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Abstract

We consider a multi-sector infinite-horizon general equilibrium model. As-
set supply is endogenous. The issues of equilibrium existence, efficiency, and
bubble emergence are addressed. We show how different assets give rise to very
different rational bubbles. We also point out that efficient bubbly equilibria
may exist.

Keywords: infinite-horizon, general equilibrium, aggregate good bubble, capital
good bubble, efficiency.
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1 Introduction

The existence of rational bubbles in general equilibrium model is a challenging issue
and thinking about this becomes indispensable to understand the real effects of
financial markets. However, there are many kinds of bubble depending on the nature
of asset and the definition of fundamental value.

A large strand of theoretical literature focuses on assets whose supply and divi-
dends are exogenous. Tirole (1982) shows that asset bubbles fail to exist in dynamic
general equilibrium models with rational expectations if traders have no endowments.
Kocherlakota (1992) gives an example of bubble in an asset yielding no dividends
with endowments growing at a larger rate than the rate of return and short-sales
constraints of agents binding at infinitely many dates. A well-known result in this
literature is the absence of bubble when the present value of aggregate outputs is
finite1 or agents’ endogenous discount factors are equal.2 More recently, Becker et

∗This research was completed with the financial support of the Labex MME-DII.
†EPEE (University of Evry). Email: stefano.bosi@univ-evry.fr.
‡IPAG, CNRS, and Paris School of Economics. Email: Cuong.Le-Van@univ-paris1.fr.
§Corresponding author. LEM (University of Lille 3) and EPEE (University of Evry). Email:

pns.pham@gmail.com.
1Kocherlakota (1992), Santos and Woodford (1997) and Huang and Werner (2000) among others.
2Le Van and Pham (2014).
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al. (2015) define the fundamental value of capital as the sum of discounted values
of returns on capital and introduce the concept of capital bubble: this bubble exists
when the price of capital strictly exceeds the fundamental value.3 Then, they prove
the impossibility of capital bubbles in a Ramsey model.

Our motivation is to provide necessary and sufficient conditions under which
bubbles arise, and to know whether any asset generates bubble. By the way, we
explain why bubbles appear in a model and disappear in another, to bridge these
different literatures and recover their disparate outcomes as particular cases of a
general(ized) framework. It is natural to address the issues of equilibrium efficiency
and linkage between bubbles and efficiency.

To this purpose, we build a generalized two-sector general equilibrium model with
non-stationary production functions. Two goods are produced and exchanged: the
aggregate good and the capital one. Both of them are processed to produce the
aggregate good, which is the only one to be consumed. Moreover, the capital good
is used to produce the capital good. The supply of both these goods is endoge-
nous. Representative firms produce these goods, one firm per good. The economy is
populated by a finite number of heterogeneous consumers.4

The model is general because allows us to study bubbles in capital and/or aggre-
gate good in a unified framework.

Focus first on the meaning of bubble in the market of capital good. If a consumer
invests by buying 1 unit of capital good at some date, then she expects to receive at
the following date a so-called expected return on capital good, jointly with 1−δh units
of the same good, where δh is the depreciation rate of capital good. The expected
return on capital good is the gain from this good, which fills the non-arbitrage
condition: what we pay today to hold 1 unit of capital good is equal to what 1 unit
of this good brings for us tomorrow. At equilibrium, we prove that the expected
return on capital good equals the equilibrium return of capital good in the rental
market.

The fundamental value of capital good is defined as the sum of discounted values
of its expected returns (net of depreciation). We say that a bubble in the market of
capital good exists if the equilibrium price of capital good exceeds its fundamental
value. We recover bubbles in Tirole (1982), Kocherlakota (1992), Santos and Wood-
ford (1997) as particular cases of capital good bubbles in our model (when the return
is exogenous and the capital good is no longer produced). In particular, when the
capital good is not used to produce, its returns are zero, and hence we recover the
concept of pure bubble in Tirole (1985), Aoki et al. (2014), Hirano and Yanagawa
(2013).5

Some results on the bubble in capital good deserve to be mentioned. We prove

3 Ramsey (1928) and Solow (1956) call capital the amount of aggregate good used as productive
input. In their one-sector growth model, the price of capital is the price of aggregate good.

4Becker and Tsyganov (2002) and Becker et al. (2015) are particular cases of our model: respec-
tively when the aggregate good is only consumed and there is no capital good.

5The reader is referred to Miao (2014) for an introduction to bubbles in infinite-horizon models.
Brunnermeier and Oehmke (2012) is a good survey on bubbles in OG models with asymmetric
information or heterogeneous belief.
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that this bubble exists if and only if the sum (over time) of ratios of capital good
return to capital good price is finite. This characterization has some consequences.
(1) Bubbles in capital good bubbles exist only if the sum (over time) of the marginal
productivities of capital good is finite.6 Therefore, when the technology in the capital
good sector is stationary, bubbles in capital good are ruled out. (2) The supply of
capital good is uniformly bounded from above if a bubble in capital good exists.

We show that bubbles in capital good are excluded if either the present value of
profits is finite or the consumers’ endogenous discount factors are the same from some
date on. By consequence, there is no bubble in capital good if the agents’ borrowing
constraints are not binding from some dates. By the way, we extend the results in
Kocherlakota (1992), Santos and Woodford (1997), Huang and Werner (2000) and
Le Van and Pham (2014) to a capital good with endogenous supply. We also give
some examples of bubble in capital good where the consumers’ borrowing constraints
bind at infinitely many dates and the TFP in the capital good sector tends to zero.
We observe that a continuum of equilibria with bubble in capital good may emerge.

Focus now on the market of aggregate good and apply the same argument to
define a bubble in this good. At some date, if a consumer invests by buying 1 unit
of aggregate good, which is then rent for production, then she expect to receive at
the following date a return (we call expected return on aggregate good), jointly with
1− δ units of the same good, where δ is its depreciation rate of aggregate good. The
fundamental value of aggregate good is defined as the sum of discounted values of its
expected returns (net of depreciation). A bubble in the market of aggregate good is
said to exist if the fundamental value is less than 1.7

As for the capital good, the expected return on aggregate good is the gain from
this good, which fills the non-arbitrage condition: what we pay today to hold 1
unit of aggregate good is equal to what 1 unit of this good brings for us tomorrow.
However, differently from the capital good, the expected return on the aggregate
good may differ from its equilibrium return; this may happen when the quantity of
aggregate good used for production is null. For this reason, our definition of bubbles
is more general than that in Becker et al. (2015).8

The nature of bubbles in aggregate good is also explored. These bubbles exist
if and only if the sum (over time) of expected returns on aggregate good is finite
(so-called low interest rates condition). The intuition behind is straightforward: the
bubbly component, that is the difference between the price of aggregate good and
its fundamental value, decreases in the expected returns on aggregate good and,
therefore the bubble may be positive if these returns are very low. As was the
case with bubbles in capital good, bubbles in aggregate good fail to exist under a
stationary technology and we recover the no-bubble result found by Becker et al.
(2015). The novelty is that aggregate good bubbles may appear when technology is
not stationary.

Our generalized framework allows us to compare both these categories of bubbles

6Notice that the marginal productivity of capital good may be strictly less than its return.
71 is the price of aggregate good since it is the numéraire.
8In Becker et al. (2015), the expected return on the aggregate good always equals the return in

the rental market.
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and clarify, once for all, their nature. By means of examples, we show that a bubble
in aggregate good may exist even if (1) the present value of output is finite, (2) all
consumers are identical, (3) borrowing constraints of consumers are never binding.
These surprising results are new and come from a structural difference between the
two kinds of goods: the aggregate one is not only consumed but also processed in
production, while the capital good is only used to produce. The following table sums
up these findings.

Statement Capital good Aggregate good
No bubble if the present value of profits is finite holds may fail
No bubble if there is one consumer holds may fail
No bubble if borrowing constraints are not binding holds may fail

Interestingly, equilibrium bubbles in capital and aggregate good are not incom-
patible. Of course, in some cases, only one of these bubbles or no bubble at all
exists.

We also give an example of one-sector economy (without capital good) experi-
encing a no-trade equilibrium with a bubble in the aggregate good. Interestingly,
the returns on aggregate good in the rental market are zero at any date but its
expected returns are always strictly positive. By the way, the fundamental value
of aggregate good is strictly positive even when its returns are zero. This suggests
that we should consider the expected returns, not equilibrium returns, to define the
fundamental value. In this example, the existence of aggregate good bubble depends
on the dynamics of consumers’ wealth.

Interestingly too, bubbles and equilibrium efficiency are not incompatible. The
last part of the paper tackles this issue. An intertemporal equilibrium is efficient in
sense of Malinvaud (1953) if its production plan is efficient.9 Given an equilibrium,
we prove that, if the endogenous discount factors of all consumers are identical from
some date on, then this equilibrium is efficient. By consequence, if the consumers’
borrowing constraints are never binding, the equilibrium is efficient. Conversely,
Becker et al. (2014) give an example of inefficient equilibrium where borrowing con-
straints are binding at infinitely many dates.

We eventually show that an equilibrium is efficient if the present value of profits
is finite. In particular, when the production functions are constant returns to scale,
firms make zero profit and, hence, every intertemporal equilibrium is efficient. We
don’t require any condition about convergence or boundedness of capital path as
was the case in the previous literature. Moreover, our result holds in both one-
and two-sector models. Our result is also related to Becker and Mitra (2012) where
they prove that, in a one-sector model, a Ramsey equilibrium is efficient if the most
patient household is not credit-constrained from some date on. However, their result
is based on the fact that the consumption of each household is uniformly bounded
from below.10

9A production plan is efficient if (1) it is feasible and (2) there is no other feasible production
plan which improves the aggregate consumption.

