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Abstract

We consider an exchange economy with a finite number of assets and

a finite number of agents. The utility functions of the agents are con-

cave, strictly increasing and their suprema equal infity. We use weak

no-arbitrage prices a la Dana and Le Van [5]. Our main result is: an

equilibrium exists if, and only if, their exists a weak no-arbitrage price

common to all the agents.

Keywords: asset market equilibrium, individually rational attainable

allocations, individually rational utility set, no-arbitrage prices, weak no-
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1 Introduction

The literature on the existence of an equilibrium on financial asset markets is

very huge. Because short-sales are allowed, the consumption set is not bounded

any more from below. As a consequence, unbounded and mutually compatible

arbitrage opportunities can arise. In such cases, prices at which all arbitrage

opportunities can be exhausted may fail to exist, and thus, equilibrium may fail

to exist. The literature focuses on conditions which ensure the compactness of

the individually rational feasible allocations set or of the individually rational

utility set. These conditions are known as no-arbitrage conditions. We can

classify them in three categories:
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• Conditions on prices, like Green [10], Grandmont [8], [9], Hammond [15]

and Werner [27],

• Conditions on net trade, like Hart [16], Page [22], Nielsen [21], Page and

Wooders [25], Allouch et ali [1], Page, Wooders and Monteiro [24],

• Conditions on utility set, like Brown and Werner [4], Dana, Le Van, Mag-

nien [6].

A natural question arises: under which conditions there is an equivalence

between these conditions? In [1], Allouch, Le Van and Page prove the equiv-

alence between Hart’s condition and No Unbounded Arbitrage of Page with

the assumption that the utility functions have no half-line, i.e. there exists

no trading direction in which the agent’s utility is constant. These conditions

imply existence of a general equilibrium. But the converse is not always true,

i.e., the existence of equilibrium does not ensure these no-arbitrage conditions

are satisfied. We can find in Ha-Huy and Le Van [12] an example of economy

where these conditions fail but an equilibrium exists.

Observe in the papers we cite above, no-arbitrage prices are the ones at

which arbitrage opportunities are exhausted. Dana and Le Van in [5] introduce

weak no-arbitrage price, a no-arbitrage price weaker than the one in Werner

[27], or in [1]. Their no-arbitrage prices are, up to a scalar, the marginal utilities

of the consumptions. Following [5], we use in this paper these weak no-arbitrage

prices.

Our main result is just as follows. Suppose the utility functions of the agents

are concave, strictly increasing with suprema equal to infinity, then an equilib-

rium exists if, and only if, their exists a weak no-arbitrage price common to

all these agents. This result is quite new since we only assume concavity and

increasingness of the utility functions. In many papers, additional assumptions

are required to get this result, for instance, no half-line, strict concavity, closed-

ness of the gradients. We emphasize that the proof of this result does not not

pass by the proof of the compactness of the individually rational utility set as

in the papers of the existing literature on the existence of equilibrium on assets

markets.

The paper is organized as follows. In Section 2, we present the model with

the definitions of equilibrium, individually rational attainable allocations set,

individually rational utility set, useful vectors and useless vectors. In Section

3, we review some no-arbitrage conditions in the literature. In particular we

define weak no-arbitrage prices. Section 4 presents our main result. We explain

there the different steps of the proof of our result. Most of of the proofs are

gathered in Appendix 1 and Appendix 2.
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2 The model

We have an exchange economy E with m agents. Each agent is characterized

by a consumption set Xi = R
S , an endowment ei and a utility function U i :

R
S → R. We suppose that supx∈RS U(x) = +∞.

For the sake of simplicity, we suppose that utility functions are concave,

strictly increasing.

We first define an equilibrium of this economy.

Definition 1 An equilibrium is a list
(

(x∗i)i=1,...,m, p∗)
)

such that x∗i ∈ Xi for

every i and p∗ ∈ R
S
+ \ {0} and

(a) For any i, U i(x) > U i(x∗i)⇒ p∗ · x > p∗ · ei

(b)
∑m

i=1 x
∗i =

∑m
i=1 e

i.

Definition 2 A quasi-equilibrium is is a list
(

(x∗i)i=1,...,m, p∗)
)

such that x∗i ∈

Xi for every i and p∗ ∈ R
S
+ \ {0} and

(a) For any i, U i(x) > U i(x∗i)⇒ p∗ · x ≥ p∗ · ei

(b)
∑m

i=1 x
∗i =

∑m
i=1 e

i.

Since short-sales are allowed, from Geistdorfer-Florenzano [7], actually any

quasi-equilibrium is an equilibrium.

Definition 3 1. The individually rational attainable allocations set A is de-

fined by

A =

{

(xi) ∈ (RS)m|
m
∑

i=1

xi =
m
∑

i=1

ei and U i(xi) ≥ U i(ei) for all i

}

.

2. The individually rational utility set U is defined by

U = {(v1, v2, ..., vm) ∈ R
m | ∃ x ∈ A such that U i(ei) ≤ vi ≤ U i(xi) for all i}.

Definition 4 i) The vector w is called useful vector of agent i if for any

x ∈ R
S, for any λ ≥ 0 we have U i(x+ λw) ≥ U i(x).

ii) The vector w is called useless vector of agent i if for any x ∈ R, for any

λ ∈ R we have U i(x+ λw) = U i(x).

iii) We say that w ∈ R
S is a half-line direction for agent i if there exists

x ∈ R
S such that U i(x+ λw) = U i(x), ∀ λ ≥ 0.

Denote by Ri the set of useful vectors. Li the set of useless vectors. By the

very definition, the set of useless vectors of agent i is the biggest linear subspace

included in Ri:

Li = Ri ∩ (−Ri).

