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ABSTRACT

This article builds an axiomatization of inter-temporal trade-o)s that makes an

explicit account of the distant future and therefore encompasses motives related to

sustainability, transmission to o)springs and altruism. The focus is on separable

representations and the approach is completed following a decision-theory index

based approach that is applied to utility streams. This enlightens the limits of the

commonly used tail intensity requesites for the evaluation of utility streams: in

this article, these are supersed and replaced by an axiomatic approach to optimal

myopia degrees that in its turn precedes the determination of optimal discount.

The overall approach is anchored in the new and explicit proof of a temporal

decomposition of the preference orders between the distant future and the close

future itself directly related to the determination of the optimal myopia degrees.

The argument is shown to provide a novel understanding of temporal biases with

the scope for a distant future bias when the finite dimensional gets influenced

by the infinite dimensional. The reference to robust orders and pessimism-like

axioms finally allows for determining tractable representations for the indexes.

KEYWORDS: Axiomatization, Myopia, Discount, Temporal Order Decomposi-

tions, Infinite Dimensional Topologies.

JEL CLASSIFICATION: D11, D15, D90.
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1. INTRODUCTION

Even though the long-run concerns for sustainability, conservation and the well-

being of the future generations of o)springs nowadays go far beyond the limits of

the academic circles and promptly come into the fore into most public agendas, it is

not the least surprising that there seems to have been limited e)orts towards a fine

understanding of the actual meaning of having an unbounded horizon or accounting

for the infinite. The first endeavor into the direction of an axiomatic approach to

the topic was brought by Brown & Lewis [10] and explicitly anchored on myopia:

it has nonetheless received the sparse echo that was due to what was perceived as

a mere mathematical curosity, i.e., the identification of the weight of the infinite.

This nevertheless raises a number of questions that may not have hitherto received

su,cient attention. Is, together with most of the social welfare literature, an ar-

bitrarily large finite future a satisfactory proxy for an unbounded horizon? Does

the very fact of having some remote low orders tail for a stream of utils mean that

it is negligible in not exerting any influence for finite dates? More precisely, are

there some specificities attached to arbitrarily remote infinite horizon streams and

is it reasonable to compare these through the same apparatus that is used for the

finite parts of these streams? Otherwise stated, does order theory keep on being

the appropriate apparatus for such elements and, assuming this is the case, how is

it to be adaptated to simultaneously accomodate finite and infinite elements? Fi-

nally, a large part of the recent evaluation of streams of utils has been dealing with

the importance of time perception paradoxes and temporal distances that would mod-

ify over time and gives rise to various temporal biases: how does this relate to the

above concerns and is there any specificity that is associated to infinite dimensional

elements in this regard?

This article aims at pursuing such a line of research by building an axiomatization

of inter-temporal trade-o)s that makes an explicit account of the distant future and

thus encompasses motives related to sustainability, transmission to o)springs and

altruism by avoiding often hidden myopic negligible tail insensitivity requesites.

The focus is on separable representations and the approach is completed following
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a decision-theory index based approach that is applied to infinite dimension streams.

This enlightens the limits of the commonly used flat tail intensity requesites for the

evaluation of utility streams: in this article, these are supersed and replaced by an

axiomatic approach to optimal myopia degrees that in its turn precedes the deter-

mination of optimal discount. The benchmark order in this article indeed satisfies

weak myopia but does not satisfy strong myopia in the sense of Brown & Lewis [10],

the key methological approach of this article stating as a temporal decomposition of

the initial preferences order between a distant future order and a close future order.

A first part of the article, which provides the main results of the article, begins

by reconsidering the negligible tail conditions of the earlier literature. It is indeed

conceivable that, even though the value of the distant future sounds negligible, it

keeps on influencing the evaluation of utility streams. In order to reach a thorough

understanding of such a potentiality, supplementary structures have to be super-

imposed on the preferences order relation. In that perspective, this first section

introduces two new axioms allowing for a temporal decomposition of the initial order

between a distant future order and a close future order. The first distant future sensitiv-

ities axiom ensures that, for any two streams, one is always in position to compare

their distant futures. The key feature of such a comparison states as the fact that it

is invariant to change in only a finite number of values in these two streams1. The

second, close future sensitivities axiom, contemplates a comparison between the close

futures of two streams. Under this axiom, every given distant future is negligible

for the close future and, its influence on the evaluation of the streams—according

to the close future order—converging to zero for an arbitrarily large date. It is how-

ever to be stressed that such a convergence is not uniform, in the sense that its speed

explicitly depends on the nature of the stream that is used to provide an account

for the distant future.

Under such a system of axioms, it is shown that the evaluation of a utility stream

can be decomposed into a first component that accounts for distant future con-

cerns and a second component that accounts for close future ones. From the very

possibility of such a decomposition in turn arises a multiplicity problem for the

1Consider, e.g., the comparison between the liminf of the two sequences.
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weights parameters associated with the distant future and close future components.

Depending upon the utility stream under consideration, there are various possible

choices for the weights that relate to the distant future and close future evaluations.

