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Abstract

We provide necessary and sufficient conditions to detect local bifur-

cations of three and four-dimensional dynamical systems in continuous

time. We characterize not only the bifurcations of codimension one but

also those of codimension two. The added value of this methodology rests

on its tractability. To illustrate the simplicity of our approach, we provide

two analytical applications of dimension three and four to environmental

economics, complemented with numerical simulations.

Keywords: local bifurcations, codimensions one and two, pollution,

natural capital.

JEL Classification: C61, E32, O44.

1 Introduction

In dynamic general equilibrium theory, the most popular model is Ramsey
(1928). The core of this continuous-time model is a two-dimensional dynam-
ical system. The Ramsey model is characterized by the saddle-path stability
of a unique equilibrium. Many dynamic economic models are extensions of
the Ramsey model. The introduction of market imperfections or agents’ het-
erogeneity often increases the dimension of the dynamical system and makes
dynamics richer: the non-linearities associated to these imperfections change
the stability properties of the steady state and generate more complex attrac-
tors such as the limit cycles. For example, monetary extensions of a Ramsey
model are three-dimensional while two-country general equilibrium models are
often four-dimensional. In general, the introduction of an additional building
block in some previous extension of the Ramsey model raises the dimension of
the dynamical system and makes the economic analysis more difficult.

∗A previous version of the paper exists as working paper of the research center BETA (Bosi
and Desmarchelier, 2017).
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The stability change of a dynamical system corresponds to a change in some
fundamental parameter through a critical value. When the parameter crosses a
critical value, a bifurcation takes place. A bifurcation is said to be local when
it arises in a neighborhood of an attractor (such as a steady state). If the
bifurcation is generated by one parameter only, it is said of codimension one.
When the bifurcation is generated by the joint change of two parameters, it is
said of codimension two.

Our paper addresses the methodological question of necessary and sufficient
conditions for local bifurcations of higher-dimensional dynamical systems in con-
tinuous time. We provide a simple method to detect bifurcations of codimension
one and two in the case of three and four-dimensional dynamical systems using
the sum of minors of the Jacobian matrix.

We do not consider two-dimensional systems because the characterization of
local bifurcations is known. Kuznetsov and Sedova (2012) treats also the case
of local bifurcations of three and four-dimensional maps in discrete time. Bar-
inci and Drugeon (2017) apply a geometrical method to characterize the local
bifurcations of three-dimensional maps in discrete time. Our methodology ap-
plies to continuous-time system and it is very easy to handle. To illustrate our
approach we provide two elementary applications of environmental economics
of dimension three and four respectively. To convince the reader, the analyti-
cal characterizations are complemented by numerical simulations based on the
original non-linear systems.

The rest of the paper is organized as follows. Section 2 characterizes the local
bifurcations of three-dimensional dynamical system and provides an economic
example with pollution, while Section 3 focuses instead on four-dimensional sys-
tems and gives an example with natural capital. Both the economic illustrations
of our methodology are complemented with numerical simulations. All the proof
are gathered in the Appendix.

2 Local bifurcation of three-dimensional system

We consider dynamics driven by a system of three autonomous Ordinary Dif-
ferential Equations (ODE):

ẋ1 = f1 (x1, x2, x3)

ẋ2 = f2 (x1, x2, x3) (1)

ẋ3 = f3 (x1, x2, x3)

We linearize the system around a steady state (x1, x2, x3)
∗. The Jacobian

matrix is given by

J ≡







∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3
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We define the sums of principal minors of order one, two and three:

S1 ≡
∂f1
∂x1

+
∂f2
∂x2

+
∂f3
∂x3

S2 ≡

∣

∣

∣

∣

∣

[

∂f2
∂x2

∂f2
∂x3

∂f3
∂x2

∂f3
∂x3

]∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

[

∂f1
∂x1

∂f1
∂x3

∂f3
∂x1

∂f3
∂x3

]∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

[

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]∣

∣

∣

∣

∣

S3 ≡

∣

∣

∣

∣

∣

∣

∣







∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3







∣

∣

∣

∣

∣

∣

∣

(2)

We denote S1 by T (trace), S2 by S, and S3 by D (determinant). Clearly,
the values taken by T , S and D depend on the steady state x∗ we focus on.

We know that, in terms of information, the vector (T, S,D) is equivalent to
the vector of eigenvalues (λ1, λ2, λ3). More precisely, we have T = λ1 +λ2+λ3,
S = λ1λ2 +λ1λ3 +λ2λ3 and D = λ1λ2λ3. The characteristic polynomial of our
three-dimensional dynamics becomes

P (λ) = (λ− λ1) (λ− λ2) (λ− λ3) = λ3 − Tλ2 + Sλ−D

2.1 Codimension one

In continuous time, a local bifurcation generically arises when the real part of
an eigenvalue λ (p) of the Jacobian matrix crosses zero in response to a change
in a parameter p. Denoting by p∗ the critical parameter value of bifurcation, we
get generically two cases: (1) when a real eigenvalue crosses zero: λ (p∗) = 0,
the system undergoes a saddle-node bifurcation (either an elementary saddle-
node or a transcritical or a pitchfork bifurcation depending on the number of
steady states), (2) when the real part of two complex and conjugate eigenvalues
λ (p) = a (p) ± ib (p) crosses zero, the system undergoes a Hopf bifurcation.
More precisely, in the second case, we require a (p∗) = 0 and b (p) 6= 0 in a
neighborhood of p∗ (see, for local bifurcations in continuous time, Bosi and
Ragot, 2011, p. 76, and, in discrete time, Grandmont, 2008).

2.1.1 Saddle node bifurcation

When a real eigenvalue crosses zero, a bifurcation of the saddle-node family
takes place. In the case of an elementary saddle node, two steady states (one
stable, the other unstable) coalesce and disappear. In the case of a transcritical
bifurcation, two steady states (one stable, the other unstable) coalesce and then
separate again while exchanging their stability properties. Finally, in the case of
a pitchfork bifurcation, three steady states coalesce into one: a stable (unstable)
steady state surrounded by two unstable (stable) becomes unstable (stable).

Proposition 1 (saddle-node) A saddle-node arises if and only if D = 0.
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2.1.2 Hopf bifurcation

A Hopf bifurcation generates limit cycles either attractive (supercritical) or
repulsive (subcritical).