Observe that Ri has no empty interior since R
S
+ ⊆ Ri.

3



3 Some no-arbitrage conditions in the literature

In this section, we will review some no-abitrage conditions in the literature.

3.1 Conditions on prices

1. We present the definition of no-arbitrage prices proposed by Werner [27].

Definition 5 The vector p ∈ R
S is a no-arbitrage price for agent i if for any

w ∈ Ri \ Li we have p · w > 0, and for w ∈ Li, p · w = 0.

Denote by Si the set of no-arbitrage prices of agent i. It is a cone. The no-

arbitrage condition is
⋂m

i Si 6= ∅.

2 Allouch et al. [1] introduce a more general set of no-arbitrage prices

S̃i = {p : p · w > 0 if w ∈W i \ Li}

= Li⊥ if W i = Li

Their no-arbitrage condition is ∩iS̃
i 6= ∅.

3. In [5], Dana and Le Van propose to use the marginal utilities as no-arbitrage

price. They introduce weak no-arbitrage prices.

Definition 6 A vector p is a weak no-arbitrage price for agent i if their exists

λ > 0 and xi ∈ R
S such that p = λU i′(xi).

Let P i denote the set of weak no-arbitrage prices for the agent i. Their no-

arbitrage condition is
⋂m

i intP i 6= ∅

4. Ha-Huy and Le Van [12], following Dana and Le Van [5], use the marginal

utilities of the agents as no-arbitrage prices, but for a model with a countably

infinite number of states. Their no arbitrage prices belong to the interior of l∞.

Their no-arbitrage condition is weaker than in Dana and Le Van [5]
⋂m

i P i 6= ∅

where P i is the cone of no-arbitrage prices.

5. Ha-Huy, Le Van and Wooders [17] use also no-arbitrage prices a la Ha-Huy

and Le Van [12].

3.2 Conditions on net trades

3. Hart [16] proposed the Weak No Market Arbitrage (WNMA) condition:

Definition 7 The economy satisfies WNMA if (w1, w2, . . . , wm) ∈ R1 ×R2 ×

. . .×Rm satisfies
∑m

i=1w
i = 0 then wi ∈ Li for every i.
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4. Page [22] proposed the No Unbounded Arbitrage ( NUBA) condition:

Definition 8 The economy satisfies NUBA if (w1, w2, . . . , wm) ∈ R1 × R2 ×

. . .×Rm satisfies
∑m

i=1w
i = 0 then wi = 0 for every i.

5. In [24], Page, Wooders and Monteiro introduced the notion of Inconsequential

arbitrage (IC).

Definition 9 The economy satisfies Inconsequential arbitrage condition if for

any (w1, w2, . . . , wm) with wi ∈ Ri for all i and
∑m

i=1w
i = 0 and (w1, w2, . . . , wm)

is the limit of λn(x
1(n), x2(n), . . . , xm(n)) with (x1(n), x2(n), . . . , xm(n)) ∈ A

and λn converges to zero when n tends to infinity, there exists ǫ > 0 such that

for n sufficiently big we have U i(xi(n)− ǫwi) ≥ U i(xi(n)).

3.3 Condition on the utility set

For the finite dimension, Dana Le Van and Magnien [6], for the on infinite

dimension, Brown and Werner [4] assume directlythe compactness of the indi-

vidually rational utility set. They prove

U is compact ⇒ Existence of equilibrium

3.4 The results

Dana Le Van and Magnien [6], Brown and Werner [4] prove

U is compact ⇒ Existence of equilibrium

In Allouch et al. [1], we find these results

(NUBA)⇔ A is compact

(NUBA)⇒ (WNMA)⇒ (IC)⇒ U is compact ⇒ Existence of an equilibrium

These conditions are equivalent if the economy has no half-line.

In Dana and Le Van [5], their no-arbitrage condition implies existence of an

equilibrium. The converse holds if the economy has no half-line.

Ha-Huy and Le Van [12] in a model with a countably infinite number of

states, prove that their no-arbitrage condition is equivalent to the existence of

an equilibrium.

Ha-Huy, Le Van and Wooders [17] impose conditions on the utility functions

to obtain equivalence between their no-arbitrage condition and existence of

equilibrium. Their additional assumptions on the utility functions are satisfied

if these latter are separable.
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4 The Main Result of Our Paper

We now define the set of weak no-arbitrage prices for agent i which is the cone

P i := {p ∈ R
S : ∃ x ∈ R

S , λ > 0 such that p ∈ λ∂U i′(x)}.

Our main result is

Theorem 1 Suppose that U i is concave, strictly increasing for any i. We have

m
⋂

i=1

P i 6= ∅ ⇔ there exists general equilibrium.

Our idea of proof relies on the result that any concave function on R
S is bounded

above by a family of affine functions.

Let F denote the set of affine functions p · x + q with p ∈ R
S , q ∈ R such that

U(x) ≤ p · x + q for any x ∈ R
S . Without loss of generality, we can write

F = {(p, q)} ⊂ R
S × R. Since U is strictly increasing, we have p ∈ R

S
+ for any

(p, q) ∈ F . The following result can be found in Rockafellar [26]

Lemma 1 The set F is a closed convex set of RS+1. For any x ∈ R
S, we have

U(x) = min
(p,q)∈F

(p · x+ q)

and

∂U(x) = co{p ∈ R
S s.t. there exists q : (p, q) ∈ F and U(x) = p · x+ q}

where co denotes the closure of the convex hull.

The proof of Theorem 1 will be done in three steps.

• Step 1 We give preliminary results which will be used for the proof.