10The constrained efficiency is another important concept. Constrained inefficiency occurs when
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Surprisingly, equilibria may be both efficient and bubbly (in the aggregate good)
in a one-sector model with such technologies. Indeed, under a linear technology
Ft(K) = atK with

∑

t≥1 at < ∞, bubbles in aggregate good occur. Moreover, as
seen above, every equilibrium is efficient. This possible coexistence of efficiency and
bubbles rests on non-mutually exclusive conditions: nature of bubbles (low interest
rates) and nature of efficiency (distribution of capital across periods).

The rest of the paper is organized as follows. Section 2 presents a generalized two-
sector model. In section 3, we define the bubbles in aggregate and capital goods and
we compare these concepts with other ones in the existing literature. Sections 4 and 5
study the nature of bubbles in aggregate and capital goods while Section 6 addresses
their linkage. Section 7 treats the equilibrium efficiency. Section 8 concludes. All
technical proofs are gathered in Appendices.

2 A two-sector model

In the spirit of Becker and Tsyganov (2002) and Becker et al. (2015), we consider a
general equilibrium model with two sectors and infinite-lived heterogeneous agents.
The first sector produces an aggregate good which is consumed or used to produce
the aggregate good, while the second sector a capital good which is processed to
produce both the aggregate and the capital good. Time is discrete and runs from
t = 0 to infinity. pt and qt will denote the prices of aggregate and capital goods at
date t respectively.

2.1 Productions

A representative firm produces an aggregate good by using the same good and a
capital good. This firm rents Kt units of aggregate good and Hc

t units of capital
good to produce Ft(Kt, H

c
t ) units of aggregate good. Ft represents a (possibly) non-

stationary technology. Profit maximization writes

P (pt, rc,t, rh,t) : πc,t(pt, rc,t, rh,t) := max
Kt≥0

[

ptFt(Kt, H
c
t )− rtKt − rh,tH

c
t

]

where rt (resp., rh,t) denote the return of aggregate (resp., capital) good at date t.

Remark 1. Inputs are not required to be essential. In other words, the cases
Ft(H, 0) > 0 or Ft(0, K) > 0, with K > 0, H > 0, are allowed.

In this sector, the production plan satisfies two first-order conditions:

pt
∂Ft

∂K
(Kt, H

c
t ) ≤ rt, with equality when Kt > 0 (1)

pt
∂Ft

∂H
(Kt, H

c
t ) ≤ rh,t, with equality when Hc

t > 0 (2)

there exists a welfare-improving feasible redistribution subject to constraints (these constraints
depends on models). About the constrained efficiency in general equilibrium models with financial
asset, see Kehoe and Levine (1993), Alvarez and Jermann (2000) and Bloise and Reichlin (2011).
About the constrained efficiency in neoclassical growth models, see Davila et al. (2012).
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In the capital good sector, another representative firm produces the capital good
by using the same good. Formally, the firm decides the demand of capital good Kk

t

to maximize the profit.

P (qt, rh,t) : πk,t(qt, rt) := max
Hk

t ≥0

[

qtGt(H
k
t )− rh,tH

k
t

]

where Gt is a non-stationary production function.
In this sector, the production plan satisfies a single first-order condition:

qtG
′
t(H

k
t ) ≤ rh,t, with equality when Hk

t > 0 (3)

For notational parsimony, we will write πc,t and πk,t instead of πc,t(pt, rt) and
πk,t(qt, rt). πt := πc,t + πk,t will denote the aggregate profit of both the sectors.

2.2 Heterogeneous consumers

We consider a set I of m of consumers. Any consumer is shareholder of firm j. θij
denotes the exogenous share of firm j ∈ {c, k} held by agent i ∈ I. Of course, θij ≥ 0
for any i and j, and

∑

i∈I θ
i
j = 1.

The consumer i buys ci,t units of aggregate good to consume at date t. She may
invest by buying ki,t+1 units of aggregate good, which is then rent by the aggregate
good producer. At the next date, this amount (1) gives back for the consumer
rt+1ki,t+1 in monetary terms at date t + 1, (2) depreciates to (1 − δ)ki,t+1 units of
aggregate good at date t+ 1.

Consumers may also invest in capital good. At time t, the consumer i buys
hi,t+1 ≥ 0 units of this good at a price qt. The following period, she receives returns
rh,t+1hi,t+1 and (1 − δh)hi,t+1 depreciated units of capital good, where δh is the de-
preciation rate of capital good. r := (rt, rh,t)t≥0 denotes the sequence of returns on
aggregate and capital goods.

The consumer i maximizes an intertemporal utility function:

Pi(p, q, r) : max
(ci,t,ki,t+1,hi,t+1)∞t=0

∞
∑

t=0

βt
iui(ci,t)

facing sequences of borrowing and budget contraints:

ki,t+1 ≥ 0 and hi,t+1 ≥ 0

pt(ci,t + ki,t+1) + qthi,t+1 ≤ pt(1− δ)ki,t + rtki,t + qt(1− δh)hi,t + rh,thi,t + πi,t

βi ∈ (0, 1) captures the time preference of consumer i, while ui and πi,t :=
θic,tπc,t+ θik,tπk,t denote her utility function and profit. The initial portfolio (hi,0, ki,0)
is given.
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2.3 Definition of equilibrium

Definition 1. A sequence of prices and quantities

(

p̄t, q̄t, r̄t, r̄h,t, (c̄i,t, k̄i,t+1, h̄i,t+1)i∈I , K̄t, H̄t, H̄
c
t , H̄

k
t

)

t≥0

is an equilibrium of the economy E =
(

(ui, βi, ki,0, hi,0, θi)i∈I , δ, δh, (Ft, Gt)t≥0

)

if the

following conditions hold.

(i) Price positivity: p̄t, r̄t, r̄h,t > 0, q̄t ≥ 0 for any t ≥ 0.

(ii) Market clearing:

aggregate good:
∑

i∈I

(c̄i,t + k̄i,t+1) =
∑

i∈I

(1− δ)k̄i,t + Ft(K̄t, H̄
c
t ) (4)

capital good:
∑

i∈I

h̄i,t+1 ≤ (1− δh)
∑

i∈I

h̄i,t +Gt(H̄
k
t ) (5)

q̄t

(

∑

i∈I

h̄i,t+1 − (1− δh)
∑

i∈I

h̄i,t −Gt(H̄
k
t )
)

= 0 (6)

rental markets: K̄t =
∑

i∈I

k̄i,t and H̄c
t + H̄k

t =
∑

i∈I

h̄i,t. (7)

for any t ≥ 0.

(iii) Optimal consumption plans: (c̄i,t, k̄i,t+1, h̄i,t+1)
∞
t≥0 is a solution to the problem

(Pi(p̄, r̄)) for any i.

(iv) Optimal production plans: (K̄t, H̄
c
t ) is a solution to the problem P (p̄t, r̄c,t, r̄k,t)

and (H̄k
t ) is a solution to the problem P (q̄t, r̄k,t) for any t ≥ 0.

Remark 2. The capital good can be also interpreted as human capital.

Inequalities (4, 5) allow us to prove the boundedness of feasible aggregate and
capital good.

Lemma 1. Let F,G be increasing and concave production functions with F (0, 0) =
G(0) = 0. Assume that (1) Ft = atF for every t where at ∈ [a, ā] with a, ā ∈ (0,∞),
and (2) Gt = btG for every t where bt ∈ [b, b̄] with b, b̄ ∈ (0,∞).

If 0 < b̄G′(∞) < δh, then the capital good stock (Ht) is uniformly bounded from
above, that is there exists H̄ ∈ (0,∞) such that Ht ≤ H̄ for any t. Moreover, if

0 < lim
K→∞

[

ā
∂F

∂K
(K, H̄)

]

< δ

then the aggregate good stock (Ct +Kt+1)t is uniformly bounded from above, that is
there exists K̄ ∈ (0,∞) such that Ct +Kt+1 ≤ K̄ for any t.
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2.4 Finite-horizon economies

We define a finite-horizon economy with a final date T as an infinite-horizon economy
with three additional conditions: (1) there are no activities from date T + 1 on, (2)
ki,T+1 = hi,T+1 = 0 and (3) qT = 0. In this case, the last budget constraint of agent
i becomes

pT ci,T ≤ pT (1− δ)ki,T + rTki,T + rh,Thi,T + πi,T (8)

The agent i buys ki,T units of aggregate good and hi,T units of capital good at
date T − 1. At date T , the aggregate good depreciated to (1− δ)ki,T units, while the
capital good to (1− δh)hi,T units. The value of aggregate good pT (1− δ)ki,T is paid
back to this agent, but the price of capital good becomes zero as well as its value.

2.5 Existence of equilibrium

By slightly adapting the proof in Becker et al. (2015), Le Van and Pham (2015),
it is possible to show that, under mild conditions, there exist an equilibrium with
q̄t > 0 for any t in the infinite-horizon economy and an equilibrium with q̄t > 0 for
any t ≤ T − 1 in the T -horizon economy.11 In the rest of the paper, we will focus on
equilibria in infinite-horizon economies with q̄t > 0 and

∑

i∈I

h̄i,t+1 = (1− δh)
∑

i∈I

h̄i,t +Gt(H̄
k
t ). (9)

2.6 Particular cases

Our general model encompasses some prominent cases of theoretical literature.