Proposition 2 (Hopf) In the case of a three-dimensional system, a Hopf bi-
furcation generically arises if and only if D = ST and S > 0.

2.2 Codimension two

For now, we have considered only one bifurcation parameter. The codimension
of a bifurcation is the number of parameters to vary for the bifurcation to occur
(see Kuznetsov (1998) among others).

Focus on a pair of scalar parameters: p and q. Assume that, given p, two
bifurcations occur at q = q1 (p) and q = q2 (p). If the bifurcation curves q1 and
q2 obtained varying p cross at (p, q)

∗
in the (p, q)-plane, where q∗ = q1 (p

∗) =
q2 (p

∗), then the dynamical system generically experiences a codimension-two
bifurcation (see Kuznetsov (1998) among others).

2.2.1 Bogdanov-Takens bifurcation

Assume that the system (1) possesses two steady states: the first one is a
saddle point while the second is surrounded by a limit cycle. A Bogdanov-
Takens bifurcation arises when the cycle coalesces with the saddle point. When
this bifurcation occurs, the limit cycle disappears and a so-called parasitic loop
arises (Kuznetsov, 1998).

Definition 3 (Bogdanov-Takens) Consider the curve in a parametric (p1, p2)-
plane along which a real eigenvalue λ1 remains equal to zero. Assume that,
when the pair (p1, p2) moves along this curve, an additional real eigenvalues
λ2 becomes zero at (p1, p2)

∗
. In this case, the central manifold becomes two-

dimensional and a Bogdanov-Takens (or double-zero) bifurcation arises at (p1, p2)
∗.

Proposition 4 (Bogdanov-Takens) A Bogdanov-Takens bifurcation generi-
cally occurs if and only if D = S = 0.

2.2.2 Gavrilov-Guckenheimer bifurcation

A Gavrilov-Guckenheimer (also called zero-Hopf) bifurcation corresponds to the
intersection of two bifurcations curves: Hopf and saddle-node. Differently from
the Bogdanov-Takens bifurcation, the limit cycle is preserved and its interaction
with the saddle-node bifurcation can lead to richer dynamics including the cases
of invariant torus and local chaos (Kuznetsov, 1998).

Definition 5 (Gavrilov-Guckenheimer) A Gavrilov-Guckenheimer bifurca-
tion arises when λ1 = 0, λ2 = bi = −λ3.

Proposition 6 (Gavrilov-Guckenheimer) A Gavrilov-Guckenheimer bifur-
cation occurs if and only if D = T = 0 jointly with S > 0.
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2.3 Economic example with pollution

We consider a simple Ramsey economy where a pollution externality, coming
from the use of capital at the firm level, affects the marginal utility of consump-
tion. This economy is very close to Heal (1982) and Bosi and Desmarchelier
(2016a).

A firm j uses a Cobb-Douglas production function to produce a single com-
modity Yj (t) = AKj (t)

α Lj (t)
1−α whereKj and Lj are respectively the amount

of capital and labor. K ≡
∑

j Kj and L ≡
∑

j Lj denote the aggregate inputs.
A > 0 captures the total factor productivity while α ∈ (0, 1) represents the
capital share in total income. For notational parsimony, the time argument t
will be omitted in the following. Firm chooses the amount of capital and labor
to maximize the profit taking as given the real interest rate r and the real wage
w. All the firms share the same technology.

A representative household earns a capital income rh and a labor income
wl where h and l denote the individual wealth and labor supply at time t. For
simplicity, we assume also that the household supplies inelastically one unit of
labor: l = 1. Thus, the household consumes and saves its income according to
the budget constraint

c+ ḣ ≤ (r − δ)h+ w (3)

where ḣ denotes the time-derivative of wealth while c represents the consumption
level. The gross investment includes the capital depreciation at the rate δ. For
the sake of simplicity, the population of consumers-workers is constant over time
and normalized to one: n = 1. Such a normalization implies L = nl = l = 1,
K = nh = h and h = K/n = kl = k, where k ≡ K/L denotes the capital
intensity.

In a Ramsey model, the representative household maximizes an intertempo-
ral utility functional

∫

∞

0

e−ρt (cP
−η)

1−ε

1− ε
dt

under the budget constraint (3) where ρ > 0 denotes the rate of time prefer-
ence. P represents the pollution level, a pure externality, while 1/ε is the usual
consumption elasticity of intertemporal substitution and η > 0 is a measure of
the household’s environmental concern.

The aggregate stock of pollution P is a pure externality coming from the ag-
gregate capital stock used to produce (K). To take things as simple as possible,
we assume a linear process:

Ṗ = −aP + bK

a > 0 and b > 0 capture the natural rate of pollution absorption and the
environmental impact of capital.
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Proposition 7 (general equilibrium) Equilibrium dynamics are represented
by the following system:

λ̇ = f1 (λ, k, P ) ≡ λ
(

ρ+ δ − αAkα−1
)

(4)

k̇ = f2 (λ, k, P ) ≡
(

αAkα−1 − δ
)

k + (1− α)Akα − λ−
1

εP η ε−1

ε (5)

Ṗ = f3 (λ, k, P ) ≡ −aP + bk (6)

where λ is the shadow price of capital (marginal utility of consumption).

Proposition 8 (steady state) A steady state exists. The steady state is unique:

k∗ =

(

αA

ρ+ δ

)
1

1−α

, P ∗ =
b

a
k∗ and λ∗ = [ρk∗ + (1− α)Ak∗α]

−ε
P ∗η(ε−1)

To study the local bifurcations, we linearize the system (4)-(6) around this
unique steady state.

Lemma 9 The sums of minors of order one (trace), two and three (determi-
nant) of the Jacobian matrix are respectively given by

T = ρ− a

S = [aη (ε− 1)− (1− α) (ρ+ δ)]
γ

ε
− aρ

D = a (1− α) (ρ+ δ)
γ

ε

where γ ≡ [ρ+ (1− α) δ] /α.

Proposition 10 (saddle-node, BT and GG) In this example, saddle-node,
Bogdanov-Takens and Gavrilov-Guckenheimer bifurcations are impossible.

Remark 11 In order to convince the reader about the impossibility of saddle
node bifurcations, we observe that all the bifurcations of this family (elementary
saddle node, transcritical and pitchfork) always involve multiple steady states
(two or three). In our example, the steady state is unique.