• Step 2 We consider an economy with m agents, m consumption sets equal

to R
S , m endowments (ei). The utility functions of agent i is defined by

Ũ i(x) = inf
(p,q)∈F i

(p · x+ q) (1)

where F i is a finite set of affine functions (pi · x+ qi)i.

We define, for any agent i, the cone of no arbitrage prices P̃ i which are

generated by the vectors (pi)i. Let Ũ denote the individually rational

utility set of this economy. We prove

∩iP̃
i 6= ∅ ⇔ Ũ compact ⇔ Existence of an equilibrium
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• Step 3 We construct a sequence of economies En. In these economies the

utility functions are defined as in (1). Under No-arbitrage condition, for

each n, we prove there exists an equilibrium. After that, we prove there

exists a sequence of equilibria of En which converges, when n converges to

infinity, to an equilibrium of the initial economy. At this stage, we prove

No-arbitrage condition ⇒ Existence of an equilibrium

Hpwever, the converse is very easy to prove. We actually obtain the

equivalence

No-arbitrage condition ⇔ Existence of an equilibrium

This equivalence does not involve an equivalence with the compactness of

the individually rational utility set. More explicitly, it is not necessary

that the individually rational utility set is compact to have an equilibrium.

4.1 Step 1: some preliminary results

Let U be a concave function real valued over RS . We denote by R the cone of

useful vectors associated with U . The following result is trivial but important

to have it in mind.

Lemma 2 Let w be a useful vector. Let x be in R
S. The function λ ∈ R →

U(x+ λw) is non decreasing.

Lemma 3 Let w be a useful vector associated with U .

If, for some x̃, supλ≥0 U(x̃+ λw) = +∞, then for any x, supλ≥0 U(x+ λw) =

+∞.

Equivalently, if, for some x̃, supλ≥0 U(x̃+λw) < +∞, then for any x, supλ≥0 U(x+

λw) < +∞.

Proof : See Appendix 1.

Let w be a useful vector associated with U such that supλ≥0 U(x + λw) <

+∞, ∀x. Define V (x,w) = supλ≥0 U(x+ λw). It is easy to check

Lemma 4 The function V (., w) is concave.

Lemma 5 The vector w is useless for V (·, w). And for any p ∈ ∂xV (x,w) we

have p · w = 0.

Proof : See Appendix 1.
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Lemma 6 Suppose that U is concave and w is one of its useful vectors satisfy-

ing for any x ∈ R
S, maxλ≥0 U(x+ λw) exists. Define V (x,w) = supλ≥0 U(x+

λw). We have V (x,w) < +∞ for any x ∈ R
S and:

(1) ∂xV (x,w) = ∂U(x+ λ̃w),

where λ̃ is big enough such that U(x+ λ̃w) = maxλ≥0 U(x+ λw),

Actually we have

∂xV (x,w) = ∂U(x+ λ̂w), ∀λ̂ > λ̃ and U(x+ λ̂w) = max
λ≥0

U(x+ λw)

(2) ∀p ∈ ∂xV (x,w), p · w = 0

and

V (x,w) = U(x+ λ̃w)⇔ ∀p ∈ ∂xV (x,w) = ∂U(x+ λ̃w), p · w = 0

(3) If u is a useful vector for U then it is useful for V (.,W )

Proof : See Appendix 1.

Let F be a set of affine functions p · x + q, with (p, q) ∈ R
S
+ × R. Without

loss of generality, we write F = {(p, q)} ⊂ R
S
+ × R. With F we associate the

function Ũ defined by

∀x ∈ R
s, Ũ(x) = inf{f(x) : f ∈ F}

Lemma 7 Suppose that F is the convex hull of finite number of elements:

F = convex{(p1, q1), (p2, q2), · · · , (pM , qM )}. Assume w is a useful vector of Ũ

which satisfies: there exists x̃ ∈ R
S such that supλ≥0 Ũ(x̃+ λw) < +∞. In this

case, for any x ∈ R
S, maxλ≥0 Ũ(x+ λw) exists.

Proof : See Appendix 1.

4.2 Step 2

Consider an economy Ẽ with m agents, consumption sets equal to R
S , endow-

ments (ei). The utility functions of the agents are defined by: for any i

Ũ i(x) = min
(p,q)∈F i

(p · x+ q)

where F i = co
{

(pi1, q
i
1), (p

i
2, q

i
2), . . . , (p

i
M i , q

i
M i)

}

, each pi belongs to R
S
+, each qi

is in R. Denote by R̃i the useful vectors set for agent i. Let P̃ i = convexcone{pi1, p
i
2, . . . , p

i
M i}.

Let

W̃ = {(w1, w2, . . . , wm) ∈ R̃1 × R̃2 × · · · × R̃m :
m
∑

i=1

wi = 0}
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Denote by Ã the set of individually rational allocations, by Ũ the individually

rational utility set of this economy.

Suppose there exists (w1, w2, . . . , wm) ∈ W̃ such that, for any i, supλ≥0 Ũ
i(x+

λwi) < +∞ for any x. In this case we can define as before V i(x,wi) for any x,

any i. From Lemma 5, we have V (x,wi) = Ũ i(x + λ̃wi) for some λ̃ ≥ 0 (λ̃ is

independent of i, since the number of agents is finite).

The individually rational attainable allocations set AV is defined as:

AV = {(x1, x2, . . . , xm) ∈ (RS)m
∣

∣

m
∑

i=1

xi =
m
∑

i=1

ei and V i(xi, wi) ≥ U i(ei)}.

The individually rational utility set UV is defined as:

UV = {(v1, v2, . . . , vm) ∈ R
m

∣

∣ ∃x ∈ AV : U i(ei) ≤ vi ≤ V i(xi, wi), ∀i}.