1. One-sector model. Becker et al. (2015), Bosi et al. (2014) are particular
cases of our model when there is no capital good.

2. Lucas’ tree. Another case of interest is the model with no depreciation (δh =
0) and no production of capital good (Gt = 0), and Ft(K,H) = F (K) + btH.
The supply of capital good becomes exogenous and reduces to the initial supply
(H0 :=

∑

i hi,0). The structure of capital good reduces to a Lucas’ tree (Lucas,
1978) or stock (Kocherlakota, 1992).

3. Two-sector economy à la Becker and Tsyganov. Becker and Tsyganov
(2002) is recovered with ki,t = 0 and rt = 0 for any i and t. This holds when the
aggregate good is no longer a productive good and depreciaiton is full (δ = 1).

4. (Exogenously) pure consumption good. In the case where the deprecia-
tion is partial (δ < 1) and the aggregate good is only consumed (Ft(K,H) no
longer depends on K and rt = 0),12 the budget constraint of agent i writes

pt(ci,t + ki,t+1) + qthi,t+1 ≤ pt(1− δ)ki,t + qt(1− δh)hi,t + rh,thi,t + πi,t (10)

11The detailed proof is available upon request.
12Even when rt = 0, the aggregate Kt may be strictly positive.
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The amount of consumption good purchased by an agent can be consumed
today or stored for tomorrow. Storage is the way to transfer wealth over time,
but one stored unit depreciates from a period to another to (1− δ) units.

5. Endogenously pure consumption good. Production may involve both the
inputs (aggregate and capital good), but, at equilibrium, only the capital good
is used to produce both the goods.

6. Macroeconomic perspective. Let
(

pt, qt, rt, rh,t, (ci,t, ki,t+1, hi,t+1)i∈I , K
c
t , H

c
t , H

k
t

)

t≥0

be an equilibrium and Kt :=
∑

i∈I ki,t, Ht :=
∑

i∈I hi,t and Ct :=
∑

i∈I ci,t.
Agent i diversifies her portfolio in ki,t+1 units of aggregate good and hi,t+1 units
of capital good. The value of her total saving is given by si,t := ptki,t+1+qthi,t+1,
while the value of aggregate saving by St :=

∑

i∈I si,t = ptKt+1 + qtHt+1. The
value of gross investment at date t writes

It = ptKt+1 + qtHt+1 − pt(1− δ)Kt − qt(1− δh)Ht

= ptKt+1 − pt(1− δ)Kt + qtGt(H
k
t ).

Note that It may be negative. Market clearing conditions imply the following
decomposition of aggregate output ptCt + It = ptFt(K

c
t , H

c
t ) + qtGt(H

k
t ).

2.7 Basic equilibrium properties

We consider an equilibrium
(

pt, qt, rt, rh,t, (ci,t, ki,t+1, hi,t+1)i∈I , Kt, Ht, H
c
t , H

k
t

)

t≥0
. With-

out loss of generality, we normalize the sequence of prices of aggregate good: pt = 1
for any t.

By using the argument in the proof of Theorem 1 of Kamihigashi (2002), we can
prove the transversality condition at equilibrium.

Lemma 2. At equilibrium,

lim
t→∞

βt
iu
′
i(ci,t)ki,t+1 = lim

t→∞
βt
iu
′
i(ci,t)qthi,t+1 = 0 (11)

for any agent i.

Lemma 2 is indispensable to prove the following characterization of equilibrium
existence.

Lemma 3. A non-negative list
(

pt, qt, rt, rh,t, (ci,t, ki,t+1, hi,t+1)i∈I , Kt, Ht, H
c
t , H

k
t

)

t≥0
with qt > 0 for any t is an equilibrium if and only if the following conditions are
satisfied.

1. pt, qt, rt, rh,t > 0 for any t.

2. pt(ci,t + ki,t+1) + qthi,t+1 = pt(1− δ)ki,t + rtki,t + qt(1− δh)hi,t + rh,thi,t + πi,t for
any i and t.
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3. Consumers’ first-order conditions: There are positive sequences (λi,t, νi,t, µi,t)i,t
such that

βt
iu
′
i(ci,t) = λi,t (12)

λi,t = λi,t+1(rt+1 + 1− δ)) + νi,t+1, νi,t+1ki,t+1 = 0 (13)

λi,tqt = λi,t+1(rh,t+1 + qt+1(1− δh)) + µi,t+1, µi,t+1hi,t+1 = 0. (14)

4. Transversality conditions: lim
t→∞

βt
iu
′
i(ci,t)ki,t+1 = lim

t→∞
βt
iu
′
i(ci,t)qthi,t+1 = 0 for

any i.

5. Optimality of production plans: Conditions (1, 2, 3) hold.

6. Market clearing conditions:

∑

i∈I

(ci,t + ki,t+1) =
∑

i∈I

(1− δ)ki,t + Ft(Kt, H
c
t ) (15)

∑

i∈I

hi,t+1 = (1− δh)
∑

i∈I

hi,t +Gt(H
k
t ) (16)

Kt =
∑

i∈I

ki,t, Hc
t +Hk

t =
∑

i∈I

hi,t (17)

Conditions (3) and (4) in Lemma 3 ensure the optimality of consumption plans
(ci,t, ki,t+1, hi,t+1). The proof of Lemma 3 is left to the reader.

2.8 (Expected) returns

We denote by

γt := max
i∈{1,...,m}

βiu
′
i(ci,t)

u′i(ci,t−1)

the discount factor of the economy from date t to date t+ 1 and by Qt :=
t
∏

s=1

γs the

discount factor of the economy from date 0 to date t. By convention, we set also
Q0 := 1. Asset pricing rests on these definitions.

Lemma 4 (asset-pricing for aggregate and capital goods). We have, for any t ≥ 0,

qt = γt+1

(

rh,t+1 + (1− δh)qt+1

)

(18)

1 ≥ γt+1(rt+1 + 1− δ), with equality if Kt+1 > 0 (19)

Remark 3. βiu
′
i(ci,t+1)/u

′
i(ci,t) = γt+1 if ki,t+1 > 0 or hi,t+1 > 0.

Definition 2. The expected return ρt of aggregate good at date t is defined by

1 = γt(ρt + 1− δ) (20)

10



The expected return on aggregate good is the gain from this good, which fills
the non-arbitrage condition: what we pay today to hold 1 unit of aggregate good
is equal to what 1 unit of this good brings for us tomorrow. According to (19), we
have ρt ≥ rt and equality holds if Kt > 0. We also see that if the expected return on
aggregate good is strictly higher than the equilibrium return in the rental market of
this good, i.e., ρt > rt, then Kt = 0. Notice that ρt > rt may happen at equilibrium
if the aggregate good plays a little role in production (for instance, when Ft no longer
depends on K). This matter will be investigated further in Section 5.2.

Definition 3. The expected return ρh,t of aggregate good between date t− 1 and date
t is defined by

qt−1 = γt(ρh,t + (1− δh)qt). (21)

According to non-arbitrage condition (18), the expected return is equal to the
equilibrium return in the rental market, i.e., ρh,t = rh,t for any t ≥ 1. The economic
intuition is simple: the capital good is a pure input and is not consumed, hence its
aggregate supply at each date equals the sum of depreciated capital good from the
previous date and output from the capital good sector (see (16)), and hence Ht > 0.
Thus, there exists at least one consumer who buys capital good. By consequence,
the expected return equals the return at each period.

3 Definitions of bubbles

In this section, we provide formal definitions of bubbles in aggregate and capital
goods and we compare these concepts with those in the existing literature. Recall
that we normalize the sequence of prices of aggregate good: pt = 1 for any t.

3.1 Definition of bubble in capital good

The capital good is a long-lived asset whose price (in terms of aggregat good) at the
initial date equals q0. Agents buy the capital good at date 0 taking in account future
returns.

1. At date 1, one unit purchased at date 0 will bring rh,1 units of aggregate good
and 1− δh units of capital good. Agents’ arbitrage gives rise to an equilibrium
no-arbitrage condition: q0 = rh,1Q1 + (1− δh)q1Q1.

2. At date 2, 1 − δh units of the capital good will bring (1 − δh)rh,2 units of
aggregate good and (1 − δh)

2 units of capital good. The intertemporal no-
arbitrage condition becomes: (1− δh)q1Q1 = (1− δh)rh,2Q2 + (1− δh)

2q2Q2.

11



Iterating the argument, we find a generalization over T periods.

q0 =
(

rh,1 + (1− δh)q1

)

Q1 = rh,1Q1 + (1− δh)q1Q1

= rh,1Q1 + (1− δh)
(

rh,2 + (1− δh)q2

)

Q2 = rh,1Q1 + (1− δh)rh,2Q2 + (1− δh)
2q2Q2

= · · ·

=
T

∑

t=1

[

(1− δh)
t−1rh,tQt

]

+ (1− δh)
T qTQT (22)

According to (22), what we pay (in terms of aggregate good) at initial date to
buy 1 unit of capital good equals what we expect to receive in the future.