Focus now on the occurrence of Hopf bifurcations and the main economic
parameter: the measure of households’ sensitivity to environmental issues η.

Proposition 12 (Hopf) Let a < ρ jointly with ε > 1. When η crosses

ηH ≡
ρ

ε− 1

(

ε

γ
+

1− α

a

ρ+ δ

ρ− a

)

then a limit cycle arises around (λ, k, P )
∗
through a Hopf bifurcation.
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To study the stability of the limit cycle, we perform a numerical simulation
under the following calibration:

Parameter A α ρ δ a b ε

Value 1 0.3 0.2 0.1 0.1 0.1 2

To simplify the computations, we have fixed A, α, ρ and δ such that k∗ = 1.
In addition, we have set the discounting sufficiently high (ρ > a) to ensure a
positive trace. A more empirically plausible calibration is given in Bosi and
Desmarchelier (2016a), that is a more realistic model with environmental main-
tenance and green taxation. Our values allows also MATCONT to compute
easily the orbit at the Hopf bifurcation point using the original non-linear sys-
tem.1 Finally, we observe that ε > 1 and ρ > a are necessary (but not sufficient)
conditions for the occurrence of a Hopf bifurcation (according to Proposition
12).

According to Proposition 12, a Hopf bifurcation arises at η = ηH = 4.6444.
At the Hopf bifurcation point, the steady state becomes (λ, k, P )

∗
= (1.2346, 1, 1)

and the eigenvalues are given by λ1 = 0.307409i = −λ2 and λ3 = 0.1.
The corresponding first Lyapunov coefficient negative l1 = −0.1249661 < 0.

This implies that the Hopf bifurcation is supercritical, that is the limit cycle
arising near the steady state is stable (Fig. 1).

P

0.99999996

1.00000015

0.99999997

0.99999998

1.0000001

0.99999999

1.23456805

1

1.00000005

1.00000001

1.234568

k

1.00000002

1
1.23456795

1.00000003

λ

1.00000004

0.99999995
1.2345679

0.9999999 1.23456785

0.99999985 1.2345678

Fig. 1. Stable limit cycle.

Focus now on a higher-dimensional example.

1We use the MATCONT package for MATLAB version 6p6.
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3 Local bifurcations of four-dimensional system

We consider now dynamics driven by a system of four autonomous Ordinary
Differential Equations (ODE):

ẋ1 = f1 (x1, x2, x3, x4)

ẋ2 = f2 (x1, x2, x3, x4)

ẋ3 = f3 (x1, x2, x3, x4)

ẋ4 = f4 (x1, x2, x3, x4)

We linearize the system around a steady state (x1, x2, x3, x4)
∗
. The Jacobian

matrix is given by

J ≡











∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f1
∂x4

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f2
∂x4

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

∂f3
∂x4

∂f4
∂x1

∂f4
∂x2

∂f4
∂x3

∂f4
∂x4











We define the sums of principal minors of order one, two, three and four:

S1 ≡
∂f1
∂x1

+
∂f2
∂x2

+
∂f3
∂x3

+
∂f4
∂x4

S2 ≡

∣

∣

∣

∣

∣

[

∂f3
∂x3

∂f3
∂x4

∂f4
∂x3

∂f4
∂x4

]∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

[

∂f2
∂x2

∂f2
∂x4

∂f4
∂x2

∂f4
∂x4

]∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

[

∂f2
∂x2

∂f2
∂x3

∂f3
∂x2

∂f3
∂x3

]∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

[

∂f1
∂x1

∂f1
∂x4

∂f4
∂x1

∂f4
∂x4

]
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

[

∂f1
∂x1

∂f1
∂x3

∂f3
∂x1

∂f3
∂x3

]
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

[

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
∣

∣

∣

∣

∣

S3 ≡

∣

∣

∣

∣

∣

∣

∣







∂f2
∂x2

∂f2
∂x3

∂f2
∂x4

∂f3
∂x2

∂f3
∂x3

∂f3
∂x4

∂f4
∂x2

∂f4
∂x3

∂f4
∂x4







∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣







∂f1
∂x1

∂f1
∂x3

∂f1
∂x4

∂f3
∂x1

∂f3
∂x3

∂f3
∂x4

∂f4
∂x1

∂f4
∂x3

∂f4
∂x4







∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣







∂f1
∂x1

∂f1
∂x2

∂f1
∂x4

∂f2
∂x1

∂f2
∂x2

∂f2
∂x4

∂f4
∂x1

∂f4
∂x2

∂f4
∂x4







∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣







∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3







∣

∣

∣

∣

∣

∣

∣

S4 ≡

∣

∣

∣

∣

∣

∣

∣

∣

∣











∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f1
∂x4

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f2
∂x4

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

∂f3
∂x4

∂f4
∂x1

∂f4
∂x2

∂f4
∂x3

∂f4
∂x4











∣

∣

∣

∣

∣

∣

∣

∣

∣

(7)

We denote S1 by T (trace) and S4 by D (determinant). Clearly, the values
taken by T , S2, S3 and D depend on the steady state x∗ we focus on.

The characteristic polynomial is given by

P (λ) ≡ (λ− λ1) (λ− λ2) (λ− λ3) (λ− λ4)

= λ4 − Tλ3 + S2λ
2 − S3λ+D
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where

S1 = λ1 + λ2 + λ3 + λ4 = T (8)

S2 = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4 (9)

S3 = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4 (10)

S4 = λ1λ2λ3λ4 = D (11)

3.1 Codimension one

As above, we consider first bifurcations involving only one parameters (codi-
mension one).

3.1.1 Saddle-node bifurcation

As seen above, when a real eigenvalue crosses zero, the system undergoes a
saddle-node bifurcation (either an elementary saddle-node or a transcritical or
a pitchfork bifurcation depending on the number of steady states).

Proposition 13 (saddle-node) A saddle-node bifurcation generically arises
when D = 0.

3.1.2 Hopf bifurcation

When the real part of two complex and conjugate eigenvalues with nonzero
imaginary part crosses zero, the system undergoes a Hopf bifurcation.

Proposition 14 (Hopf) A Hopf bifurcation generically arises if and only if

S2 =
S3

T
+

DT

S3
(12)

and T and S3 have the same sign.