We have the result:

Lemma 8 Suppose there exists (w1, w2, . . . , wm) ∈ W̃ such that, for any i,

supλ≥0 Ũ
i(x + λwi) < +∞ for any x. Consider the functions V i(., wi). Then

UV = Ũ .

Proof : See Appendix 2.

Lemma 9 Let (w1, w2, . . . , wm) ∈ W̃ . If p ∈ ∩iP̃
i then p · wi = 0, ∀i.

Proof : See Appendix 2.

The following proposition is crucial for the proof of Theorem 1.

Proposition 1 Suppose that for all (w1, w2, . . . , wm) ∈ W̃ , there exists maxλ≥0 Ũ
i(x+

λwi) for any x ∈ R
S. Assume ∩iP̃

i 6= ∅. Then Ũ is compact and hence there

exists equilibrium for economy Ẽ.

Proof : See Appendix 2.

Lemma 10 Assume
⋂

P̃ i 6= ∅. Then Ũ is compact

Proof : See Appendix 2.

Proposition 2 Suppose that for any i, F i is a convex hull of finite number of

elements. Then

⋂

P̃ i 6= ∅ ⇔ Ũ is compact ⇔ there exists general equilibrium.
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Proof : (1) Suppose there exists a general equilibrium ((x∗i)i, p
∗). It is easy to

show that p∗ ∈ ∩iP̃
i.

(2) Conversely, suppose
⋂m

i=1 P̃
i 6= ∅. Since for any i, F i is a convex hull

of a finite number of elements, we will prove that the utility functions of the

economy satisfy the conditions in Proposition 1. Hence Ũ is compact and there

exists a general equilibrium.

First from Lemma 10, Ũ is bounded.

Now, let (w1, w2, . . . , wm) ∈ W and (x1, x2, . . . , xm) ∈ Ã. If for some i,

limλ→+∞ Ũ i(xi+λwi) = +∞ then Ũ is not bounded since
∑

i(x
i+λwi) =

∑

i e
i.

Using Lemma 7, we obtain that for any xi ∈ R
S , maxλ≥0 Ũ

i(xi + λwi) exists.

In other words, the utility functions of the economy satisfy the conditions in

Proposition 1. Hence Ũ is compact and there exists a general equilibrium.

4.3 Step 3 : Proof of Theorem 1

Recall that P i = {λ∂U(x) : λ > 0, x ∈ R
S}.

(1) We will prove that
⋂m

i=1 P
i 6= ∅ implies existence of general equilibrium.

Take any

p ∈
m
⋂

i=1

P i.

For any i, there exist λ1, λ2, · · · , λT i ∈ R+, x
i
1, x

i
2, · · · , x

i
T i ∈ R

S , p1, p2, · · · , pT i ∈

R
S
+ with pk ∈ ∂U i(xik), for 1 ≤ k ≤ T i, such that

p =
T i
∑

k=1

λkpk, ∀i.

It is easy to verify that (pk, U
i(xik)− pk · x

i
k) belongs to F

i.

For each i, define the sequence of sets F i
1 ⊂ F

i
2 ⊂ · · · ⊂ F

i
n ⊂ · · · satisfying

• For any 1 ≤ k ≤ T i, for any n,
(

pk, U
i(xik)− pk · x

i
k

)

∈ F i
n.

• For any n, F i
n is convex hull of finite number of elements.

• For any (p, q) ∈ ri
(

F i
)

, there exists N such that for any n ≥ N , (p, q) ∈

F i
n.

For each n, define U i
n(x) = min(p,q)∈F i

n
(p · x+ q). Define P i

n the convex

cone generated by the elements generating F i
n. By the construction of F i, we

have for any n
m
⋂

i=1

P i
n 6= ∅.

10



Using Lemmas 7, 1, the economy En = (U i
n, e

i)mi=1 has equilibrium. Denote

by Gn the set of equilibrium allocations of this economy. We will prove that

Gn is closed. Suppose that {x∗(k)}∞k=1 ⊂ Gn and converges to x∗. Without

loss of generality, we can suppose that the associated equilibrium prices {p∗(k)}

converges to p̂∗.

We prove that lim supk→∞ U i
n(x

∗i(k)) ≤ U i
n(x

∗i), for any i1. Indeed, for any

(p, q) ∈ F i
n, we have

p · x∗i(k) + q ≥ U i
n(x

∗i(k)),

for any k. Let k converges to infinity we have

p · x∗i + q ≥ lim sup
k→∞

U i
n(x

∗i(k)).

Since this is true for any (p, q) ∈ F i
n, U

i
n(x

∗i) ≥ lim supk→∞ U i
n(x

i
n(k)).

Hence if U i
n(x) > U i

n(x
∗i), then for k big enough we have U i

n(x) > U i
n(x

∗i(k)),

which implies p∗(k) · x > p∗(k) · x∗i(k). Let k converges to infinity we get

U i
n(x) > U i

n(x
∗i) implies p∗ · x ≥ p∗ · x∗i. Hence (p∗, x∗)) is a quasi-equilibrium

of the economy En. Since short-sales are allowed, quasi-equilibrium is equilib-

rium. See [7]. The set Gn is closed.

Let dn = infx∈Gn

∑m
i=1 ‖x

i‖. Let ǫ > 0. The set x∗ ∈ Gn such that ‖x∗‖ <

dn + ǫ is non empty. Since Gn is closed this set is compact. Minimizing on this

set we get x∗n ∈ Gn satisfying

m
∑

i=1

‖x∗in ‖ = min
x∗∈Gn

m
∑

i=1

‖x∗i‖.

