)

≥
λj,t+1 + µj,t+1

λj,t

=
pt

Rt+1

.

Assume that li,t+1 > 0, we have ηi,t+1 = 0 which implies that

qt
qt+1 + pt+1F ′i (li,t+1)

=
λi,t+1 + fiµi,t+1

λi,t

≤
pt

Rt+1

≤
qt

qt+1 + pt+1F ′j(lj,t+1)
.

Therefore, F ′j(L) ≤ F ′j(lj,t+1) ≤ F ′i (li,t+1) < F ′i (0), contradiction!

Proof of Lemma 4. Let
(

(ci, li, ai), (cj, lj, aj), p, q, R
)

be a steady state equilib-
rium. We rewrite the system (11, 12, 13, 14, 15)

βt
iu
′
i(ci,t) = λi,tpt (88)

1 =
Rt+1

pt+1

(βiu
′
i(ci,t+1)

u′i(ci,t)
+

µi,t+1pt+1

λi,tpt

)

(89)

qt
pt

=
(βiu

′
i(ci,t+1)

u′i(ci,t)
+ fi

µi,t+1pt+1

λi,tpt

)(qt+1

pt+1

+ F ′i (li,t+1)
)

+
ηi,t+1

λi,tpt
(90)

ηi,t+1li,t+1 = 0 (91)

µi,t+1

(

Rt+1ai,t+1 + fi
[

qt+1li,t+1 + pt+1Fi(li,t+1)
]

)

= 0 (92)

Let denote xi,t :=
µi,t+1pt+1

λi,tpt
, σi,t :=

ηi,t+1

λi,tpt
.

At steady state, we have

1 =
R

p
(βi + xi) (93)

q

p
= (βi + fixi)(

q

p
+ F ′i (li)) + σi. (94)

Since βi < βj, we have xi > xj, which implies that xi > 0. Therefore, we have

Rai + fi
[

qli + pFi(li)
]

= 0.

Hence, ai < 0 and then aj > 0 which implies that xj = 0. The impatient agent
borrow from the patient agent.
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We consider the case where Fi(li) = Ail
α
i , Fj(li) = Ajl

α
j . Then F ′h(lh) = αAhl

α−1
h .

In this case li, lj > 0, hence σi = σj = 0.
We see that ai < 0, which implies that aj > 0. Hence, xj = 0. The asset price is

R

p
=

1

βj

= 1 + r, r is the real interest rate. We have
q

p

(

1
βj
− 1

)

= F ′i (li) = αAjl
α−1
j ,

therefore

lj =
( αAj

1
βj
− 1

p

q

)
1

1−α

(95)

Since βi + xi = βj + xj, we get xi = βj − βi. As a consequence, we can compute

li =
( αAi

1
βi+fi(βj−βi)

− 1

p

q

)
1

1−α

(96)

Using li + lj = L, we can compute the price of land

(q

p

)
1

1−αL =
( αAi

1
βi+fi(βj−βi)

− 1

)
1

1−α

+
( αAj

1
βj
− 1

)
1

1−α

(97)

6.3 Proofs for Section 4

Proof of Proposition 8. According to (33), it is easy to see that (i) is equivalent
to (ii). We now prove that (ii) and (iii) are equivalent.

According to (32), we get that

q0
p0

= QT

qT
pT

T
∏

t=1

(1 +
ptdt
qt

). (98)

Since q0
p0

> 0, we see that lim
t→+∞

Qt
qt
pt

> 0 if and only if lim
t→∞

T
∏

t=1

(1 + ptdt
qt

) < ∞. It is

easy to prove that this condition is equivalent to
∑∞

t=1

ptdt
qt

< +∞.

Proof of Proposition 9. Assume that Qt/Qi,t is uniformly bounded from above.
According to Lemma 2, we have lim

t→∞
Qi,t(

qt
pt
li,t+1 + ai,t+1) = 0, therefore

lim
t→∞

Qt(
qt
pt
li,t+1 + ai,t+1) = lim

t→∞

Qt

Qi,t

Qi,t(
qt
pt
li,t+1 + ai,t+1) = 0

for any i. Note that
∑

i

li,t+1 = L and
∑

i

ai,t+1 = 0 for any t, we obtain that

lim
t→∞

Qt
qt
pt

= 0
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Proof of Corollary 7. Since µi,t+1 = 0 for every t ≥ T , we have λi,tpt = λi,t+1Rt+1

for every t ≥ T . As a consequence, γi,t = γt for any t ≥ T + 1. This implies that
Qt/Qi,t is uniformly bounded from above. According to Proposition 9, there is no
bubble.