The fundamental value of capital good at date 0 is defined as the sum of dis-
counted values of its returns (net of depreciation):

FVk :=
∑

t≥1

(1− δh)
t−1rh,tQt

Definition 4 (bubble in capital good). There is a bubble in capital good if the equi-
librium price of capital good exceeds its fundamental value: q0 >

∑

t≥1

(1− δh)
t−1rh,tQt,

or, equivalently, lim
t→∞

(1− δh)
T qTQT > 0.

One unit of capital good at the initial date will depreciate to (1− δ)t units of the
same good at date t. The discounted value of this quantity is Qtqt(1−δ)t. Therefore,
bubble in capital good is interpreted as the discounted market value (at infinity) of
one unit of capital good at initial date.

As above, we recover other bubble definitions in theoretical literature as particular
cases of ours.

1. If the depreciation of capital good is null (δh = 0), there is no production of
capital good (Gt = 0) and Ft(K,H) = F (K) + btH, then we recover rational
asset bubbles in Kocherlakota (1992), Santos and Woodford (1997) for the case
where consumers cannot borrow. In particular, if we assume that Ft(K,H) =
F (K), then rh,t = 0; in this case, its fundamental value is zero and the capital
good becomes a pure bubble asset as in Tirole (1985).

2. If the depreciation of capital good is full (δh = 1), there is no bubble. The
equilibrium price of capital becomes q0 = rh,1Q1. For this reason, we will
consider only the case of partial depreciation (δh < 1) in the sequel.

3. In the case of a T -horizon economy (Section 2.4), nobody buys the capital good
at the end (date T ). By consequence, we have qT = 0 and, according to (22):

q0 =
T

∑

t=1

(1− δh)
t−1rh,tQt (23)

12



3.2 Definition of bubble in aggregate good

In the spirit of Becker et al. (2015), the aggregate good can be viewed as a long-lived
asset whose price (in terms of aggregate good) at initial date equals 1. As above,
agents buy the aggregate good at date 0 expect as follows:

1. At date 1, one unit (from date 0) of this good will bring ρ1 units of aggregate
good (as return) and 1 − δ units of the same asset (because of depreciation).
A no-arbitrage condition holds at equilibrium: 1 = ρ1Q1 + (1− δ)Q1.

2. At date 2, 1−δ units of this good will bring (1−δ)r2 units of aggregate good (as
return) and (1−δ)2 units of the same asset (because of depreciation). Formally,
(1− δ)Q1 = (1− δ)ρ2Q2 + (1− δ)2Q2.

Iterating the argument, we get the intertemporal no-arbitrage condition:

1 = (ρ1 + 1− δ)Q1 = ρ1Q1 + (1− δ)Q1

= ρ1Q1 + (1− δ)(ρ2 + 1− δ)Q2 = ρ1Q1 + (1− δ)ρ2Q2 + (1− δ)2Q2

= · · ·

=
T

∑

t=1

[

(1− δ)t−1ρtQt

]

+ (1− δ)TQT (24)

According to (24), what we pay at initial date to buy one unit of aggregate
good equals what we expect to receive in the future. The first term in (24) is what
the production process brings, while the second term is what any agent receives by
reselling the aggregate good at date T .

The fundamental value of aggregate good at date 0 is defined as the sum of
discounted values of its expected returns (net of depreciation):

FVf :=
∑

t≥1

(1− δ)t−1ρtQt

Definition 5 (bubble in aggregate good). There is a bubble in aggregate good if the
price of aggregate good exceeds its fundamental value: 1 >

∑

t≥1(1 − δ)t−1ρtQt, or,

equivalently, limt→∞(1− δ)TQT > 0.

It is valuable to bridge our definition to the existing literature.

1. One-sector Ramsey model. Becker et al. (2015) define the bubble as a
difference between 1 and the fundamental value of capital (discounted value
of returns on capital:

∑

t≥1(1 − δ)t−1rtQt. We define instead the bubble in
aggregate good. These two concepts differ because the definitions of expected
return ρt and returns rt differ. Indeed, when the aggregate good is a pure
consumption good (Ft no longer depends on K), we have rt = 0 for any t,
which implies in turn a zero fundamental value of capital in Becker et al.
(2015). However, as we will show in Section 5.2, the expected return ρt, defined
by (20), may be strictly positive and the fundamental value of aggregate good
be positive as well. Of course, these two concepts coalesce when Kt > 0 for
any t. This point will be readdressed in Section 5.2
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2. Full depreciation. When δ = 1, there is no bubble in aggregate good and
the price of aggregate good at initial date equals its discounted value date date
1, that is 1 = ρ1Qt.

3. Finite horizon. In the case of a T -horizon economy (Section 2.4), (24) holds.
The price of aggregate good exceeds the discounted values of expected returns.
This decomposition differs from that of capital good in (23). The last term
(1 − δ)TQT is always positive because 1 unit of the aggregate good at initial
date will depreciate to (1− δ)T units of the same good at date T . This residual
amount is not wasted, but consumed (see (10)).

Remark 4. We define the bubbles in aggregate and capital goods in the same way.
However, we will see that these two kinds of bubbles behave differently because the
structures of aggregate and capital goods are different.

We now introduce a new concept of bubble.

Definition 6 (investment bubble). There is an investment bubble if at least one of
the asset markets experiences a bubble, that is

q0 > FVk or 1 > FVf

There is a strong investment bubble if both the asset markets experience a bubble,
that is

q0 > FVk and 1 > FVf

3.3 Literature on rational bubbles

Theoretical literature supplies different concepts of rational bubbles depending on
the definition of fundamental value and the kind of asset considered.

(1) Tirole (1982), Kocherlakota (1992, 2008), Santos andWoodford (1997), Huang
and Werner (2000) and Le Van and Pham (2014) are general equilibrium models with
long-lived assets. The structure of a long-lived asset is the following: an agent buys
one unit of asset at date t at a price qt and resells it at date t+1 at a price qt+1 after
receiving a dividend of ξt+1 units of consumption good. The sequence of dividends
(ξt) is exogenous. There exists a bubble if the market price of asset at date 0 (in
terms of consumption good), say q0, exceeds its fundamental value: q0 >

∑

t≥1 Πtξt,
where Πt is the discount factor of the economy from the initial date to date t.13

The capital good we consider is more general than the financial asset with exoge-
nous dividends of standard literature. Indeed, the capital good is also a long-lived
asset (it is resold and gives dividends at each date). That being said, their mod-
els differ from ours in three main respects: (1) the capital good depreciates while
financial assets don’t, (2) the sequence of returns (rh,t) is endogenous while the se-
quence of financial dividends (ξt) is exogenous, (3) the supply of capital good is also
endogenous while the asset supply isn’t.

13Qt in our model plays the same role of Πt in their papers.
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Consider the case δh = Gt = 0. The supply of capital good at each date is now
constant and equal to H0. If Ft(K,H) = F (K) + ξtH for any t ≥ 0, we recover
the long-lived asset in Tirole (1982), Kocherlakota (1992) and Huang and Werner
(2000). In particular, when ξt = 0 for any t, we recover the concept of pure bubble
in Tirole (1985), Aoki et al. (2014), Hirano and Yanagawa (2013)

(2) Araujo et al. (2011) study equilibrium bubbles in durable goods and collat-
eralized assets. Their asset-pricing equations (Corollary 1, page 263) rest on the
existence of what they call deflators and non-pecuniary returns, that are not
unique in general. Then, they define the bubbles associated to each sequence of
deflators and non-pecuniary returns.

Focus on the asset-pricing equations (18, 19) and compare with Araujo et al.
(2011). Our bubble corresponds to their bubble with deflators λi,t where

i ∈ arg max
i∈{1,...,m}

{βiu
′
i(ci,t+1)/u

′
i(ci,t)} ,

and non-pecuniary returns αi,t = 0.
(3) Our concepts of bubble in aggregate and capital goods have also something to

do with the bubble in firm’s value defined by Miao and Wang (2012, 2015). Indeed,
they also study bubbles in the firm’s value with endogenous dividends. They consider
a firm endowed with K units of capital and decompose the value V (K) (sum over
time of discounted net profits) into two parts: V (K) = QK + B, where Q is the
endogenous Tobin coefficient. They interpret QK as the firm’s fundamental value
and B as a bubble in this value.

Their approach differs from ours in two respects. First, firms in Miao and Wang
(2012, 2015) are dynamic credit-constrained firms and maximize a sum of discounted
net profits, while firms in our model are static and maximize the profit period by
period. Second, a bubble in Miao and Wang (2012, 2015) is the difference between
the firm’s market value and its fundamental value, while our bubble is the difference
between the equilibrium asset price and its fundamental value.

4 The nature of bubbles in capital good

Let us characterize the existence of bubbles in capital good.

Proposition 1. The three following statements are equivalent.

(i) There exists a bubble in capital good.

(ii) lim
t→∞

(1− δh)
tQtqt > 0.

(iii)
∑

t≥1 rh,t/qt <∞.

Proposition 1 recovers Montrucchio (2004) and Le Van and Pham (2014). Equiv-
alences in Proposition 1 have important consequences.
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Corollary 1. 1. If bubbles in capital good exist, then
∑

t≥0

G′t(H
k
t ) <∞.

2. Consider an equilibrium with Hk
t > 0 for any t. A bubble in capital good exists

if and only if
∑

t≥1 G
′
t(H

k
t ) <∞.

Let us point out some other consequences of Proposition 1.