We will prove that the set {x∗n}
∞
n=1 is bounded. Suppose the contrary,

lim
n→∞

m
∑

i=1

‖x∗in ‖ = +∞.

Without loss of generality, we can suppose that for any i:

lim
n→∞

x∗in
∑m

i=1 ‖x
∗i
n ‖

= wi.

Since
∑m

i=1 x
∗i
n =

∑m
i=1 e

i,
∑m

i=1w
i = 0. We have also

∑m
i=1 ‖w

i‖ = 1.

For any (p, q) ∈ F i
n,

p · x∗in + q ≥ U i
n(x

∗i
n ) ≥ U i

n(e
i) ≥ U i(ei)2.

1Obviously, we can have a better result, limk→∞ U i(x∗i(k)) = U i(x∗). But for the sake of

simplicity, we only use this.
2Recall that for any x, U i(x) = inf(p,q)∈Fi{p · x+ q} ≤ U i

n(x) = inf(p,q)∈Fi
n
{p · x+ q} since

F i
n ⊂ F i

11



Dividing the left-hand-side and the right-hand-side by
∑m

i=1 ‖x
∗i
n ‖ and let n

converges to infinity, we have for any (p, q) ∈ F i
n:

p · wi ≥ 0.

By the definition of set sequence {F i
n}, we verify easily that for any (p, q) ∈

F i, p · wi ≥ 0. This implies wi is a useful vector of U i
n, for any n, and of U i.

Since
∑m

i=1w
i = 0, for any n, and since (x∗) is a Pareto optimal, we have

p · wi = 0 for any p ∈ ∂U i
n(x

∗i
n ). Actually we can prove that for any Pareto

optimum of En, (x), for any (w1, w2, . . . , wm) ∈ Wn we have for any i, for any

p ∈ ∂U in(xi) , p · wi = 0.

Fix any n big enough such that if wi
s > 0, then x∗in,s > 0 and if wi

s < 0, then

x∗in,s < 0.

Denote by F̃ i
n the set of extreme points (p, q) ∈ F i

n such that p · x∗i +

q = U i(x∗in ). This set is non empty and contains a finite number of elements.

From Rockafellar [26], F̃ i
n ⊂ ∂U i

n(x
∗i). Define F̂ i

n the set of extreme points

(p′, q′) ∈ F i
n such that p′ · x∗in + q′ > U i(x∗in ). This set can be empty.

We have for any (p, q) ∈ F̃ i
n, p · w

i = 0.

Since F̃ i
n and F̂ i

n contain each a finite number of elements, there exists ǫ > 0

such that

• For any i, for any (p, q) ∈ F̃ i
n, for any (p′, q′) ∈ F̂ i

n we have

p′ · (x∗in − ǫwi) + q′ > p · (x∗in − ǫwi) + q.

This implies

argmin
F i

n

(

p · (x∗in − ǫwi) + q
)

⊂ F̃ i
n.

• For any i, s, if wi
s > 0 then x∗in,s−ǫwi

s > 0, and if wi
s < 0, then x∗in,s−ǫwi

s <

0.

Take (p, q) ∈ F̃ i
n such that U i

n(x
∗i
n − ǫwi) = p · (x∗in − ǫwi) + q. Since

p ·wi = 0 (because (x∗i − ǫwi)i is a Pareto optimum), we have U i
n(x

∗i
n − ǫwi) =

p · (x∗in − ǫwi) + q = p · x∗in + q = U i
n(x

∗i
n ).

Take p∗n the associated equilibrium price with x∗n of the economy En. We

have U i
n(x) > U i

n(x
∗i
n − ǫwi) = U i

n(x
∗i
n ) implies p · x > p · x∗in = p · (x∗in − ǫwi).

Hence (p∗n, (x
∗i
n − ǫwi)mi=1) is also an equilibrium of the economy En.

Since
∑m

i=1 ‖w
i‖ = 1, and x∗in,s − ǫwi always has the same sign as x∗in,s and

wi
s, we have

m
∑

i=1

‖x∗in − ǫwi‖ <
m
∑

i=1

‖x∗in ‖.

12



This is a contradiction with the choice of x∗n.

Hence the sequence {x∗n}
∞
n=1 is bounded. Without loss of generality, suppose

that limn→∞ x∗n = x∗ and limn→∞ p∗n = p∗.

We will prove that limn→∞ U i
n(x

∗
n) = U i(x∗).

Since U i
n(x

∗i
n ) ≥ U i(x∗in ) for any n, we have

lim inf
n→∞

U i
n(x

∗i
n ) ≥ lim

n→∞
U i(x∗in ) = U i(x∗i).

For any (p, q) ∈ ri
(

F i
)

, for n sufficiently big, (p, q) ∈ F i
n, we have p·x

∗i
n +q ≥

U i
n(x

∗i
n ). Let n converges to infinity we get:

p · x∗i + q ≥ lim sup
n→∞

U i
n(x

∗i
n ).

Since the inequality is true for any (p, q) ∈ ri
(

F i
)

, we have

U i(x∗i) = inf
F

(

p · x∗i + q
)

≥ lim sup
n→∞

U i
n(x

∗i
n ).

We have proved U i(x∗i) = limn→∞ U i
n(x

∗i
n ).

Suppose that U i(x) > U i(x∗i). Using the same arguments as above, one

has U i(x) = limn→∞ U i
n(x). This implies for n big enough, we have U i

n(x) >

U i
n(x

∗i
n ). Hence for n big enough we have p∗n · x > p∗n · x

∗i
n . Let n converges to

infinity we get U i(x) > U i(x∗i) implies p∗ · x ≥ p∗ · x∗i.