Proof of Lemma 5. According to (33), we have
∞
∑

t=0

Qtdt < ∞. However we have

dt > F ′i (L) > min
i

F ′i (L) > 0 for every t. Therefore, we obtain
∞
∑

t=0

Qt < ∞. Since

sup
i,t

ei,t <∞ and Fi(li,t) ≤ Fi(L) for every i, t, we obtain that
∞
∑

t=0

QtYt <∞.

Proof of Lemma 6. We will claim that sup
i,t

Qtai,t+1 <∞. Indeed, (5) is rewritten

as

Qt+1
Rt+1

pt+1

ai,t+1 + fiQt+1

(qt+1

pt+1

li,t+1 + Fi(li,t+1)
)

≥ 0. (99)

Since Qt =
Rt+1

pt+1

Qt+1, (5) is equivalent to

Qtai,t+1 ≥ −fiQt+1

(qt+1

pt+1

li,t+1 + Fi(li,t+1)
)

. (100)

It is easy to see that 0 ≤ Qt
qt
pt
li,t+1 ≤

q0
p0
L <∞. Therefore, we have

fiQt+1

(qt+1

pt+1

li,t+1 + Fi(li,t+1)
)

≤ fi
q0
p0
L+ fiQt+1Fi(L). (101)

As a consequence, we obtain

Qtai,t+1 ≥ −fi
q0
p0
L− fiQt+1Fi(L). (102)

According to the proof of Lemma 5 , we see that lim
t→∞

Qt = 0, and hence we

get that inf
i,t

Qtai,t+1 > −∞. Since
m
∑

i=1

Qtai,t+1 = 0, have −∞ < inf
i,t

Qtai,t+1 ≤

sup
i,t

Qtai,t+1 <∞.

Proof of Lemma 7. We rewrite the budget constraint of agent i at date t

Qtci,t +Qt

qt
pt
li,t+1 +Qtai,t+1 = Qt(ei,t + Fi(li,t)) +Qt

qt
pt
li,t +Qt

Rt

pt
ai,t. (103)

According to (19) and (26), we get

Qt

qt
pt

= Qt+1

(qt+1

pt+1

+ dt+1

)

, Qt =
Rt+1

pt+1

Qt+1.
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Therefore, we have

T
∑

t=0

Qtci,t +
T

∑

t=1

Qtdtli,t +QT (
qT
pT

li,T+1 + ai,T+1) =
T

∑

t=0

Qt(ei,t + Fi(li,t)) +
q0
p0
li,0 +

R0

p0
ai,0.

By combining this with Lemmas 5 and 6, we obtain that

sup
T→∞

(

T
∑

t=0

Qtci,t +
T

∑

t=1

Qtdtli,t

)

<∞.

This implies that there exists the sum
∞
∑

t=0

(Qtci,t+Qtdtli,t), and so does lim
t→∞

Qt

(

qt
pt
li,t+1+

ai,t+1

)

.
Note that lim

t→∞
Qtci,t = lim

t→∞
Qt(ei,t + Fi(li,t)) = 0. Then, by using (103), we get

(40).

Proof of Lemma 8. If lim
t→∞

Qt

(

ai,t+1 +
qt
pt
li,t+1

)

> 0, there exists T1 ≥ T such that

Qt

(

ai,t+1 +
qt
pt
li,t+1

)

> 0 for every t ≥ T1. Hence, we get

Qt+1
Rt+1

pt+1

ai,t+1 + fiQt+1

[qt+1

pt+1

li,t+1 + Fi(li,t+1)
]

≥ Qt+1
Rt+1

pt+1

ai,t+1 +Qt+1

[qt+1

pt+1

+ dt+1

]

li,t+1 = Qt+1
Rt+1

pt+1

ai,t+1 +Qt

qt
pt
li,t+1 > 0

for every t ≥ T1. This implies that µi,t+1 = 0 for every t ≥ T1

Therefore, λi,tpt = λi,t+1Rt+1 for every t ≥ T1. As a consequence, there exists a
constant Ci > 0 such that Qt = Ciλi,tpt for every t ≥ T1. According to transversality

condition (17), we get lim
t→∞

Qt

(

ai,t+1 +
qt
pt
li,t+1

)

= 0, contradiction!