Two possible scenarios emerge and can be identified as featuring myopic and non-

myopic behaviours. The former depicts a behaviour where the distant future gain is

not su,ciently valued so that it cannot compensate the loss undergone in the close

future, the later representing an opposite behaviour. These weight parameters are

further shown to provide an account of optimal myopia degrees for the agent. As

a matter of illustration, having low optimal myopia degrees is to be understood as

having a large account of the remote future. To sum up, a decomposition into two

parts of the evaluation of utility streams has been put into evidence, with a first

that features the evaluation of the distant future while the second accounts for the

evaluation of the close future.

A natural direction of extension does emerge. It focuses on the potential role of

time by introducing time dependencies into the benchmark order. The time de-

pendent orders are first assumed not to be influenced by the past. At any given

date, the agent then completes the evaluation of a utility stream. This evaluation

consists of a recursive convex sum between the utility level at that date, and the eval-

uation at the subsequent date of the utility stream. Interestingly, a multitude of

choices are shown to be admissible for the weight parameters of this convex sum.

Present and future bias can then receive an original and integrated account. Some

behaviour shall be labelled as present biased when, according to the perception of a

given agent, the temporal distance between two successive dates it to decrease over

time. This more specifically means that the optimal discount factor is increasing

and this is shown to result from an specific axiom that further constrains the range

of admissible time-dependent orders. Admittedly, taking a reverse configuration

where the perception of the distance between two consecutive dates would become

greater over time could provide some account of a future bias that would however

be far less feasible. This article instead undertakes a separate approach of the issue

at stake through the retainment of an axiom that can provide an account of a dis-

tant future bias in the evaluation of a given utility stream. The currently introduced
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distant future bias is to be understood on the account of the existence of some conti-

nuity between the time dependent orders and the distant future order. Otherwise

stated and under further qualifications, there does exist some direct influences of the

evaluation of an infinite distant future on the evaluations of some finite close future.

Interestingly, it is therefore established that some given order may concomitantly

have some present bias and distant future bias facets.

Another direction of extension explores robust or unanimous orders, a given utility

stream being robustly better than an alternative one if and only if such a comparison

is unanimous among a set of linear orders. These linear orders can be understood

as a set of possible evaluations and can be considered as special cases of the orders of

the first section: for each order in this set, the choice of optimal myopic parameters

is reduced to one. More precisely, each sub-order is shown to ground upon two

separate components: a first that belongs to the set of σ−additive measures on N

and a second part that belongs to the set of charges2 and is labelled a purely finitely

additive set.

The third part of this article introduces some further concepts that relate to the

degree of optimism. Assuming that this degree of optimism does not decrease with

respect to some robustness comparisons, the order is proved to assume a so-called

α-maximin criterion, the evaluation of a given utility stream depending only on

its best and worst evaluations. Under the extra assumption that every sub-order

satisfies some impatience and consistency properties, the σ−additive part of the sub-

orders satisfies the stationary property, i.e., the evaluation does not depend upon the

date of evaluation. The σ−additive part of the sub-orders corresponds to an inter-

temporal sum of utilities, the sequence of discount factors belonging to ℓ. The

stationary property further implies that these discount factors assume a geometrical

representation.

A significant methodological added value of this article states as the temporal decom-

position of the benchmark order that is split between an infinite dimentional distant

future component and a finite dimensional close future one. This will in its turn

imply the possibility of formulating the preference index as a weighted sum of the

2For a detailed exposition, see Bhaskara Rao & Bhaskara Rao [8].
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distant future index and the close future index, the associated weights being di-

rectly related to some optimal degree on myopia that is shown to be inherent to

the definition of the preference index. Second and more substantially: this early

decomposition is refined and strengthened by the subsequent focus on robust linear

orders that puts into evidence the scope for decomposing the weights put on the

future between a classical σ-additive measure and some new finitely additive mea-

sures that directly springs from the explicit consideration of infinite dimensional

objects. This in its turn allows for a subtle decomposition of the robust orders and

a precise description of α-minmax representations. The decomposition of the or-

ders assumes specific facets for time-dependent orders in that temporal biases may

result into some sort of continuity between finite time close future orders and in-

finite distant future orders. Far beyond the specifics of this contribution, it is the

conviction of the authors that such a methodological approach could be used and

would hence significantly facilitate the numerous areas where an order theoretic

approach is the hallmark of any serious answer to the problem at stake.