3.2 Codimension two

As seen in the case of three-dimensional systems, when a bifurcation involves two
parameters, richer dynamics arise. However, the case of four-dimensional system
allows for a new bifurcation involving two coalescing Hopf bifurcations and
generating more complex dynamics. Of course, the other bifurcations arising
in the three-dimensional case remain possible when the system becomes higher-
dimensional.

3.2.1 Bogdanov-Takens bifurcation

Reconsider Definition 3. A Bogdanov-Takens bifurcation is a double-zero bifur-
cation: λ1 = λ2 = 0.

Proposition 15 (Bogdanov-Takens) A Bogdanov-Takens bifurcation gener-
ically occurs if and only if S3 = D = 0.
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3.2.2 Gavrilov-Guckenheimer bifurcation

According to Definition 5, a Gavrilov-Guckenheimer bifurcation arises when
λ1 = 0, λ2 = bi = −λ3. In the case of a four-dimensional system, our charac-
terization involves not only the trace and the determinant, but also the sums of
minors of order two and three.

Proposition 16 (Gavrilov-Guckenheimer) A Gavrilov-Guckenheimer bifur-
cation generically arises if and only if D = 0 and S3 = TS2 with S2 > 0.

3.2.3 Double-Hopf bifurcation

The double-Hopf bifurcation occurs at the intersection of two Hopf bifurcation
curves in the parameter plane. This bifurcation leads generically to a torus. The
double-Hopf bifurcation can imply richer dynamics such as Smale horseshoes
and local chaos (see Kuznetsov (1998) among others).

Definition 17 (double-Hopf) A double-Hopf bifurcation occurs when λ1 =
bi, λ2 = −bi, λ3 = di and λ4 = −di.

Proposition 18 (double-Hopf) A double-Hopf bifurcation generically arises
if and only if T = S3 = 0 with D > 0, S2 > 0 and S2

2 ≥ 4D.

3.3 Economic example with natural capital

We consider a Ramsey economy in the spirit of Wirl (2004) and Bosi and Des-
marchelier (2016b). A pollution externality coming from production activities
impairs a natural resource which affects the consumption behavior. The very
difference with Bosi and Desmarchelier (2016b) is that pollution plays now the
role of stock variable instead of flow. This role affects the dimension of dynam-
ical system and, hence, entails important consequences.

For simplicity, firms behave as in the previous example and the same first-
order conditions for profit maximization hold. As above, a representative house-
hold chooses a consumption path to maximize its intertemporal utility functional

∫

∞

0

e−ρt (cN
η)

1−ε

1− ε
dt

with respect to its budget constraint (3), where N denotes now the aggregate
natural resource. For the sake of simplicity, the population of consumers-workers
is constant over time and normalized to one: n = 1. Such a normalization
implies L = nl = l = 1, K = nh = h and h = K/n = kl = k, where k ≡ K/L
denotes the capital intensity.

The aggregate stock of pollution P is a pure externality coming from pro-
duction. As above, we consider a linear process, but pollution depends now on
aggregate production:

Ṗ = −aP + bY
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a > 0 and b > 0 capture the natural rate of pollution absorption and the
environmental impact of production. K = k and L = 1 imply Ṗ = bAkα − aP .

In the spirit of Ayong Le Kama (2001) and Wirl (2004), the dynamics of
natural resource is driven by a Pearl-Verhulst logistic function:

Ṅ = N (1−N)− γP

where γ > 0 represents the impact of pollution on the natural resource.

Proposition 19 (general equilibrium) Equilibrium dynamics are represented
by a four-dimensional dynamical system:

λ̇ = f1 (λ, k,N, P ) ≡ λ
(

ρ+ δ − αAkα−1
)

(13)

k̇ = f2 (λ, k,N, P ) ≡ Akα − δk − λ−
1

εNη 1−ε

ε (14)

Ṅ = f3 (λ, k,N, P ) ≡ N (1−N)− γP (15)

Ṗ = f4 (λ, k,N, P ) ≡ bAkα − aP (16)

The following proposition addresses both the existence and the multiplicity
of steady states.

Proposition 20 (steady states) The steady states are given by

λ∗ =

[

k∗
ρ+ (1− α) δ

α

]−ε

N
(1−ε)η
i (17)

k∗ =

(

αA

ρ+ δ

)
1

1−α

(18)

P ∗ =
bA

a
k∗α (19)

N1 =
1

2

(

1−
√

1− 4γP ∗
)

(20)

N2 =
1

2

(

1 +
√

1− 4γP ∗
)

(21)

Let b∗ ≡ a/ (4γAk∗α) be the critical environmental impact of production.
If b < b∗, there are two steady states with 0 < N1 < 1/2 < N2 < 1.
If b = b∗, the two steady states coalesce: N1 = N2 = 1/2.
If b > b∗, there are no steady states.

To study the local bifurcations, we linearize the system (13)-(16) around
both the steady states (λ, k,Ni, P )

∗
, i = 1, 2.

11



Lemma 21 The sums of minors of order one (trace), two, three and four (de-
terminant) are respectively given by

T = ρ− a+ 1− 2N

S2 = (ρ− a) (1− 2N)− aρ− ϕ (ρ+ δ)
1− α

αε

S3 = z + ηϕa (N − 1)
ε− 1

ε
≡ S3 (η)

D = aϕ (ρ+ δ) (1− 2N)
1− α

αε

with

ϕ ≡ ρ+ δ (1− α)

z ≡ ϕ (ρ+ δ) (a+ 2N − 1)
1− α

αε
+ aρ (2N − 1)

Notice that only S3 depends on η.

Proposition 22 (saddle node) A saddle-node bifurcation occurs (when N1

and N2 coalesce) if and only if b = b∗.

η captures the importance of nature for households and, so, the specificity
of our model. It makes sense to consider it as main bifurcation parameter. We
introduce two critical values to study the occurrence of Hopf bifurcations:

η1 ≡
ε

ε− 1

2z − T
(

S2 +
√

S2
2 − 4D

)

2aϕ (1−N)
and η2 ≡

ε

ε− 1

2z − T
(

S2 −
√

S2
2 − 4D

)

2aϕ (1−N)

Proposition 23 (Hopf) Let ε > 1 and 1 − 2N < a − ρ < 0. A limit cycle
(through a Hopf bifurcation) arises near N2 at η = η1.