Proof of Propostion 10. If li,t = 0 then condition (41) is satisfied.
If li,t > 0, by combining with fi = 1 and using Proposition 4, we have dt =

F ′i (li,t) ≤
Fi(li,t)

li,t
. Therefore, condition (41) is satisfied. As a consequence, we have

lim
t→∞

Qt

(

ai,t+1+
qt
pt
li,t+1

)

≤ 0 for any i. By summing over i, we obtain lim
t→∞

Qt

qt
pt
L ≤ 0,

which implies that bubbles are ruled out.

Proof of Proposition 12. Assume that i-bubble exists, we have lim
t→∞

Qi,t
qt
pt

> 0.

Therefore, we get lim
t→∞

Qt
qt
pt

> 0. Since both these two limits are finite (less than

q0/p0) we see that lim
t→∞

Qt/Qi,t ∈ (0,∞) for any i. According to Proposition 9 we

have lim
t→∞

Qt
qt
pt

= 0, contradiction!
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Proof of Proposition 13. Since Qt ≥ Qi,t, it is easy to see that FV0 ≤ FVi for
any i, and if i-land bubbles exist for some agent i then land bubbles exist.

We now assume that FV0 = FVi for any i, which implies that lim
t→∞

Qt

qt
pt

=

lim
t→∞

Qi,t

qt
pt
. If land bubbles exist, we have lim

t→∞
Qt

qt
pt

= lim
t→∞

Qi,t

qt
pt
∈ (0, q0/p0). Thus,

we obtain lim
t→∞

Qi,t/Qt = 1. According to Proposition 9 we have lim
t→∞

Qt
qt
pt

= 0 =

lim
t→∞

Qi,t
qt
pt
, contradiction!

6.3.1 On the example of bubble

First, we give sufficient conditions for a sequence
(

pt, qt, (ci,t, li,t+1)i∈I
)

t
to be an

equilibrium. The utility function may satisfy ui(0) = −∞.

Lemma 9. If a sequence
(

(ci,t, li,t+1, µi,t)i∈I , pt, qt
)

t
satisfies

(i) ∀t, ∀i, ci,t > 0, li,t+1 > 0, µi,t > 0. ∀t, pt = 1, qt > 0.

(ii) First order conditions

qt =
βiu

′
i(ci,t+1)

u′i(ci,t)

(

qt+1 + F ′i,t(li,t+1)
)

+ µi,t+1 (104)

µi,t+1li,t+1 = 0 (105)

(iii) Transversality conditions: lim
t→∞

βt
iu
′
i(ci,t)qtli,t+1 = 0 for any i.

(iv) ci,t + qtli,t+1 = ei,t + qtli,t + Fi,t(li,t),

(vi)
∑

i∈I li,t = L.

then the sequence
(

pt, qt, (ci,t, li,t+1)i∈I
)

t
is an equilibrium for the economy without

financial market.

Proof of Lemma 9. It is easy to see that market clearing conditions are satisfied.
We now prove the optimality of the agents’ plan. Let (c′i, l

′
i) ≥ 0 be a plan satisfying

all budget constraints and l′i,0 = li,0. We have

T
∑

t=0

βt
i(ui(ci,t)− ui(c

′
i,t)) ≥

T
∑

t=0

βt
iu
′
i(ci,t)(ci,t − c′i,t) =

=
T

∑

t=0

βt
iu
′
i(ci,t)

(

qt(li,t − l′i,t) + Fi,t(li,t)− Fi,t(l
′
i,t)− qt(li,t+1 − l′i,t+1)

)

≥
T

∑

t=0

βt
iu
′
i(ci,t)(qt + F ′i,t(li,t))(li,t − l′i,t)−

T
∑

t=0

βt
iu
′
i(ci,t)qt(li,t+1 − l′i,t+1)