Corollary 2. Let G be a strictly increasing and concave function with G(0) = 0.
Define a non-stationary production function Gt = btG for every t where bt ∈ [b, b̄]
with b, b̄ ∈ (0,∞). Suppose a positive capital good depreciation (δh > 0). Then,
equilibrium bubble in capital good are ruled out.

Focus now on the role of capital supply in the existence of bubbles in capital
good.

Corollary 3. Assume that a positive constant d exists such that Gt(H) ≤ dG′t(H)H
for any t and H ≥ 0.

If a bubble in capital good exists, then the aggregate stock of capital good (Ht) is
uniformly bounded from above.

4.1 Sufficient (endogenous) conditions to rule out bubbles
in capital good

The main result rests on some intermediate lemmas. In primis, we show the impact
of borrowing constraints following Le Van and Pham (2014).

Lemma 5. Consider an equilibrium and a particular agent i. If there is a date t0
such that ki,t+1 + qthi,t+1 > 0 for any t ≥ t0, then the limit lim

t→∞
Qt(ki,t+1 + qthi,t+1)

exists and equals 0.

Focus now on the role of the present value of profits.

Lemma 6. Consider an equilibrium and assume
∑

t≥0 Qtπt <∞. Then, limt→∞Qtqt(Kt+1+
qtHt+1) = 0.

Finally, consider the asymptotic discounted value of capital good.

Lemma 7. If lim
t→∞

QtHt+1qt = 0, then lim
t→∞

(1− δh)
tQtqt = 0.

Putting together these intermediate findings, we obtain immediately the main
result.

Proposition 2. Bubbles in capital good are ruled out if one of the following condition
is satisfied.

1. There exists t0 such that βiu
′
i(ci,t)/u

′
i(ci,t−1) = γt for any i and t ≥ t0.

2. There exists t0 such that (ki,t, hi,t+1) 6= 0 for any i and t ≥ t0.
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3.
∑

t≥0 Qtπt <∞.

Inequality Ht+1 ≥ (1 − δh)Ht is the center of Proposition 2. To grasp its impli-
cations, focus on a simplified case: Ft(K,H) = F (K) + btH, Gt = 0 and δh = 0
(no depreciation). In this case, Ht+1 = Ht for any t and the capital good behaves
as the stock in Kocherlakota (1992) or the security in Santos and Woodford (1997).
By the way, we generalize the well-known result in Kocherlakota (1992) and Santos
and Woodford (1997): there is no financial bubble if the present value of aggregate
endowments is finite.

In the case of zero profits,
∑

t≥0 Qtπt < ∞: thereby, we obtain an important
corollary which applies to a prominent class of technologies.

Corollary 4. If Ft and Gt display constant returns to scale at any date t, then,
bubbles in capital good are ruled out whatever equilibrium we consider.

4.2 Examples of bubbles in capital good

To illustrate our general results and understand their implications, we provide some
examples of equilibrium bubbles in capital good.

We simplify the economy as follows. There are only 2 consumers: A and B.
Production functions are supposed to be linear

Ft(K,H) = atK + btH + w, Gt(H) = dtH

with at, bt, dt ≥ 0 and w > 0, to obtain constant profits over time: πc,t = w and πk,t =
0 for any t. Both the agents are supposed to be sufficiently impatient: β(1−δ+at) ≤ 1
for any t ≥ 0.

As in Le Van and Pham (2015), we assume that profit shares fluctuate: (θAc,2t, θ
A
c,2t+1) =

(1, 0) and (θBc,2t, θ
B
c,2t+1) = (0, 1) for any t. Agent B owns the initial endowments:

kA,0 = hA,0 = 0, kB,0 = K0 and hB,0 = H0

Collecting these pieces of information, we can construct an equilibrium.
Equilibrium prices are given by

rt = at, rh,t ≥ bt and rh,t ≥ qtdt (25)

jointly with the no-arbitrage condition

(1− δh)qt+1 + rh,t+1 = qt(1− δ + at+1) (26)

These prices decentralize the equilibrium allocations:
(1) assets:

kA,2t = hA,2t = 0, kB,2t = K2t and hB,2t = H2t

kB,2t+1 = hB,2t+1 = 0, kA,2t+1 = K2t+1 and hA,2t+1 = H2t+1
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(2) consumption good:

cA,2t =
w

1 + β
and cB,2t = (1− δ + r2t)

βw

1 + β

cA,2t+1 = (1− δ + r2t+1)
βw

1 + β
and cB,2t+1 =

w

1 + β

(3) dynamics of aggregate and capital goods:

Kt+1 =
βw

1 + β
− qtHt+1 (27)

Ht+1 = (1− δh)Ht + dtH
k
t (28)

Ht = Hc
t +Hk

t (29)

with Kt, H
c
t , H

k
t ≥ 0.

These prices and allocations constitute an equilibrium (see Appendix).

4.2.1 Continuum of equilibrium prices with bubble in capital good

Focus on the case where dt = 0 and bt > 0: the capital good is no longer produced
but it can be used to produce the aggregate good.14 In this case, rh,t = bt > 0,
Hk

t = 0, Hc
t = Ht = H0(1 − δh)

t and Qt = [(1− δ + a1) · · · (1− δ + at)]
−1 for

any t. Let D :=
∑

t≥1(1 − δh)
t−1btQt denote the discounted value of depreciated

returns on capital good. Of course, D = 0 if bt = 0 for any t. We assume also
H1D < βw/ (1 + β). It is immediate to see that the fundamental value of capital
good is FVk = D.

We consider q0 = B + D with B ≥ 0 and we determine the sequence of asset
prices (qT )T≥1 from

q0 =
T

∑

t=1

[

(1− δh)
t−1btQt

]

+ (1− δh)
T qTQT

To ensure the positivity of aggregate good (Kt > 0), we assume

H1

(

B +D −

T
∑

t=1

(1− δh)
t−1btQt

)

(1− δ + a1) · · · (1− δ + aT ) <
βw

1 + β
(30)

for any T ≥ 1. This condition depends on (at), (bt), w, B, β, δ, δh and H1.
Inequality (30) entails that any

q0 ∈

[

D,
βw

(1 + β)(1− δ)H0

)

is an equilibrium price of capital good at date 0.15 Moreover, if q0 > D, then this
equilibrium price is bubbly.

14The capital good is an input with depreciation rate δh ≥ 0.
15Notice that

q0 <
βw

(1 + β)(1− δ)H0

⇒ K1 =
βw

(1 + β)
− q0H1 > 0
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Remark 5. If bt = 0 for any t, the capital good becomes a pure bubble (without
intrinsic value) like in Tirole (1985).

4.2.2 Unique equilibrium price with bubble in capital good

Consider now the case where bt > 0 and dt > 0. We assume no depreciation of
aggregate good (δ = 0) and a partial depretiation of capital good (δh ∈ (0, 1)).
Moreover,

bt = b > 0, at = dt−1 and dt+1 = (1− δh)dt (31)

and
b(1 + d0) · · · (1 + dt−1)H1

(1− δh)d0
≤

βw

1 + β
(32)

for any t. Condition (32) can be satisfied since Πt≥0(1 + dt) <∞.16

Equilibrium prices are given by rt = at and rh,t = b = qtdt. Thank to this and
(31), condition (26) is satisfied.

We now verify that (27, 28, 29) also hold. We have just to prove that qtHt+1 <
βw/ (1 + β). We have

Ht+1 ≤ (1− δh + dt)Ht = (1− δh)(1 + dt−1)Ht

≤ · · · ≤ (1− δh)
t(1 + dt−1) · · · (1 + d0)H1

and, therefore,

qtHt+1 =
bHt+1

dt
≤

b(1− δh)
t(1 + dt−1) · · · (1 + d0)H1

(1− δh)t+1d0
=

b(1 + dt−1) · · · (1 + d0)H1

(1− δh)d0

By combining this with (32), we obtain that qtHt+1 < βw/ (1 + β).
In this example, a bubble in capital good exists if and only if

∑

t≥1 dt <∞. This
condition holds because dt+1 = (1− δh)dt and δh > 0.

5 The nature of bubbles in aggregate good

To understand the nature of bubbles in aggregate good, we start with their carach-
terization. As Proposition 1, the following bridge the existence of bubbles with the
structure of returns.

Proposition 3. The following statements are equivalent.

(i) There exists a bubble in aggregate good.

(ii) lim
t→∞

(1− δ)tQt > 0.

(iii) Interest rates are low, that is
∑

t≥1 ρt < +∞.

16Condition Πt≥0(1+dt) <∞ is equivalent to
∑

t≥0
dt <∞. In our example, we have

∑

t≥0
dt <

∞ because dt+1 = (1− δh)dt and δh > 0.
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The novelty of Proposition 3 rests on a necessary and sufficient condition which
characterize the existence of bubbles in aggregate good:

∑

t≥1 ρt < ∞. We call
this inequality condition of low interest rates. The intuition behind is the following:
the lower the level of returns, the lower the fundamental value of aggregate good.
Thereby, when returns becomes low enough, bubbles in aggregate good emerge. In-
deed, according to (24), the equilibrium price of capital at the initial date equals the
sum of its fundamental value and the bubble component:

1 =
∑

t≥1

(1− δ)t−1ρtQt + lim
t→∞

(1− δ)tQt

This component writes more explicitly:

Bf = lim
t→∞

(1− δ)tQt = lim
t→∞

(1− δ)t

(1− δ + ρ1) . . . (1− δ + ρt)

It is easy to see that Bf is decreasing in each ρt. Therefore, the fundamental
value FVf = 1 − Bf is increasing in each return ρt. Thus, when returns are low
enough, the fundamental value falls below 1 and a bubble appears.