We introduce now a critical value to have a codimension-two bifurcation:

ηBT ≡ 2
1− α

α

ρ+ δ

ε− 1

Proposition 24 (Bogdanov-Takens) Let ε > 1. A Bogdanov-Takens bifur-
cation occurs if and only if η = ηBT and b = b∗.

Proposition 25 (Gavrilov-Guckenheimer) A Gavrilov-Guckenheimer bifur-
cation is impossible in this example.

Proposition 26 (double-Hopf) In this example, a double-Hopf bifurcation is
impossible.

To study the stability of the limit cycle around N2, we perform a numerical
simulation under the following calibration:

Parameter A α ρ δ a γ ε

Value 1 0.3 0.2 0.1 0.1 0.1 2
(22)

12



As above, we simplify the computation setting A, α, ρ and δ such that
k∗ = 1. We have fixed all the values as in the previous example except for γ
which is a new parameter.

According to Proposition 23, ε > 1 and ρ > a are necessary (but not suffi-
cient) conditions to get a Hopf bifurcation, while, according to Proposition 24
ε > 1 is a necessary (but not sufficient) condition to obtain a Bogdanov-Takens
bifurcation.

Calibration (22) entails (b∗, ηBT ) = (0.25, 1.4).
We draw an equilibrium continuation using the MATCONT package for

MATLAB under calibration (22). In Fig. 2, LP , H and BT stand for Limit
Point (saddle-node), Hopf and Bogdanov-Takens. These points are computed
and represented by MATCONT when a saddle-node, a Hopf and a Bogdanov-
Takens bifurcation occur near the steady state.

0.245 0.246 0.247 0.248 0.249 0.25 0.251

b

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

η

HH LPLP

BTBTBTBT

Fig. 2. Equilibrium continuation in the (b, η)-space.

Since a Hopf bifurcation occurs only around the higher steady state, the
continuation exercise focuses only on N2. The curve represents the locus of
Hopf bifurcations: {(b, η1 (b))}, where:

η1 (b) =
ε

ε− 1

2z (b)− T (b)
[

S2 +
√

S2
2 (b)− 4D (b)

]

2aϕ [1−N (b)]

13



We start by considering an arbitrary value b0 = 0.245 < 0.25 = b∗ (Propo-
sition 22). We fix η = 4.45 which is precisely the Hopf critical value when
b = 0.245 11.

For any η, the saddle-node bifurcation value for b is b∗ = 0.25 (the line
LP −BT is vertical because b∗ does not depend on η). In particular, the Limit
Point (LP) corresponding to η = 4.45 is LP = (0.25, 4.45).

Increasing b from b0 = 0.245 to b∗ = 0.25, we obtain all the Hopf bifurcation
points (b, η1 (b)) along the curve C ≡ {(b, η1 (b))}b∈[b0,b∗] from H to BT . In

the range [b0, b
∗) ∋ b, we have two distinct steady states. When b attains the

maximal value b∗ these two steady states coalesce and the Hopf bifurcation point
(b, η1 (b)) reaches the ending point BT along the curve C while the economy
experiences a Bogdanov-Takens bifurcation.

At the Hopf bifurcation point (H), the steady state is given by:

(λ, k,N, P ) = (15.073291, 1, 0.56990084, 2.4511387)

with eigenvalues:

λ1 = −0.391984, λ2 = 0.0978259i = −λ3, λ4 = 0.352183

The corresponding first Lyapunov coefficient is given by l1 = 1.283382 ∗
10−3 > 0. Its positivity means that the Hopf bifurcation is subcritical, that is
the limit cycle arising near N2 is unstable (Fig. 3).

0.57020.999

0.9992

2.4518

0.9994

0.5701

0.9996

0.9998

2.4516

1k

1.0002

0.57

1.0004

2.4514

1.0006

1.0008

N

0.5699

1.001

P

2.4512
0.56982.451

0.56972.4508
0.56962.4506

Fig. 3. Unstable limit cycle around N2.
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At the saddle-node bifurcation (LP ), the steady state becomes:

(λ, k,N, P ) = (26.997759, 1, 0.5, 2.5)

with eigenvalues:

λ1 = −0.36618, λ2 = 0, λ3 = 0.233176+0.0437607i, λ4 = 0.233176−0.0437607i

For now, we have considered codimension-one bifurcations (saddle-node and
Hopf).

According to Proposition 24, we consider the codimension two. The Bogdanov-
Takens (BT ) bifurcation arises at (b, η) = (b∗, ηBT ) = (0.25, 1.4). The Bogdanov-
Takens bifurcation occurs when conditions for the saddle-node bifurcation and
for the Hopf bifurcation meet each other.

At the Bogdanov-Takens point, the steady state becomes:

(λ, k,N, P ) = (3.258, 1, 0.5, 2.5)

with real eigenvalues:

λ1 = −0.292053

λ2 = λ3 = 0

λ4 = 0.392053

As in Kuznetsov et al. (2014), at the Bogdanov-Takens point, the orbit
describes a parasitic loop near the saddle-point (Fig. 4). The parasitic loop
typically arises when the limit cycle and the saddle-point coalesce.
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0.9999992

2.50000014

0.9999994

0.9999996
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0.9999998

2.5000001

1

k
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1.0000002

2.50000008 0.50000002

P

1.0000004

0.5000000152.50000006

1.0000006

N

0.50000001

1.0000008

2.50000004 0.500000005
0.52.50000002

0.499999995
2.5 0.49999999

Fig. 4. Parasitic loop.

4 Conclusion

We have considered three and four-dimensional continuous-time dynamical sys-
tems and provided necessary and sufficient conditions for local bifurcations
based on the sum of the minors of the Jacobian matrix. We have characterized
not only the local bifurcations of codimension one but also those of codimen-
sion two. Our method is general and tractable. To illustrate the tractability
of our approach, we have presented two extended Ramsey models of environ-
mental economics: in the first one, pollution is an externality with a negative
impact on household’s utility and supercritical (stable) limit cycles arise; in the
second one, the natural capital has a positive impact on utility and subcritical
(unstable) limit cycles occur. In both the models, the analytical results are
complemented with numerical simulations.