=
T

∑

t=1

(

βt
iu
′
i(ci,t)(qt + F ′i,t(li,t))− βt−1

i u′i(ci,t−1)qt−1

)

(li,t − l′i,t)

− βT
i u

′
i(ci,T )qT (li,T+1 − l′i,T+1).
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According to (104), we obtain βt
iu
′
i(ci,t)(qt+F ′i,t(li,t))−β

t−1
i u′i(ci,t−1)qt−1 = −µi,tβ

t−1
i u′i(ci,t−1).

By using this and the fact that µi,tli,t = 0, we have

T
∑

t=0

βt
i(ui(ci,t)− ui(c

′
i,t)) (106)

≥
T

∑

t=1

−µi,tβ
t−1
i u′i(ci,t−1)(li,t − l′i,t) + βT

i u
′
i(ci,T )qT (l

′
i,T+1 − li,T+1) (107)

=
T

∑

t=1

βt−1
i u′i(ci,t−1)µi,tl

′
i,t + βT

i u
′
i(ci,T )qT (l

′
i,T+1 − li,T+1) (108)

≥ −βT
i u

′
i(ci,T )qT li,T+1. (109)

Since there exists the sum
∞
∑

t=0

βt
iui(ci,t) <∞ and lim

t→∞
βT
i u

′
i(ci,T )qT li,T+1 = 0, there

exists the sum
T
∑

t=0

βt
iui(c

′
i,t) < ∞. Therefore, we obtain

∞
∑

t=0

βt
iui(ci,t) ≥

∞
∑

t=0

βt
iui(c

′
i,t).

Check of the example in Section 4.3.1. We will check all conditions in Lemma
9. It is easy to see that the market clearing conditions are satisfied.

Let us check FOCs:

q2t =
βBu

′
B(cB,2t+1)

u′B(cB,2t)

(

q2t+1 +B2t+1

)

≥
βAu

′
A(cA,2t+1)

u′A(cA,2t)
(q2t+1 + A2t+1) (110)

q2t−1 =
βAu

′
A(cA,2t)

u′A(cA,2t−1)
(q2t + A2t) ≥

βBu
′
B(cB,2t)

u′B(cB,2t−1)
(q2t +B2t). (111)

The equality in (110) is satisfied since

βBu
′
B(cB,2t+1)

u′B(cB,2t)

(

q2t+1 +B2t+1

)

=
βB(eB,2t − q2t)

q2t+1 +B2t+1

(

q2t+1 +B2t+1

)

(112)

= βB(eB,2t − q2t) = q2t. (113)

We now prove the inequality in (110). We have

βAu
′
A(cA,2t+1)

u′A(cA,2t)
(q2t+1 + A2t+1) =

βA(q2t + A2t)

eA,2t+1 − q2t+1

(q2t+1 + A2t+1) (114)

=
βA(

βB

1+βB
eB,2t + A2t)

1
1+βA

eA,2t+1

(
βA

1 + βA

eA,2t+1 + A2t+1) (115)

As a consequence, the inequality in (110) is equivalent to

βA(
βBeB,2t

1 + βB

+ A2t)(
βAeA,2t+1

1 + βA

+ A2t+1) ≤ βB

eB,2t

1 + βB

eA,2t+1

1 + βA

(116)
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which is the condition (53).
We have

βBu
′
B(cB,2t)

u′B(cB,2t−1)
(q2t +B2t) =

βB(q2t−1 +B2t−1)

eB,2t − q2t
(q2t +B2t) (117)

=
βB(

βA

1+βA
eA,2t−1 +B2t−1)
1

1+βB
eB,2t

(
βB

1 + βB

eB,2t +B2t) (118)

As a consequence, the inequality in (111) is equivalent to

βB(
βAeA,2t−1

1 + βA

+B2t−1)(
βBeB,2t

1 + β
+B2t) ≤ βA

eB,2t

1 + βB

eA,2t−1

1 + βA

(119)

which is the condition (54).
We now check TVCs. We have

β2t
A u

′
A(cA,2t)q2tlA,2t+1 = 0 (120)