Remark 6. We see that one unit of aggregate good at initial date will depreciate to
(1 − δ)t units of the same asset at date t. The discounted value of these (1 − δ)t

units is Qt(1 − δ)t. Therefore, bubbles in aggregate good can be interpreted as the
discounted market value (at the infinity) of one unit of capital at the initial date after
depreciation.

As Corollary 2, the following gives a sufficient condition to rule out bubbles in
aggregate good.

Corollary 5. Let F,G be increasing and concave production functions with F (0, 0) =
G(0) = 0. Assume that (1) Ft = atF for every t where at ∈ [a, ā] with a, ā ∈ (0,∞),
and (2) Gt = btG for every t where bt ∈ [b, b̄] with b, b̄ ∈ (0,∞). Assume also that
0 < b̄G′(∞) < δh. Then, there is no equilibrium bubble in aggregate good.

Becker et al. (2015) consider a one-sector model with endogenous labor supply.
They introduce a specific condition on a stationary production function under which
the capital stocks turns out to be uniformly bounded.17 They prove that bubbles in
aggregate good never arise. Conversely, we don’t require any specific condition on
the production functions (our conclusions hold also in the case of AK technology).
Nevertheless, we observe that a stationary technology rules out the bubble in aggre-
gate good even in our model according to Corollary 5. In this respect, the no-bubble
result in Becker et al. (2015) can be viewed as a particular case of ours.

In what follows, we present some examples where bubbles in aggregate good arise.

17More precisely, they consider a production function F (K,L) with

∂F

∂K
(∞,m) =

∂F

∂L
(1,∞) = 0
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5.1 On bubbles in aggregate good in one-sector models

We show by means of example that bubbles in aggregate good may arise even when
(1) the present value of output is finite, (2) all consumers are identical, (3) borrowing
constraints of consumers are never binding.

Consider a simple AK model without capital good where all consumers have the
same preferences: ui(c) = ln(c) and βi = β for any i. Technology is non-stationary:
Ft(K) = atK for any t. We normalize the price of aggregate good: pt = 1 and rt = at
for any t.

According to Lemma 10 (see Appendix 9.3), the individual accumulation of ag-
gregate good is given by ki,t+1 = β(1− δ+ at)ki,t. The allocation of agent i becomes

ki,t = βt(1− δ + a0) · · · (1− δ + at−1)ki,0

ci,t+1 = β(1− δ + at+1)ci,t

with ci,0 = (1− β)(1− δ + a0)ki,0. The aggregate capital stock is given by

Kt = βt(1− δ + a0) · · · (1− δ + at−1)
∑

i

ki,0.

The above sequence of prices and allocations (pt, rt, (ci, ki), K) is an equilibrium.
Finally, we compute the discount factor and the aggregate output Yt := Ft(Kt) +
(1− δ)Kt:

Qt =
1

(1− δ + a1) . . . (1− δ + at)

Yt = (1− δ + at)Kt = (1− δ + at)
m
∑

i=1

ki,t = βt(1− δ + a0) . . . (1− δ + at)K0

5.1.1 Bubble in aggregate good and the present value of output

A well-known result on bubble in financial asset is that, if the present value of
aggregate endowments is finite, there is no bubble (see Kocherlakota (1992), Santos
and Woodford (1997), Huang and Werner (2000)). In one-sector models, the present
value of output is defined as

FV =
∑

t≥1

QtYt

We see that this value of output is finite for every sequence (at)t. Indeed,

FV =
∑

t≥1

QtYt = (1− δ + a0)K0

∑

t≥1

βt <∞

According to Proposition 3, when
∑

t≥1

at = ∞, there is no room for bubbles in ag-

gregate good. When
∑

t≥1

at < ∞, bubbles exist in aggregate good. Anyway, in both

the cases, the present value of output is finite. Thus, in the one-sector model, there
is no causal relationship between the existence of bubbles in aggregate good and a
finite present value of output.
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5.1.2 Bubbles in aggregate good, borrowing constraints and heteroge-
neous agents

In the above examples, ki,t > 0 for any i and t. Hence, bubbles in aggregate good
may arise when the borrowing constraints are not binding. This is different from
what we observe in standard models with pure financial assets such as Kocherlakota
(1992, 2008), Santos and Woodford (1997), Huang and Werner (2000) and Le Van
and Pham (2014).

Surprisingly, in the above example, bubbles in aggregate good may occur with
identical consumers.

5.2 Bubble in pure consumption good

Focus now on a case without capital good, where the aggregate good is consumed
but not used to produce. This good remains storable and allows agents to transfer
wealth over time.

We consider a unique (representative) consumer with utility function u(c) = ln c.
The production function is simply given by Ft(K) = wt where wt ≥ 0 is exogenous.18

Thus, the sequence of profits is driven by the exogneous process: πt = wt. Even if
the returns on capital are zero (rt = 0), the expected returns may be strictly positive
(see below).

The representative consumer solves the program

P : max
(ct,kt+1)∞t=0

∞
∑

t=0

βt ln ct

ct + kt+1 ≤ (1− δ)kt + wt

kt+1 ≥ 0

whose solution depends on the shape of the process (wt).

Lemma 8. 1. If wt+1 = β(1 − δ)wt for any t ≥ 0, then the unique solution to
problem P is given by kt+1 = β(1− δ)kt for any t ≥ 0.

2. If wt+1 > β(1− δ)wt for any t, then the unique solution to program P is given
by kt = 0 for any t ≥ 1.

We can use the same argument in Lemma 10 (see Appendix 9.3) to prove Lemma
8. The proof is left to the reader.

5.2.1 Pure bubbles with zero expected returns

We consider the case where wt+1 = β(1 − δ)wt for any t. In this case, according to
Lemma 8, we have 1 = (1 − δ)βu′(ct+1)/u

′(ct). Therefore, the expected returns of
aggregate good, defined by (20), are zero (ρt = 0 for any t) and the fundamental
value of aggregate good is null. We obtain 1 = Qt(1 − δ)t for any t and the bubble
coincides with the (positive) price of aggregate good.

18This function is a reduced form of a production function Ft(K,L) = wtL with exogenous labor
supply. For simplicity, labor forces are normalized to 1.
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5.2.2 No-trade equilibrium with bubble and positive expected returns

Consider now the case where wt+1 > β(1 − δ)wt. According to Lemma 8, we have
kt = 0 for any t ≥ 1. Thus, ct = wt for any t ≥ 0 and we can compute the expected
returns (ρt) as follows

ρt+1 =
1

βu′(ct+1)

u′(ct)

− (1− δ). (33)

Therefore, we get that ρt+1 = wt+1/ (βwt) − (1 − δ) which is positive.19 Bubbles in
aggregate good exist if and only if

∑

t≥1 ρt <∞. Of course, the existence of bubbles
in aggregate good depends on the form of the exogenous process (wt) which affects
in turn the sequence of expected returns (ρt).

Remark 7. In this case, the discounted value of returns on capital is zero:
∑

t≥1

(1 −

δ)t−1rtQt = 0, but the fundamental value of aggregate good is strictly positive:
∑

t≥1

(1−

δ)t−1ρtQt > 0.

6 On the difference between bubbles in aggregate

and capital goods

So far, we have shown the nature of both kinds of bubbles. Now, we compare them
highlighting similarities and differences.

First, both bubbles may arise at equilibrium (strong investment bubble). In
Example 4.2.1, we choose a sequence of returns (at) such that

∑

t≥1 at <∞ and we
get both bubbles in capital and aggregate good.20 Of course, there are some cases
where one of two bubbles exists but the other one may not (investment bubble), or
neither of them exists.

Second, although the formal definition of both bubbles is the same, they are
very different. Indeed, the bubble in capital good cannot emerge if the discount
factors of agents are identical or if borrowing constraints of agents are not binding
or if the present value of profits is finite. By contrast, the bubble in aggregate good
may appear even if these three conditions are violated. These interesting differences
come from the structural difference between aggregate and capital goods: indeed, the
aggregate good is not only consumed but also used to produce while the capital good
is only processed in production. To see the point, we consider an economy where
consumers are identical. The bubble in capital good is given by Bf := lim

t→∞
Qtqt(1−

δh)
t, the discounted value of (1 − δh)

t units of capital good at the infinity. Since
the consumer is representative and rational, the discounted value of capital good at

19Setting wt+1/wt = 1+ rw,t+1 where rw,t+1 is the growth rate of labor productivity, and 1/β =
1+ i, we obtain ρt =

[

(1+ rw,t+1)(1+ i)−1
]

+ δ. This return can be interpreted as the real interest
rate of the economy.

20In Example 4.2.2, we have a converging series
∑

t≥1
at < ∞. Aggregate and capital goods

bubbles also arise.
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infinity equals zero: lim
t→∞

QtqtHt+1 = 0.21 Moreover, since the capital good cannot

be consumed, the amount of capital good rent in the rental market at each date
exceeds the depreciated capital supply from the previous date: Ht ≥ (1 − δh)Ht−1

and Ht ≥ H0(1 − δh)
t. By consequence, the limit lim

t→∞
Qtqt(1 − δh)

t is zero. Thus,

there is no bubble in capital good with a unique consumer. However, this argument
does not work in the case of aggregate good. For two reasons.