5 Appendix

Proof of Proposition 1
If a real eigenvalue crosses zero, we have D = 0. Conversely, let D = 0. If

all the eigenvalues are real, then one of them is zero. If one is real, say λ1, and
two are nonreal, say λ2 and λ3, then λ2 and λ3 are conjugated with λ2λ3 > 0
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(indeed λ2λ3 = a2 + b2 = 0 implies a = b = 0 and, therefore, λ2 = λ3 = 0 ∈ R,
a contradiction). Thus, D = λ1λ2λ3 = 0 implies λ1 = 0.

Proof of Proposition 2
Necessity In a three-dimensional dynamical system, we require at the bifur-

cation value: λ1 = ib = −λ2 with no generic restriction on λ3 (see Bosi and
Ragot (2011) or Kuznetsov (1998) among others). The characteristic polyno-
mial of J is given by: P (λ) = (λ− λ1) (λ− λ2) (λ− λ3) = λ3 − Tλ2 + Sλ−D.
Using λ1 = ib = −λ2, we find D = b2λ3, S = b2, T = λ3. Thus, D = ST and
S > 0.

Sufficiency In the case of a three-dimensional system, one eigenvalue is al-
ways real, the others two are either real or nonreal and conjugated. Let us show
that, if D = ST and S > 0, these eigenvalues are nonreal with zero real part
and, hence, a Hopf bifurcation generically occurs.

We observe that D = ST implies

λ1λ2λ3 = (λ1λ2 + λ1λ3 + λ2λ3) (λ1 + λ2 + λ3)

or, equivalently,

(λ1 + λ2)
[

λ2
3 + (λ1 + λ2)λ3 + λ1λ2

]

= 0 (23)

This equation holds if and only if λ1 + λ2 = 0 or λ2
3 + (λ1 + λ2)λ3 + λ1λ2 = 0.

Solving this second-degree equation for λ3, we find λ3 = −λ1 or −λ2. Thus,
(23) holds if and only if λ1+λ2 = 0 or λ1+λ3 = 0 or λ2+λ3 = 0. Without loss
of generality, let λ1 + λ2 = 0 with, generically, λ3 6= 0, a real eigenvalue. Since
S > 0, we have also λ1 = −λ2 6= 0. We obtain T = λ3 6= 0 and S = D/T = λ1

λ2 = −λ2
1 > 0. This is possible only if λ1 is nonreal. If λ1 is nonreal, λ2 is

conjugated, and, since λ1 = −λ2, they have a zero real part.
Proof of Proposition 4
A Bogdanov-Takens bifurcation arises if and only if two real eigenvalues

cross zero (say, λ1 = λ2 = 0). Therefore, D = λ1λ2λ3 = 0 and S = λ1λ2 +
λ1λ3 + λ2λ3 = 0. Conversely, if D = 0, at least one eigenvalue is zero, say λ1.
S = λ2λ3 = 0 implies that another eigenvalue is zero, say λ2.

Proof of Proposition 6
Necessity T = 0 + bi − bi = 0 and D = 0 ∗ b2 = 0. Moreover, S = b2 > 0.

Definition 5 applies.
Sufficiency Conversely, if D = 0, there exists, at least, one eigenvalue equal

to zero (λ1 = 0). Since λ1 = 0 and T = 0, then λ2 = −λ3. If λ2 and λ3 are real,
λ2 = −λ3 implies S = λ2λ3 ≤ 0, a contradiction. Then, λ2 and λ3 are nonreal
and conjugated. Since λ2 = −λ3, they have a zero real part: λ2 = bi = −λ3.
Notice that, in this case, S = λ2λ3 = b2 > 0.

Proof of Proposition 7
Profit maximization maxKj ,Lj

(

AKα
j L

1−α
j − rKj − wLj

)

implies the follow-
ing first-order conditions:

r = αAkα−1 and w = (1− α)Akα (24)

where k = Kj/Lj. The average productivity is given by y ≡ Yj/Lj = Akα.
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To solve the utility maximization problem, we build the constant-value
Hamiltonian H ≡ (cP−η)

1−ε
/ (1− ε) + λ [(r − δ) k + w − c], where λ denotes

the multiplier. The first-order conditions are given by a static arbitrage: c =
λ−1/εP η(1−1/ε), and two dynamic equations: λ̇ = λ (ρ+ δ − r) and ḣ = (r − δ) h+
w − c, jointly with the usual transversality condition.

Noticing that h = k and replacing the first-order conditions for profit max-
imization in the first-order conditions for utility maximization we obtain the
general equilibrium system (4)-(6).

Proof of Proposition 8
The steady state (λ, k, P )

∗
is solution to system λ̇ = k̇ = Ṗ = 0. λ̇ = 0 has

a unique solution k∗. Replacing this solution in k̇ = Ṗ = 0, we find a unique
steady state.

Proof of Lemma 9
In order to capture the dynamics near the steady state, we linearize the

system (4)-(6) around (λ, k, P )
∗
. The Jacobian matrix is given by

J ≡





∂f1
∂λ

∂f1
∂k

∂f1
∂P

∂f2
∂λ

∂f2
∂k

∂f2
∂P

∂f3
∂λ

∂f3
∂k

∂f3
∂P



 =





0 (1− α) (ρ+ δ) λ∗

k∗ 0
γ
ε
k∗

λ∗ ρ −γη a
b
ε−1
ε

0 b −a





We compute the sums of minors of order one (trace T ), two (S) and three
(determinant D) using (2).

Proof of Proposition 10
α ∈ (0, 1) implies D > 0. Propositions 1, 4 and 6 apply.
Proof of Proposition 12
Consider Proposition 2. D = ST if and only if η = ηH . In addition, if ρ > a,

T > 0. Since D > 0, then S > 0 at η = ηH . Finally, ε > 1 and ρ > a imply
ηH > 0, an economically meaningful value.

Proof of Proposition 13
If a real eigenvalue crosses zero, we have D = 0. Conversely, let D = 0. If

all the eigenvalues are real, then one of them is zero. If two are real, say λ1 and
λ2, and two are nonreal, say λ3 and λ4, then λ3 and λ4 are conjugated with,
generically, λ3λ4 > 0. Thus, λ1λ2 = 0, that is one eigenvalue is zero. When all
the eigenvalues are nonreal, generically λ1λ2λ3λ4 > 0: this case is incompatible
with D = 0.

Proof of Proposition 14
A Hopf bifurcation generically arises if and only if λ = ib and µ = −ib and

b 6= 0 or, equivalently, λ+ µ = 0 and λµ = p > 0 for some pair of eigenvalues λ
and µ, and some p ≡ b2 > 0.