Hence (p∗, x∗) is a quasi-equilibrium of the initial economy. Using result of

[7], when the consumption sets equal RS , a quasi-equilibrium is anequilibrium.

(2) We now prove the converse. Suppose that the economy has an equi-

librium. It is easy to prove that the equilibrium price belongs to
⋂m

i=1 P
i.

Therefore,
⋂m

i=1 P
i 6= ∅.

5 Appendix 1

5.1 Proof of Lemma 3

Let x ∈ R
S . Then there exist y ∈ R

S , θ ∈ (0, 1), such that x = θx̃ + (1− θ)y.

Suppose limλ→+∞ U(x̃+ λw) = +∞. We then get

U(x+ λw) = U(θ(x̃+ λw) + (1− θ)(y + λw))

≥ θU(x̃+ λw) + (1− θ)U(y + λw)

≥ θU(x̃+ λw) + (1− θ)U(y)

⇒ lim
λ→+∞

U(x+ λw) ≥ θ lim
λ→+∞

U(x̃+ λw) + (1− θ)U(y) = +∞

13



5.2 Proof of Lemma 5

Let µ ∈ R, x ∈ R
S . We have

V (x+ µw,w) = sup
λ≥0

U(x+ µw + λw)

= sup
λ≥0

U(x+ λw) = V (x,w)

Let p ∈ ∂xV (x,w) . Then

∀λ ∈ R, 0 = V (x,w)− V (x+ λw,w) ≥ −λp · w

Hence p · w = 0.

5.3 Proof of Lemma 6

(1) First observe if x ∈ R
S and U(x + λ̂w) = V (x,w) = maxλ≥0 U(x + λw),

then from Lemma 2, for any λ > λ̂, we have U(x+λw) = U(x+ λ̂w) = V (x,w).

Let x ∈ R
S , y ∈ R

S . Choose λ̃ large enough such that V (x,w) = U(x+ λ̃w),

V (y, w) = U(y + λ̃w). We have, for any p ∈ ∂U(x+ λ̃w),

V (x,w)− V (y, w) = U(x+ λ̃w)− U(y + λ̃w)

≥ p · (x+ λ̃w − y − λ̃w)

= p · (x− y),

Hence p ∈ ∂xV (x,w). We have proved ∂U(x+ λ̃w) ⊂ ∂xV (x,w).

Let us prove the converse. Take p ∈ ∂xV (x,w). Since w is a useless vector

of V (·, w), we have p · w = 0 (Lemma 5) . Recall that U(x + λ̃w) = V (x,w).

For any y ∈ R
S we have

U(x+ λ̃w)− U(y) ≥ V (x,w)− V (y, w)

≥ p · (x− y)

= p · (x+ λ̃w − y),

since p · w = 0. Hence p ∈ ∂U(x+ λ̃w).

We have proved ∂xV (x,w) ⊂ ∂U(x+ λ̃w).

Now take λ̂ > λ̃. We have

V (x,w) = U(x+ λ̃) = U(x+ λ̂)

V (y, w) = U(y + λ̃) = U(y + λ̂)

The same computations as above give ∂xV (x,w) = ∂U(x+ λ̂w).
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(2) Let λ̂ > λ̃. Let p ∈ ∂U(x+ λ̃w) = ∂U(x+ λ̂w). We have on the one hand

0 = U(x+ λ̃)− U(x+ λ̂) ≥ (λ̃− λ̂)p · w ⇒ p · w ≥ 0

and on the other hand

0 = U(x+ λ̂)− U(x+ λ̃) ≥ (λ̂− λ̃)p · w ⇒ p · w ≤ 0

Conversely, let λ > λ̃. Let p ∈ ∂U(x+ λ̃w). It satisfies p · w = 0. We have

0 ≥ U(x+ λ̃w)− U(x+ λw) ≥ (λ̃− λ)p · w = 0

Hence U(x + λ̃w) ≥ U(x + λw), ∀λ ≥ λ̃. From Lemma 2, we actually have

U(x+ λ̃w) = U(x+ λw), ∀λ ≥ λ̃. For λ < λ̃, we have U(x+ λw) ≤ U(x+ λ̃w)

from Lemma 2.

(3) Let u be useful for U . We have

∀x, ∀λ ≥ 0, ∀µ ≥ 0, U(x+ λu+ µw) ≥ U(x+ µw)

⇒ V (x+ λu,w) = sup
µ≥0

U(x+ λu+ µw) ≥ sup
µ≥0

U(x+ µw) = V (x,w)

5.4 Proof of Lemma 7

Firstly, observe that since supλ≥0 Ũ(x̃+λw) < +∞, for any x ∈ R
S , supλ≥0 Ũ(x+

λw) < +∞ (see Lemma 3). It is easy to verify that for any k, pk · w ≥ 0.

We will prove that there exists pk ∈ {p1, p2, · · · , pM} such that pk · w = 0.

Indeed, suppose the contrary, for any 1 ≤ k ≤ M , pk · w > 0. Then for any

x ∈ R
S , for any (pk, qk) ∈ F ,

lim
λ→∞

(pk · (x+ λw) + qk) = +∞,

which implies

lim
λ→∞

Ũ(x+ λw) = lim
λ→∞

min
(pk,qk)∈F

(pk(x+ λw) + qk)

= +∞,

a contradiction.

Define F = {(pk, qk) such that pk · w = 0}.

Denote by C the supremum value supλ≥0 Ũ(x + λw). Fix λ̃ big enough

such that for any (pk′ , qk′) /∈ F , pk′ · (x + λ̃w) + qk′ > C. This implies for any

(pk′ , qk′) /∈ F :

pk′ · (x+ λ̃w) + qk′ > Ũ(x+ λ̃w)

= min
(pk,qk)∈F

(

pk(x+ λ̃w) + qk

)

.
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This implies

Ũ(x+ λ̃w) = min
(pk,qk)∈F

(

pk(x+ λ̃w) + qk

)

.