β2t−1
A u′A(cA,2t−1)q2t−1lA,2t =

β2t−1
A

cA,2t−1

q2t−1 = β2t
A → 0. (121)

Similarly, we also have

β2t
B u

′
B(cB,2t)q2tlB,2t+1 = β2t+1

B → 0 (122)

β2t−1
B u′B(cB,2t−1)q2t−1lB,2t = 0. (123)

We finally verify that, for each t ≥ 0,

βBu
′
B(cB,2t+1)

u′B(cB,2t)
≥

βAu
′
A(cA,2t+1)

u′A(cA,2t)
(124)

βBu
′
B(cB,2t)

u′B(cB,2t−1)
≤

βAu
′
A(cA,2t)

u′A(cA,2t−1)
. (125)

Indeed, condition (124) is rewritten as

βB(eB,2t − q2t)

q2t+1 +B2t+1

≥
βA(

βB

1+βB
eB,2t + A2t)

1
1+βA

eA,2t+1

. (126)

Since q2t =
βB

1+βB
eB,2t, q2t+1 =

βA

1+βA
eA,2t+1, condition (124) is equivalent to

βA(
βBeB,2t

1 + βB

+ A2t)(
βAeA,2t+1

1 + βA

+B2t+1) ≤ βB

eB,2t

1 + βB

eA,2t+1

1 + βA

. (127)

By the same argument, we see that condition (125) is equivalent to

βB(
βAeA,2t−1

1 + βA

+B2t−1)(
βBeB,2t

1 + β
+ A2t) ≤ βA

eB,2t

1 + βB

eA,2t−1

1 + βA

. (128)
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7 Appendix: Existence of equilibrium for the in-

termediate economy Ẽ

In this appendix, we present a proof of the existence of equilibrium for the economy Ẽ .
We allow for non-stationary technologies, i.e., the production functions Fi,t depend
on both i and t.

7.1 Existence of equilibrium for truncated economy

We define T− truncated economy ẼT as Ẽ but there are no activities from period
T + 1 to the infinity, i.e., ci,t = li,t = bi,t = 0 for every i = 1, . . . ,m, t ≥ T + 1.

We then define the bounded economy ẼT
b as ẼT but consumption level (ci,t)

T
t=0,

land holding (li,t)
T
t=1, and asset holding (bi,t)

T
t=1 are respectively bounded in the fol-

lowing sets:

Ci := [0, Bc]
T+1, Li := [0, Bl]

T , Ai :=
T
∏

t=1

[−Bb, Bb]
T ,

where Bc > max
t≤T

m
∑

i=1

(

ei,t + Fi,t(Bl)
)

, Bl > L, and Bb = m(Bc +Bl).

The economy ẼT
b depends on bounds Bc, Bl, Bb. We write ẼT

b (Bc, Bl, Bb).
Let denote

Xb := Ci × Li ×Ai, X := (Xb)
T+1

We then define

P := {z0 = (p, q, r) : r0 = 0, qT = 0; and (129)

0 ≤ pt, qt, rt; 2pt + qt + rt = 1 ∀t = 0, . . . , T} (130)

Φ := P × X . (131)

An element z ∈ Φ is in the form z = (zi)
m
i=0 where z0 := (p, q, r), zi := (ci, li, bi)

for each i = 1, . . . ,m.
The following remark is useful.

Remark 7. If z ∈ Φ is an equilibrium for the economy Ẽ then ci,t ∈ [0, Bc), li,t ∈
[0, L]. By using the fact that 2pt + qt + rt = 1, we get that bi,t ≤ Bc +Bl for any i, t.

Since
m
∑

i=1

bi,t = 0, we obtain that bi,t ∈ [−Bb, Bb] for any i and any t.

Proposition 15. Under our assumptions, there exists an equilibrium (p, q, r, (ci, li, bi)
m
i=1),

with 2pt + qt + rt = 1, for the economy ẼT
b (Bc, Bl, Bb).