If λh + λi = 0 and λhλi > 0, according to (8)-(11), a Hopf bifurcation
implies T = λj +λk, S2 = b2 + λjλk, S3 = b2T , D = b2λjλk, where (h, i, j, k) is
a permutation of (1, 2, 3, 4), and, therefore,

S2 = p+
D

p
(25)

S3 = pT (26)
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hold for some p > 0. Remark that (25) are (26) are only necessary conditions
for a Hopf bifurcation to occur.

The question we raise is whether (25) and (26) with p > 0 are also (generic)
sufficient conditions for a Hopf bifurcation to arise.

A Hopf bifurcation generically arises if and only if λ+µ = 0 and λµ = p for
some pair of eigenvalues and some p > 0.

Assume that (27) and (28) hold but, for any pair of eigenvalues λ and µ, we
have λ+ µ 6= 0 or λµ ≤ 0.

Equations (25) and (26) are equivalent to

B +D +AC = p+
BD

p
(27)

AD +BC = p (A+ C) (28)

with p > 0 and A ≡ λh + λi, B ≡ λhλi, C ≡ λj + λk and D ≡ λjλk.
We consider two cases.
(1) If A = 0, then (28) implies (B − p)C = 0, that is B = p > 0, a

contradiction (indeed, for any pair of eigenvalues, if their sum is zero, their
product is non-positive).

(2) If A 6= 0, then (28) implies

D = p+
p−B

A
C

Replacing D in (27), we get

A2C = −
(p−B)2

p
C

If C = 0, thenD > 0, a contradiction (apply the same argument of point (1) with

C and D instead of A and B respectively). Thus, 0 < A2 = − (p−B)
2
/p ≤ 0,

a contradiction.
Thus, (27) and (28) imply, for some pair of eigenvalues, λ + µ = 0 and

λµ = p > 0, that is, generically, a Hopf bifurcation.
Summing up, a Hopf bifurcation generically arises if and only if (25) are (26)

hold for some p > 0.
Finally, notice that p is an arbitrary positive number in order to obtain (12).

Proof of Proposition 15
Necessity According to (10) and (11), λ1 = λ2 = 0 implies S3 = D = 0.
Sufficiency D = 0 implies, without loss of generality, λ1 = 0. According to

(10), we obtain S3 = λ2λ3λ4 = 0 and, thus, without loss of generality, λ2 = 0.

Proof of Proposition 16
Necessity If λ1 = 0, λ3 = id and λ4 = −id, according to (8)-(11), we obtain

T = λ2, S2 = d2, S3 = d2λ2 and D = 0. These equations imply D = 0 and
S3 = TS2 with S2 > 0.
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Sufficiency If D = 0, then λ1 = 0 without loss of generality. According to
(8)-(11), this entails

T = λ2 + λ3 + λ4

S2 = λ2λ3 + λ2λ4 + λ3λ4

S3 = λ2λ3λ4

Hence, S3 = TS2 becomes λ2λ3λ4 = (λ2 + λ3 + λ4) (λ2λ3 + λ2λ4 + λ3λ4) or,
equivalently,

(λ2 + λ3) (λ2 + λ4) (λ3 + λ4) = 0

Let, without loss of generality, λ3 + λ4 = 0. Then, λ3 = −λ4 and S2 = λ3λ4.
Since S2 > 0, we obtain λ3 = id and λ4 = −id for some real number d.

Proof of Proposition 18
Necessity We observe that λ1 + λ2 = λ3 + λ4 = 0 and that λ1λ2 = b2 and

λ3λ4 = d2. According to (8)-(11), we obtain T = 0, S2 = b2 + d2 > 0, S3 = 0

and D = b2d2 > 0. Moreover, S2
2 − 4D =

(

b2 + d2
)2
− 4b2d2 =

(

b2 − d2
)2
≥ 0.

Sufficiency T = 0 implies λ3 + λ4 = − (λ1 + λ2). This with S3 = 0 imply

S3 = λ1λ2 (λ3 + λ4) + (λ1 + λ2)λ3λ4 = (λ1 + λ2) (λ3λ4 − λ1λ2) = 0

Then, (1) λ1 + λ2 = 0 (and, so, λ3 + λ4 = 0) or (2) λ1λ2 = λ3λ4.
Let us to prove a preliminary result. The case of the following four eigen-

values:
a+ bi, a− bi, − a+ bi, − a− bi (29)

with a, b 6= 0 is excluded. Indeed,

S2
2 − 4D = (λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)

2
− 4λ1λ2λ3λ4

= −16a2b2 < 0 (30)

(notice that the order of the eigenvalues does not matter: whatever permutation
(1, 2, 3, 4)→ (h, i, j, k) gives the same result).

(1) If λ1 + λ2 = λ3 + λ4 = 0, then S2 = λ1λ2 + λ3λ4 = −
(

λ2
1 + λ2

3

)

. Thus,
S2 > 0 implies λ2

1 +λ2
3 < 0. Then, one of the two eigenvalues is nonreal, say λ1.

If λ2
3 is real, then, λ2

1 is real as well and, therefore, λ1 = bi for some real
number b 6= 0. Then, λ2 = −bi and D = λ1λ2λ3λ4 = b2λ3λ4 > 0 implies
λ3λ4 > 0. This, jointly with λ3 = −λ4 entails λ3 = di and λ4 = −di for some
real number d 6= 0.

If λ2
3 is nonreal, then λ3 is nonreal. Then, λ1, λ2, λ3 and λ4 are all nonreal

and pairwise conjugated. If λ1 is conjugated with λ2, we have λ1 = −λ2 = bi
for some real number b 6= 0. Since λ3 and λ4 are also conjugated, we have
λ3 = −λ4 = di for some real number d 6= 0. If λ1 is conjugated with λ3, then
λ2 is conjugated with λ4. In this case, let λ1 = a+ bi, λ3 = a− bi, λ2 = c− di,
λ4 = c+ di for some real numbers b, d 6= 0. Since λ1 − λ3 = λ4 − λ2, we obtain
b = d. Moreover, λ1 + λ2 = 0 implies a+ bi+ c− bi = 0, that is c = −a. Thus,
λ1 = a + bi, λ2 = −a− bi, λ3 = a− bi, λ4 = −a+ bi. If a 6= 0, then S2

2 < 4D
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because of (30), a contradiction. Then, λ1 = λ4 = bi and λ2 = λ3 = −bi, that
is a double-Hopf bifurcation.