Since pk ≥ 0, ∀k and since the number of elements is finite, there exists (pk, qk) ∈

F such that Ũ(x+ λ̃w) = pk · x+ qk.

Let J = {k : (pk, qk) ∈ F and Ũ(x + λ̃w) = pk · x + qk}. From Rockafellar

[26], ∂Ũ(x+ λ̃w) = conv{pk, k ∈ J}. Hence for any p ∈ ∂Ũ(x+ λ̃w), we have

that p belongs to the convex hull of {pk such that (pk, qk) ∈ F}. This implies

p · w = 0. From Lemma 6, Ũ(x+ λ̃w) = supλ≥0 Ũ(x+ λw).

6 Appendix 2

6.1 Proof of Lemma 8

Evidently, since for any xi, Ũ i(xi) ≤ V i(xi, wi), we have Ũ ⊂ UV .

Take (v1, v2, . . . , vm) ∈ UV . There exists (x1, x2, . . . , xm) ∈ AV such that

U i(ei) ≤ vi ≤ V i(xi, wi), ∀i. There exists λ ≥ 0 big enough such that

V i(xi, wi) = U i(xi+λwi), for any i. Observe that (x1+λw1, x2+λw2, . . . , xm+

λwm) ∈ AV . This implies (v1, v2, . . . , vm) ∈ Ũ .

6.2 Proof of Lemma 9

Let p ∈ ∩iP̃
i. If p = 0 the claim is true. Assume p = µip′i where µi > 0 and

p′i ∈ co{pi1, p
i
2, . . . , p

i
M i}. For any i, any xi, any λ > 0, we have

Ũ i(xi) ≤ Ũ i(xi + λwi) ≤ p′i · (xi + λwi) + qi, qi ∈ co{qi1, . . . , q
i
M i}

Hence p′i · wi ≥ 0, ∀i⇔ p · wi ≥ 0, ∀i. Since
∑

iw
i = 0 we get ∀i, p · wi = 0.

6.3 Proof of Proposition1

If W is linear space, then the condition WNMA is satisfied. This implies the

compactness of Ũ and the existence of an equilibrium.

Consider the case W̃ is not a linear space. Take w ∈ W̃ which satisfies

−w 6∈ W̃ .

Define: V i(x,wi) = supλ≥0 Ũ
i(x+ λwi).

We will prove that for any i there exists pi
k(i) ∈ {p

i
1, . . . , p

i
M i} which satisfies

pi
k(i) ·w

i = 0. Indeed, it is easy to check that for any i, for any p ∈ {pi1, . . . , p
i
M i}

we have p · wi ≥ 0. Suppose there exists i which satisfies p · wi > 0 for any

p ∈ {pi1, . . . , p
i
M i}. Take p ∈ ∩iP̃

i. Then p · wj ≥ 0, ∀j 6= i and p · wi > 0.

We have a contradiction 0 = p ·
∑

iw
i > 0. Now, without loss of generality,
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we can assume that for some N i which satisfies 1 ≤ N i ≤ M i, we have that

pi1, p
i
2, . . . , p

i
N i are orthogonal to wi, and for all N i + 1 ≤ k ≤ M i, the scalar

product pik · w
i is strictly positive.

We claim that for any x,

V i(x,wi) = min
{

p · x+ q : (p, q) ∈ {(pi1, q
i
1), . . . , (p

i
N i , q

i
N i)}

}

Indeed, we have

V i(x,wi) = sup
λ≥0

Ũ i(x+ λwi)

≤ sup
λ≥0

{

p · (x+ λwi) + q : ∀(p, q) ∈ {pi1, . . . , p
i
N i}

}

≤
{

p · x+ q : ∀(p, q) ∈ {pi1, . . . , p
i
N i

}

, since p · wi = 0

Then, there exists λ̃ > 0 such that

V i(x,wi) = Ũ i(x+ λ̃wi)

= min
{

p · (x+ λ̃wi) + q : (p, q) ∈ {(pi1, q
i
1), . . . , (p

i
N i , q

i
N i)}

}

= min
{

p · x+ q : (p, q) ∈ {(pi1, q
i
1), . . . , (p

i
N i , q

i
N i)}

}

since p · wi = 0

We now prove the claim:

Claim: Let (u1, u2, . . . , um) satisfy: for any i, ui is a useful vector of V i, ∀ i,

and
∑m

i=1 u
i = 0. Then there exists maxλ≥0 V

i(xi + λui, wi), ∀ xi ∈ R
S , ∀ i.

Denote by Ri
V the set of useful vectors of V i(., wi). We will prove the

following assertion:

Ri
V = R̃i + {λwi}λ∈R.

Since R̃i ⊂ Ri
V (see Lemma 6, statement 3) and wi is a useless vector of V i(.wi),

we have R̃i + {λwi}λ∈R ⊂ Ri
V . Take any vector u ∈ Ri

V . We prove that for all

1 ≤ k ≤ N i, pik ·u ≥ 0. Indeed, take pik for 1 ≤ k ≤ N i. We have for any x, any

λ > 0

V i(x,wi) ≤ V i(x+λu,wi) = sup
µ≥0

Ũ i(x+λu+µwi) ≤ sup
µ≥0
{pik·(x+λu+µwi)+qik = pik·(x+λu)+qik

since pik · w
i = 0. This leads to:

1

λ
V i(x,wi) ≤

pik · x+ qik
λ

+ pik · u

Let λ→ +∞. We get pik · u ≥ 0.