Proof. We will prove this proposition as follows.
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We define

CT
i (p, q, r) :=

{

(ci,t, li,t+1, bi,t+1)
T
t=0 ∈ X : (a) li,T+1, bi,T+1 = 0,

(b) p0ci,0 + q0li,1 + bi,1 ≤ p0ei,0 + p0Fi,0(li,0) + q0li,0

(c) for each 1 ≤ t ≤ T :

0 ≤ rtbi,t + fi

(

qtli,t + ptFi,t(li,t)
)

ptci,t + qtli,t+1 + bi,t+1 ≤ ptei,t + ptFi,t(li,t) + qtli,t + rtbi,t
}

.

We also define BT
i (p, q, r) as follows.

BT
i (p, q, r) :=

{

(ci,t, li,t+1, bi,t+1)
T
t=0 ∈ X : (a) li,T+1, bi,T+1 = 0,

(b) p0ci,0 + q0li,1 + bi,1 < p0ei,0 + p0Fi,0(li,0) + q0li,0

(c) for each 1 ≤ t ≤ T :

0 < rtbi,t + fi

(

qtli,t + ptFi,t(li,t)
)

ptci,t + qtli,t+1 + bi,t+1 < ptei,t + ptFi,t(li,t) + qtli,t + rtbi,t
}

.

Lemma 10. BT
i (p, q, r) 6= ∅ and B̄T

i (p, q, r) = CT
i (p, q, r).

Proof. It can be easily proved by using the following remark: since ei,0, li,0 > 0 and
(p0, q0) 6= (0, 0), we always have p0ei,0 + p0Fi,0(li,0) + q0li,0 > 0.

Lemma 11. BT
i (p, q, r) is lower semi-continuous correspondence on P. And CT

i (p, q, r)
is continuous on P with compact convex values.

Proof. It is clear since BT
i (p, q, r) is nonempty and has open graph.

We now define correspondences.
First, we define ϕ0 (for additional agent 0) : X → 2P by

ϕ0((zi)
m
i=1) := argmax

(p,q,r)∈P

{

T
∑

t=0

pt

m
∑

i=1

(

ci,t − ei,t − Fi,t(li,t)
)

+
T−1
∑

t=0

qt

m
∑

i=1

(li,t+1 − li,t) +
T

∑

t=1

rt(−
m
∑

i=1

bi,t)
}

.

For each i = 1, . . . ,m, we define ϕi : P → 2X

ϕi((p, q, r)) := argmax
(ci,li,bi)∈Ci(p,q,r)

{

T
∑

t=0

βt
iui(ci,t)

}

.

Lemma 12. The correspondence ϕi is upper semi-continuous and non-empty, con-
vex, compact valued for each i = 0, 1, . . . ,m+ 1.

Proof. This is a direct consequence of the Maximum Theorem.
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According to the Kakutani Theorem, there exists (p̄, q̄, r̄, (c̄i, l̄i, b̄i)
m
i=1) such that

(p̄, q̄, r̄) ∈ ϕ0((c̄i, l̄i, b̄i)
m
i=1) (132)

(c̄i, l̄i, b̄i) ∈ ϕi((p̄, q̄, r̄)). (133)

Denote, for each t ≥ 1,

X̄t :=
m
∑

i=1

(c̄i,t − ei,t − Fi,t(l̄i,t)) (134)

Ȳt :=
m
∑

i=1

(l̄i,t+1 − l̄i,t) (135)

Z̄t := −
m
∑

i=1

b̄i,t. (136)

For every (p, q, r) ∈ P , we have

T
∑

t=0

(pt − p̄t)X̄t +
T−1
∑

t=0

(qt − q̄t)Ȳt +
T

∑

t=1

(rt − r̄t)Z̄t ≤ 0. (137)

By summing the budget constraints over i at date T , we get that

p̄T X̄T + r̄T Z̄T ≤ 0. (138)

As a consequence, we have, for every (pT , rT ) ≥ 0 with 2pT + rT = 1,

pT X̄T + rtZ̄t ≤ p̄T X̄T + r̄tZ̄t ≤ 0. (139)

Therefore, we have X̄T , Z̄T ≤ 0 for any t, which means that

m
∑

i=1

c̄i,T ≤
m
∑

i=1

(ei,T + Fi,t(l̄i,T )) (140)

−
m
∑

i=1

b̄i,T ≤ 0. (141)