(2) If λ1λ2 = λ3λ4, then

S2 = λ1λ2 + λ3λ4 + (λ1 + λ2) (λ3 + λ4) = 2λ1λ2 − (λ1 + λ2)
2
= −λ2

1 − λ2
2 > 0

Then, λ1 or λ2 is nonreal.
Similarly, we get S2 = −λ2

3 − λ2
4 > 0. Then, λ3 or λ4 is nonreal.

Without loss of generality let λ1 = a+bi and λ3 = c+di be nonreal (b, d 6= 0).
(2.1) If λ1 and λ3 are not conjugated, then all the eigenvalues are nonreal:

λ1 = a+ bi, λi = a− bi, λ3 = c+ di, λj = c− di. T = 0 implies c = −a. Using
λ1 = a+ bi, λi = a− bi, λ3 = −a+ di, λj = −a− di with i 6= j, and λ1λ2 = λ3

λ4, we obtain, if a 6= 0, d = ±b and, therefore, the four eigenvalues (29). Since
a 6= 0, then S2

2 < 4D because of (30), a contradiction. Then a = 0 and, thus, we
obtain λ1 = bi, λi = −bi, λ3 = di, λj = −di, that is a double-Hopf bifurcation.

(2.2) If λ1 and λ3 are conjugated with a 6= 0, λ1λ2 = λ3λ4 implies that λ2

or λ4 is nonreal. In this case, the other eigenvalue is conjugated and nonreal.
Thus, we have λ1 = a+ bi, λ2 = x+ yi, λ3 = a− bi, λ4 = x− yi. T = 0 implies
x = −a. Thus, λ1 = a+ bi, λ2 = −a+ yi, λ3 = a− bi, λ4 = −a− yi. λ1λ2 = λ3

λ4 implies b = y. Then, λ1 = a+ bi, λ2 = −a+ bi, λ3 = a− bi, λ4 = −a− bi.
Since a 6= 0, then S2

2 < 4D because of (30), a contradiction.
If λ1 and λ3 are conjugated with a = 0, we have λ1 = −λ3 = bi. T = 0

and D > 0 imply λ2 = −λ4 and λ2λ4 > 0, that is λ2 = −λ4 = di for some real
number d 6= 0. According to Definition 17, we have a double-Hopf bifurcation.

Proof of Proposition 19
The first-order conditions of profit maximization are still given by (24).
To solve the utility maximization problem, we build the constant-value

Hamiltonian H ≡ (cNη)
1−ε

/ (1− ε) + λ [(r − δ)h+ w − c], where λ denotes
the multiplier. The first-order conditions are given by a static arbitrage: c =
λ−1/εNη(1/ε−1), and two dynamic equations: λ̇ = λ (ρ+ δ − r) and ḣ = (r − δ)h+
w − c, jointly with the usual transversality condition.

Noticing that h = k and replacing the first-order conditions for profit max-
imization in the first-order conditions for utility maximization, we obtain the
general equilibrium system (4)-(6).

Proof of Proposition 20
The steady state is given by λ̇ = k̇ = Ṅ = Ṗ = 0. Equations (13) and (16)

imply (18) and (19) respectively. (15) entails (20) and (21). Replacing k∗ in
equation (14) gives (17). Finally, 1− 4γP ∗ > 0 if and only if b < b∗.

Proof of Lemma 21
We linearize the system (13)-(16) around one of the two steady states, say
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N∗. The Jacobian matrix J is given by

J ≡









∂f1
∂λ

∂f1
∂k

∂f1
∂N

∂f1
∂P

∂f2
∂λ

∂f2
∂k

∂f2
∂N

∂f2
∂P

∂f3
∂λ

∂f3
∂k

∂f3
∂N

∂f3
∂P

∂f4
∂λ

∂f4
∂k

∂f4
∂N

∂f4
∂P









=









0 (1− α) (ρ+ δ) λ
k 0 0

1
ε
k
λ

ρ+(1−α)δ
α ρ (1−N) a

b
η
γ

ε−1
ε

ρ+(1−α)δ
ρ+δ 0

0 0 1− 2N −γ
0 b (ρ+ δ) 0 −a









We compute the sums of minors of order one (trace T ), two (S2), three (S3)
and four (determinant D) using (7).

Proof of Proposition 22
According to Proposition 20, N1 = N2 = 1/2 if and only if b = b∗ or,

equivalently, D = 0. We apply Proposition 13.
Proof of Proposition 23
Consider Proposition 14. S2 = S3/T+DT/S3 if and only if η = η1 or η = η2.

In addition,

S3 (η1)

T
=

1

2

(

S2 +
√

S2
2 − 4D

)

and
S3 (η2)

T
=

1

2

(

S2 −
√

S2
2 − 4D

)

1 − 2N < a − ρ < 0 implies T < 0 and S2 < 0, that is S3 (η2) /T < 0: T
and S3 (η2) have opposite signs and, according to Proposition 14, limit cycles
at η = η2 are impossible. Conversely, S3 (η1) /T > 0: T and S3 (η2) have the
same sign and conditions of Proposition 14 are satisfied. Moreover, ε > 1 and
1− 2N < a− ρ < 0 entail η1 > 0. Finally, 1− 2N < 0 implies that a limit cycle
occurs around N2 but not around N1.

Proof of Proposition 24
According to Proposition 15, D = 0 if and only if b = b∗ (that is N1 = N2 =

1/2). If N = 1/2, then S3 = 0 if and only if η = ηBT . Finally, ε > 1 ensures
that ηBT > 0.

Proof of Proposition 25
According to Proposition 16, a Gavrilov-Guckenheimer bifurcation generi-

cally arises if and only if D = 0, S3 = TS2 and S2 > 0. D = 0 if and only if
N1 = N2 = 1/2. But N = 1/2 implies

S2 = −aρ− ϕ (ρ+ δ)
1− α

αε
< 0

Then, the Gavrilov-Guckenheimer bifurcation is impossible.
Proof of Proposition 26
T = 0 if and only if 1− 2N = a− ρ, while D > 0 if and only if 1− 2N > 0

implying that a > ρ and, then, S2 < 0. Proposition 18 applies.
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