First, give a quick look to the aggregate good market clearing condition:

Ct +Kt+1 = (1− δ)Kt + Ft(Kt, H
c
t )

Since the aggregate good can be consumed, the difference between the amount of
aggregate good rent in the rental market and the depreciated aggregate good Kt+1−
(1 − δ)Kt can take any value either positive or negative. Thereby, lim

t→∞
QtKt+1 = 0

no longer implies lim
t→∞

Qt(1− δ)t = 0.

Second, the bubble in capital good equals the discounted value of (1− δh)
t units

of capital good at infinity: this amount can only traded in the rental market (of
capital good). By contrast, the bubble in aggregate good is equal to the discounted
value of (1 − δh)

t units of aggregate good at infinity: this amount may be not only
traded in the rental market (of aggregate good) but also consumed. That is why
there is more room for bubbles in aggregate good.

These arguments suggest that different assets may generate very different bubbles.

7 Efficiency of equilibrium production plans

We apply to our model the concept of efficiency introduced by Malinvaud (1953).
For simplicity, we normalize the prices of aggregate good: pt = 1 for any t.

Definition 7. Let Ft, Gt be production functions and δ be the capital depreciation
rate.

A feasible path of production plan is a positive sequence (Kt, Ht, H
c
t , K

k
t ) such

that

Ct := (1− δ)Kt + Ft(Kt, H
c
t )−Kt+1 ≥ 0

Ht+1 = (1− δh)Ht +Gt(H
k
t )

Hc
t +Hk

t = Ht

for every t, where (K0, H0, H
c
0, H

k
0 ) is given with H0 = Hc

0 +Hk
0 .

For each feasible production plan, a feasible path is efficient if there is no other
feasible path (K ′

t, H
′
t, H

c′

t , H
k′

t ) such that

C ′t ≥ Ct

for every t with strict inequality for some t.

21Recall that, when agents are identical, their transversality conditions write
limt→∞ βtu′(ct)qtht = 0. This implies limt→∞ QtqtHt = 0.
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Definition 8. An intertemporal equilibrium is efficient if its production plan (Kt, Ht, H
c
t , H

k
t )

is efficient.

These definitions imply the following sufficient condition.

Lemma 9. An equilibrium is efficient if lim
t→∞

Qt(Kt+1 + qtHt+1) = 0.

The next proposition and corollary bring the main results on efficiency.

Proposition 4. An equilibrium is efficient if one of the following conditions is sat-
isfied.

1. There exists t0 such that γt = βiu
′
i(ci,t)/u

′
i(ci,t−1) for any i and t ≥ t0.

2. There exists t0 such that ki,t > 0 for any i and t ≥ t0.

3.
∑∞

t=0 Qtπt <∞.

We should mention here that Becker et al. (2014) give an example of ineffi-
cient equilibrium (an equilibrium three-period cycle) where borrowing constraints
are binding at infinitely many dates.

According to Proposition 4, when profits equal zero, every equilibrium is efficient.
The particular (but prominent) case of zero profit CRS technologies is considered in
the following corollary.

Corollary 6. Assume that Ft and Gt are constant returns to scale for any t. Then,
every equilibrium path is efficient.

This result differs from those obtained by Cass (1972), Becker and Mitra (2012),
Mitra and Ray (2012) in two respects: (1) we allow for linear technologies (while they
consider strictly concave production functions), (2) we don’t need bounded capital
stocks (as it is the case in their papers).

7.1 Efficiency and bubbles in one-sector models

It is immediate to see that all the results on equilibrium efficiency in our generalized
two-sector model also apply to the one-sector models by Becker et al. (2015).

Interestingly, there is room for both efficiency and bubbles in aggregate good in
the one-sector model. Indeed, Section 5.1 and Corollary 6 show that there exists an
efficient bubbly equilibrium. We are not surprised: the existence of bubbles rests on
the low returns while equilibrium efficiency on capital distribution.
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7.2 Final remarks on transversality conditions

7.2.1 Capital good

We have encountered three different conditions, but closely related to the transver-
sality condition for capital good.

lim
t→∞

βt
iu
′
i(ci,t)qthi,t+1 = 0 (34)

lim
t→∞

(1− δh)
tQtqt = 0 (35)

lim
t→∞

QtqtHt+1 = 0 (36)

(34) is the standard transversality condition satisfied by optimal allocations. Ac-
cording Lemma 2, condition (34) always holds at equilibrium.

(35) is a condition of no bubble in capital good. It may fail because bubble in
capital good exists at equilibrium.

lim
t→∞

QtqtHt+1 is the discounted value of the capital good at infinity. Therefore,

we call (36) vanishing capital good condition. According to Lemma 5, condition (36)
is satisfied if Qt = βt

iu
′
i(ci,t)/u

′
i(ci,0) for any i. According to Lemma 7, condition (36)

implies condition (35).

7.2.2 Aggregate good

We have also encountered three other distinct conditions, but closely related to the
transversality condition for aggregate good.

lim
t→∞

βt
iu
′
i(ci,t)ki,t+1 = 0 (37)

lim
t→∞

(1− δ)tQt = 0 (38)

lim
t→∞

QtKt+1 = 0 (39)

According to Lemma 2, standard transversality condition (37) always holds in
equilibrium. Conditions (38) may fail because there is room for equilibrium bubbles
in aggregate good. (39) may also fail: Becker et al. (2014) gives an example violating
condition (39).22

We observe that condition (39) does not imply condition (38) since Kt+1 − (1−
δ)Kt may be negative. Let us reconsider the example of one-sector economy with
a representative consumer (Section 5.1). In this example, condition (39) becomes a
transversality condition and, therefore, holds at equilibrium. Moreover, the equi-
librium is efficient. However, the no-bubble condition (38) holds if and only if
∑

t≥1 at = ∞. We conclude that transversality and no-bubble conditions are dif-
ferent.

22They construct an inefficient equilibrium in a one-sector model. This entails the failure of (39).
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8 Conclusion

We have introduced the concept of bubbles in aggregate and capital goods. Both
these assets may depreciate and are endogenously supplied. The aggregate good is
processed in production and consumed, while the capital good is a pure input. The
meaning of capital good is intendenly large. It can be viewed as a machine, a Lucas
tree, land, ....). Because of their different structure, these two goods generate very
different kinds of bubbles.

We have shown that an equilibrium is efficient if (1) the consumers’ borrowing
constraints are not binding from some date on or (2) the present value of outputs is
finite. Interestingly, it is possible to have both equilibrium bubbles and efficiency in
a one-sector model.

9 Appendices: formal proofs

9.1 Proofs for Section 3

Proof of Lemma 4. First, we write all FOCs for the economy E . Denote by λi,t

the multiplier with respect to the budget constraint of agent i and by νi,t+1, µi,t+1

the multipliers with respect to borrowing constraints ki,t+1 ≥ 0, hi,t+1 ≥ 0, of agent
i.

βt
iu
′
i(ci,t) = λi,t (40)

λi,t = λi,t+1(rt+1 + 1− δ)) + νi,t+1, νi,t+1ki,t+1 = 0 (41)

λi,tqt = λi,t+1(rh,t+1 + qt+1(1− δh)) + µi,t+1, µi,t+1hi,t+1 = 0. (42)

Therefore, we have

1 ≥
βiu

′
i(ci,t+1)

u′i(ci,t)
(rt+1 + 1− δ) (43)

qt ≥
βiu

′
i(ci,t+1)

u′i(ci,t)

(

rh,t+1 + (1− δh)qt+1

)

(44)

for every i.
By combining (9) and the fact that 1− δh > 0, we obtain that Ht > 0 for any t.

Therefore, there exists i such that hi,t+1 > 0. For such an agent, we have µi,t+1 = 0.
Consequently, we get (18).

(43) implies that 1 ≥ γt+1(rt+1 + 1 − δ). If Kt+1 > 0, there exists i0 such that

ki0,t+1 > 0, and then νi0,t+1 = 0. For such i0, we have 1 =
βi0u

′
i0
(ci0,t+1)

u′i,0(ci0,t)
(rt+1+1−δ).

Therefore,
βi0u

′
i0
(ci0,t+1)

u′i,0(ci0,t)
= γt+1.

9.2 Proofs for Section 4

Proof of Proposition 1. According to (22), we see that (i) is equivalent to (ii).
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We now prove that (ii) is equivalent to (iii). According to (18), we obtain that

qtQt =
(

rh,t+1 + (1− δh)qt+1

)

Qt+1 =
( rh,t+1

(1− δh)qt+1

+ 1
)

(1− δ)qt+1Qt+1.

Hence, we have, for any T ≥ 1,

q0 = (1− δh)
T qTQT

T
∏

t=1

( rh,t
(1− δh)qt

+ 1
)

.

Consequently, we see that lim
t→∞

(1− δh)
tqtQt > 0 if and only if

∏

t≥1

(1 +
rh,t

(1−δh)qt
) <∞.

This condition is equivalent to
∑

t≥1
rh,t
qt

<∞.