By summing the budget constraints over i at date t, we get that

p̄tX̄t + q̄tȲt + r̄tZ̄t ≤ Z̄t+1. (142)

Since Z̄T ≤ 0, we get,

p̄T−1X̄T−1 + q̄T−1ȲT−1 + r̄T−1Z̄T−1 ≤ 0. (143)

As a consequence, we have that, for any t,

pT−1X̄T−1 + pT−1ȲT−1 + rT−1Z̄T−1 ≤ 0. (144)
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This implies that X̄T−1, ȲT−1, Z̄T−1 ≤ 0. Repeating this argument, we obtain that
X̄t, Ȳt, Z̄t ≤ 0 for any t, which means that

m
∑

i=1

c̄i,t ≤
m
∑

i=1

(ei,t + Fi,t(l̄i,t)) (145)

m
∑

i=1

(l̄i,t+1 − l̄i,t) ≤ 0 (146)

−
m
∑

i=1

b̄i,t ≤ 0. (147)

Lemma 13. p̄t, q̄t, r̄t > 0 for t = 0, . . . , T .

Proof. We see that
m
∑

i=1

l̄i,t ≤ L and
m
∑

i=1

b̄i,t ≥ 0. Hence, we have

m
∑

i=1

c̄i,t ≤
m
∑

i=1

(ei,t + Fi,t(L))

which allows us to prove that p̄t > 0. Indeed, if p̄t = 0 then ci,t = Bc >
m
∑

i=1

(ei,t +

Fi,t(L)), a contradiction.
If q̄t = 0, then l̄i,t = Bl > L for any i, contradiction!

If r̄t = 0 then b̄i,t = −Ba for any i, which implies that
m
∑

i=1

b̄i,t < 0, contradiction!

Lemma 14. X̄t = Z̄t = Ȳt = 0.

Proof. Using p̄tX̄t + q̄tȲt + r̄tZ̄t ≤ 0.

Lemma 15. The optimality of (ci, li, bi).

Proof. It is clear since (c̄i, l̄i, b̄i) ∈ ϕi((p̄, q̄, r̄)).

We have just prove that (p̄, q̄, r̄, (c̄i, l̄i, b̄i)
m
i=1) is an equilibrium for the economy

ẼT
b .

Proposition 16. An equilibrium (p̄, q̄, r̄, (c̄i, l̄i, b̄i)
m
i=1), with 2pt + qt + rt = 1, of ẼT

b

is an equilibrium for ẼT .

Proof. The proof is similar to Lemma 3 in Le Van and Pham (2015).
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7.2 Existence of equilibrium for the infinite horizon economy

Let us denote Wt :=
m
∑

i=1

(ei,t + Fi,t(L). We need the following assumption.

Assumption 6. For each i

∞
∑

t=0

βt
iui(Wt) <∞. (148)

Proposition 17. Under Assumptions (1-4) and 7, there exists an equilibrium for
the economy Ẽ .

Proof. We have shown that there exists an equilibrium, say
(

pT , qT , rT , (cTi , l
T
i , b

T
i )i

)

for each truncated economy ẼT . Recall that 2pTt + qTt + rTt = 1.
It is clear that 0 < cTi,t < Wt for each t ≥ 0, and lTi,t ∈ [0, L], pTt , q

T
t , r

T
t ∈ [0, 1] and

2pTt + qTt + rTt = 1.
We define a sequence (Bt) as follows.

B1 = W1, Bt+1 = Bt +Wt+1 ∀t. (149)

It is easy to prove that bTi,t < Bt for any t and any T . Since
m
∑

i=1

bTi,t = 0 we have

bTi,t ∈ (−mBt,mBt) for any t and any T .
Therefore, without loss of generality, we can assume that

(

pT , qT , rT , (cTi , l
T
i , b

T
i )i

) T→∞
−−−→

(

p, q, r, (ci, li, bi)i
)

for the product topology.
By using the same argument in the proof of Theorem 1 in Le Van and Pham

(2015) or the proof of Theorem 1 in Le Van, Pham, and Vailakis (2014), we obtain
that

(

p, q, r, (ci, li, bi)i
)

is an equilibrium for the economy Ẽ .
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