Consider the vector u + λwi, with λ ≥ 0. For 1 ≤ k ≤ N i, pik · (u + λwi) ≥ 0.

For k ≥ N i + 1, since pik ·w
i > 0, we have pik · (u+ λwi) = pik · u+ λpik ·w

i > 0

with λ big enough. With this λ, we have pik · (u + λwi) ≥ 0 for all k. This
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implies u+λwi ∈ R̃i, since for any x, ∂Ũ i(x) ⊂ co{pik}k. We have proved that

Ri
V ⊂ R̃i + {λwi}λ∈R.

Suppose that (u1, u2, . . . , um) are such that ui ∈ Ri
V for all i, and

∑m
i=1 u

i =

0. We want to prove maxλ≥0 V
i(x+ λui, wi) exists for any x.

For each i, we can write ui = ri + µiw
i, with ri ∈ R̃i, µi ∈ R. Choose µ > 0

big enough such that for all i, λi = µ+ µi > 0. We have:

m
∑

i=1

(ri + λiw
i) =

m
∑

i=1

(ri + µiw
i) + µ

m
∑

i=1

wi = 0.

For all i, λi > 0, so ri+λiw
i ∈ R̃i. Observe that since wi is a useless vector

of V i(., wi), we have V i(xi + λui, wi) = V (xi + λri, wi). From the assumption

in the statement of the proposition, maxλ≥0 Ũ
i(x+ λ(ri + λiw

i)) exists. Then

there exists λ1 ≥ 0 such that for all λ ≥ λ1 we have:

Ũ i(x+ λ(ri + λiw
i)) = Ũ i(x+ λ1(ri + λiw

i)) ≤ V i(x+ λ1ri, wi).

Fix any λ2 ≥ λ1. For all λ > λ2, we have:

Ũ i(x+ λ2ri + λλiw
i) ≤ Ũ i(x+ λ(ri + λiw

i)) ≤ V i(x+ λ1ri, wi).

Let λ→ +∞ the left hand side Ũ i(x+ λ2ri + λλiw
i) tends to V i(x+ λ2ri, wi)

so

V i(x+ λ2ri, wi) ≤ V i(x+ λ1ri, wi).

This inequality is true for any λ2 ≥ λ1. Since ri is also a useful vector of

V i(., w), maxλ≥0 V
i(x+ λri, wi) exists, or equivalently maxλ≥0 V

i(x+ λui, wi)

exists.

Define Ũ i
1(x

i) = V i(xi, wi), P̃ i
1 = convexcone{pi1, p

i
2, . . . , p

i
N i}. We have proved

that Ũ i
1(x

i) = V i(xi, wi) = min
{

p · x+ q : (p, q) ∈ {(pi1, q
i
1), . . . , (p

i
N i , q

i
N i)}

}

Define a new economy Ẽ1 which is characterized by {(Ũ i
1, e

i, Xi)} with Xi = R
S .

Denote, by R̃i
1 the set of useful vectors associated with Ũ i

1. Let

W̃1 = {(w
1, . . . , wm) ∈ R̃i

1 × R̃i
2 × · · · × R̃i

m :
m
∑

i=1

wi = 0}

It is easy to prove that any useful vector of Ũ i is also a useful vector of

Ũ i
1. So, W̃ ⊂ W̃1. From the very definition of V i(., w), we have that, for all i,

wi is a useless vector of Ũ i
1. Thus, (w1, w2, . . . , wm) ∈ L(W̃1). Hence we have

dimL(W̃1) ≥ dimL(W̃ ) + 1.

The economy Ẽ1 satisfies the property saying that for any (u1, u2, · · · , um) ∈

W̃1, there exists maxλ≥0 Ũ1(x + λui) for any x ∈ R
S . Moreover, the weak no-

arbitrage prices cone P̃ i
1 is generated by a finite number of vectors in R

S . Hence
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the utility functions of Ẽ1 satisfy the same conditions as for the utility functions

of the economy Ẽ .

Observe we have actually P̃ i
1 = P̃ i ∩ {wi}⊥. From Lemma 9, we have ∩iP̃

i =

∩iP̃
i
1, hence ∩iP

i
1 6= ∅.

By induction and the same arguments, suppose that we arrive to an economy

Ẽt, with t ≥ 1. If W̃t is not a linear space, we can construct a new economy

Ẽt+1, with dimL(W̃t+1) ≥ dimL(W̃t) + 1.

The utility sets are all the same Ũt = Ũ , ∀t (see Lemma 8). For all t, the

set W̃t ⊂ R
S×m, so there must exist some T such that W̃T is linear space. This

implies economy ẼT satisfies theWNMA condition. Then ŨT is compact. Hence

Ũ is compact and our initial economy Ẽ has an equilibrium.

6.4 Proof of Lemma 10

Assume
⋂m

i=1 P̃
i 6= ∅. We prove that the individually rational set Ũ is bounded.

Let p ∈
⋂m

i=1 P̃
i. We can write

p = λi
M i
∑

k=1

θikp
i
k, where λi > 0, θik ≥ 0,

∑

k

θik = 1, ∀i.

Let (x1, x2, . . . , xm) ∈ Ã. Then

∀i, λiŨ i(xi) ≤ p · xi + λi
M i
∑

k=1

θikq
i
k

⇒ λiŨ i(xi) +
∑

j 6=i

λjŨ j(ej) ≤ p ·
∑

i

ei +

m
∑

i=1

λi
M i
∑

k=1

θikq
i
k

That shows that
(

U i(xi)
)

i
is bounded for any (x1, x2, . . . , xm) ∈ Ã. Hence, Ũ

is bounded.
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