Proof of Corollary 2. According to the capital market clearing condition, we have

Ht+1 = (1− δh)Ht +Gt(H
k
t ) ≤ (1− δh)Ht + btG(Ht) (45)

for any t.
Case 1: b̄G′(∞) ≥ δh. Therefore, we have G′t(H

k
t ) = btG

′(Hk
t ) ≥ b̄G′(∞)b/b̄ ≥

δhb/b̄ for every t. As a result,
∑

t≥1

G′t(H
k
t ) = ∞. According to Corollary 1, capital

good bubbles are ruled out.
Case 2: b̄G′(∞) < δh. According to Lemma 1, the aggregate capital stocks (Ht)

are uniformly bounded from above, i.e., there exists H̄ ∈ (0,∞) such that Ht ≤ H
for any t. Consequently, G′t(H

k
t ) ≥ btG

′(Ht) > bG′(H̄) > 0 for every t. This implies
that

∑

t≥1

G′t(H
k
t ) =∞. According to Corollary 1, there is no bubble.

Proof of Corollary 3. We have

Ht+1 = (1− δh)Ht +Gt(H
k
t ) ≤ Ht + dG′t(H

k
t )H

k
t ≤ Ht(1 + dG′t(H

k
t )). (46)

Since capital good bubbles exist, we have
∑

t≥0

G′t(H
k
t ) <∞. This implies that

∞
∏

t=0

(1+

dG′t(H
k
t )) <∞. Therefore, the capital stock (Ht) is uniformly bounded from above.

Proof of Lemma 5. Assume that there exists t0 such that ki,t+1 + qthi,t+1 > 0 for
any t ≥ t0. Then, according to Remark 3, we have, for every t ≥ t0

Qt

Qt0

= βt−t0
i

u′i(ci,t)

u′i(ci,t0)
.

According to Lemma 2, we have

lim
t→∞

βt
iu
′
i(ci,t)ki,t+1 = lim

t→∞
βt
iu
′
i(ci,t)hi,t+1qt = 0.

Hence, lim
t→∞

Qt(ki,t+1 + hi,t+1qt) = 0.
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Proof of Lemma 6. We have

Qtci,t +Qtki,t+1 +Qtqthi,t+1 = Qt(rt + 1− δ)ki,t +Qt

(

rh,t + (1− δh)qt
)

hi,t +Qtπi,t.

It is easy to see that Qt+1

(

rh,t+1+(1− δh)qt+1

)

= Qt and ki,t+1

(

Qt+1 (rt+1 + 1− δ)−
Qt

)

= 0. Hence, we get that

T
∑

t=0

[

Qtci,t
]

+QTki,T+1+QT qThi,T+1 = (1−δ+r0)ki,0+
(

(1−δh)q0+rh,0
)

hi,0+
T

∑

t=0

Qtπi,t.

Since
∑

t≥0

Qtπt <∞, we obtain
∑

t≥0

Qtπi,t <∞, and so is
∑

t≥0

Qtci,t. As a consequence,

there exists the limit lim
t→∞

Qt(ki,t+1 + qthi,t+1) for any i.

Assume that lim
t→∞

Qt(Kt+1 + qtHt+1) > 0, there exists i such that lim
t→∞

Qt(ki,t+1 +

qthi,t+1) > 0. Hence there exists t0 such that ki,t+1 + qthi,t+1 > 0 for any t ≥ t0.
According to Lemma 5, we have lim

t→∞
Qt(ki,t+1 + qthi,t+1) = 0, a contradiction.

Proof of Lemma 7. According to the capital market clearing condition, we have
Ht+1 = (1− δh)Ht +Gt(H

k
t ) ≥ (1− δh)Ht for any t. Therefore, we get that Ht+1 ≥

(1− δh)
t+1H0. As a consequence, condition lim

t→∞
QtHt+1qt = 0 implies that lim

t→∞
(1−

δh)
tQtqt = 0.

Proofs for Examples in Section 4.2. We will prove that the prices and alloca-
tions given in Section 4.2 constitute an equilibrium. To do so, we verify all conditions
in Lemma 3. It is easy to see that all market clear.

We also see that, for any t,

cA,2t +K2t+1 + q2tH2t+1 = w (47)

cA,2t+1 = (1− δ + r2t+1)K2t+1 + (q2t+1(1− δh) + rh,2t+1)H2t+1 (48)

cB,2t = (1− δ + r2t)K2t + (q2t(1− δh) + rh,2t)H2t (49)

cB,2t+1 +K2t+2 + q2t+1H2t+2 = w. (50)

We now check the FOCs and transversality conditions.
We have

βu′(cA,2t+1)

u′(cA,2t)
=

βcA,2t

cA,2t+1

=
β(w −K2t+1 − q2tH2t+1)

(1− δ + r2t+1)K2t+1 + (q2t+1(1− δh) + rh,2t+1)H2t+1

.

(51)

By using (26) and (27), we have

βu′(cA,2t+1)

u′(cA,2t)
=

q2t
(1− δ)q2t+1 + rh,2t+1

=
1

1− δ + r2t+1

.
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We also have

βu′(cB,2t+1)

u′(cB,2t)
=

βcB,2t

cB,2t+1

=
β((1− δ + r2t)K2t + (q2t(1− δh) + rh,2t)H2t)

(w −K2t+2 − q2tH2t+2)
(52)

= β(1− δ + r2t)
K2t + q2t−1H2t

(w −K2t+2 − q2tH2t+2)
= β(1− δ + r2t)

β w
1+β

w
1+β

= β2(1− δ + r2t).

(53)

Since β(1− δ + at) ≤ 1 for any t, we obtain that

γ2t+1 =
q2t

(1− δh)q2t+1 + rh,2t+1

=
βu′(cA,2t+1)

u′(cA,2t

≥
βu′(cB,2t+1)

u′(cB,2t)
. (54)

By using the same argument, we have

γ2t =
q2t−1

(1− δh)q2t + rh,2t
=

βu′(cB,2t)

u′(cB,2t−1)
≥

βu′(cA,2t)

u′(cA,2t−1)
. (55)

Transversality conditions are, for each i = A,B,

lim
t→∞

βt
iu
′
i(ci,t)ki,t+1 = lim

t→∞
βt
iu
′
i(ci,t)qthi,t+1 = 0. (56)

9.3 Proofs for Section 5

Lemma 10. Consider the optimal growth problem

max
(c,s)

∞
∑

t=0

βt ln ct

subject to ct+st+1 ≤ Atst and ct, st ≥ 0. The unique solution to this problem is given
by st = βtA1 · · ·At−1A0s0.

Proof. Indeed, the Euler condition ct+1 = βAt+1ct jointly with the budget constraint
becomes st+2− βiAt+1st+1 = At+1(st+1− βAtst). Thus, a solution is given by st+1 =
βAtst. It is easy to verify the transversality condition lim

t→∞
βtu′(ct)st+1 = 0.

By the concavity of the utility function, the solution is unique.

9.4 Proof for Section 7

Proof of Lemma 9. Let (K ′
t, H

′
t, H

c′

t , H
k′

t ) be a feasible production plan with (K ′
0, H

′
0) =

(K0, H0).
It is enough to prove that

T
∑

t=0

Qt (Ct − C ′t) ≥ −QTKT+1 −QT qTHT+1 (57)
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Denote FKt :=
∂Ft

∂K
(Kt, H

c
t ) and FHt :=

∂Ft

∂Hc
(Kt, H

c
t ). We have

Qt (Ct − C ′t) = Qt(Ct − C ′t) +Qtqt(Ht+1 −H
′

t+1)−Qtqt(Ht+1 −H
′

t+1)

= Qt

(

(1− δ)Kt + Ft(Kt, H
c
t )−Kt+1 − (1− δ)K ′

t − Ft(K
′
t, H

c′

t ) +K ′
t+1

)

+

+Qtqt

(

Gt(H
k
t )−Gt(H

k′

t ) + (1− δ)(Ht −H ′
t)
)

−Qtqt(Ht+1 −H
′

t+1)

≥ Qt

(

(Kt −K
′

t)FKt + (Hc
t −Hc′

t )FHt

)

+Qt(1− δ)(Kt −K ′
t)−Qt(Kt+1 −K

′

t+1)

+QtqtG
′
t(H

k
t )(H

k
t −Hk′

t ) +Qtqt(1− δ)(Ht −H ′
t)−Qtqt(Ht+1 −H

′

t+1)

= Qt(Kt −K
′

t)FKt +Qt(1− δ)(Kt −K ′
t)−Qt(Kt+1 −K

′

t+1)

+Qt(H
c
t −Hc′

t )FHt +QtqtG
′
t(H

k
t )(H

k
t −Hk′

t ) +Qtqt(1− δ)(Ht −H ′
t)−Qtqt(Ht+1 −H

′

t+1)

≥ Qt(rt + 1− δ)(Kt −K
′

t)−Qt(Kt+1 −K
′

t+1)+

+Qt

(

rh,t + qt(1− δ)
)

(Ht −H
′

t)−Qtqt(Ht+1 −H
′

t+1)

Since (K ′
0, H

′
0) = (K0, H0), Qt+1

(

rh,t+1+qt+1(1− δ)
)

= Qtqt, Qt+1(rt+1+1− δ) ≤
Qt and Kt+1(Qt+1(rt+1 + 1− δ)−Qt) = 0, we have

T
∑

t=0

Qt (Ct − C ′t)

≥

T−1
∑

t=0

[(

Qt+1(rt+1 + 1− δ)−Qt

)

(

Kt+1 −K ′
t+1

)

]

−QTKT+1

+
T−1
∑

t=0

[(

Qt+1

(

rh,t+1 + qt+1(1− δ)
)

−Qtqt

)

(

Ht+1 −H ′
t+1

)

]

−QT qTHT+1

= −QTKT+1 −QT qTHT+1.
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