The article organizes as follows. Section 2 introduces the setup with the key ax-

ioms that are detailed, justified and shown to allow for a temporal decomposition of

the order. Section 3 introduces the possibility of time-dependencies for the orders

and emphasizes the possibility of temporal biases: even though it proceeds through

finite dimensions that presumably only invoke the close future order, it is shown

that there is an explicit scope for distant future biases for which a finite time temporal

order could be directly a)ected by the features of an order that involves an infi-

nite time, i.e., the distant future one. Section 4 is an attempt to push results a little

further through a focus on robust linear orders: it results, under further lines of

arguments involving some weak forms of stationarity and pessimism / optimism,

into the possibility of explicit α-maxmin representations for the preferences in-

dexes. Section 5 is finally interested in establishing a careful comparison between

this article and the earlier literature. It is first therein shown that it relates to various

strands of the classical discount literature but also, in some di)erent ways, to some

recent strands of the decision theory literature. In this regard, it is also emphasized

how it provides a renewed picture of the recent and important literature on tem-

5



poral biases. It is then also clarified how it relates to a sparse but important and

influential literature that provides some axomiatic approach to myopia. Finally, it

is argued that it provides the first axiomatic understanding of charges in a decision

theory context while such notions have already been shown to have the potential

to shed a new light is areas as diverse as general equilibrium theory, wariness, social

choice or price bubbles.

2. BASIC AXIOMS AND BENCHMARK AXIOMS FOR THE

DECOMPOSITION OF PREFERENCES

2.1 FUNDAMENTALS

This paper considers an axiomatization approach to the evaluation of infinite utility

streams, the whole argument being cast for discrete time sequences. In order to

avoid confusion, letters like x,y,z will be used for sequences (of utils) with values

in R ; a notation c , c′ , c′′ will be used for constant sequences, where denotes

(,, . . . , ). A notation λ,η ,µ will also be used for constant scalars.

Recall that the dual space of ℓ∞ , i.e., the set of real sequences such that sups |xs | <

+∞, can be decomposed into the direct sum of two subspaces, ℓ and ℓ
d
 : (ℓ∞)

∗ =

ℓ⊕ℓ
d
 . The subspace ℓ satisfies σ-additivity. The subspace ℓ

d
 , the disjoint comple-

ment of ℓ, is the one of finitely additive measures defined on N. More precisely,

for each measure φ ∈ ℓ
d
 , for any x ∈ ℓ∞, the value of φ · x depends only on the

distant behaviour of x, and does not change if there only occurs a change in a finite

number of values xs, s ∈N.

Let P denote the set of weights and charges which can be considered as finitely

additive probabilistic measures on (N,Σ). P is the set of
(
(−λ)ω

˜
,λφ

)
where

(i) λ ∈ [,].

(ii) ω
˜
= (ω,ω, . . .) ∈ ℓ with ωs ≥  for every s ∈N and

∑∞
s=ωs = .

(iii) φ is a charge belonging to ℓ
d
 . The charge φ can be considered as a purely

finitely additive measure on N: for every finite subset A ⊂N, φ(A) = .
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(iv) The two functions: x *→
∑∞

s=ωsxs and x *→ φ · x are linear and continuous

on ℓ∞. For every x,y ∈ ℓ∞, assume that there exists only a finite number of s

such that xs ! ys, then φ · x = φ · y.

Finally recall that the measure (ω
˜
,φ) is countably additive if and only if λ = .

2.2 ELEMENTARY AXIOMS & CONSTRUCTION OF THE INDEX FUNCTION

The following axiom is imposed for the order " on ℓ∞.

AXIOM F1. The order " satisfies the following properties:

(i) Completeness For every x,y ∈ ℓ∞, either x " y or y " x.

(ii) Transitivity For every x,y,z ∈ ℓ∞, if x " y and y " z, then x " z. Denote as

x ∼ y the case x " y and y " x. Denote as x ≻ y the case x " y and y ! x.

(iii) Monotonicity If x,y ∈ ℓ∞ and xs ≥ ys for every s ∈N, then x " y.

(iv) Non-triviality There exist x,y ∈ ℓ∞ such that x ≻ y.

(v) Archimedeanity For x ∈ ℓ∞ and b ≻ x ≻ b′ , there are λ,µ ∈ [,] such that

(−λ)b +λb′ ≻ x and x ≻ (− µ)b + µb′ .

(vi) Weak convexity For every x,y,b ∈ ℓ∞, and λ ∈ ],],

x " y⇔ (−λ)x +λb " (−λ)y +λb .

All of the properties (i), (ii), (iii) and (iv) are standardly used in decision theory.

The Archimedeanity property (v) ensures that the order is continuous in the sup-

norm topology of ℓ∞. The eventual Weak convexity property (vi) is admittedly less

immediate. It is referred to as certainty independence in the decision theory litera-

ture and ensures that direction is comparison neutral: following that direction, the

comparison between two sequences does not change. This is made precise in the

following statement:

PROPOSITION 2.1. Assume that axiom F1 is satisfied. There exists an index function

I : ℓ∞ → R representing " and satisfying completeness, positive homogeneity and

constant additivity properties:
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(i) For every x,y ∈ ℓ∞, any λ > , x " y if and only if λx " λy .

(ii) For every x,y ∈ ℓ∞, a constant b ∈ R, x " y if and only if x + b " y + b .

(iii) For x ∈ ℓ∞, λ > , I(λx) = λI(x).

(iv) For x ∈ ℓ∞, constant b ∈ R, I(x + b ) = I(x) + b.

The results in Proposition 2.1 can be compared to the conclusions reached in Gilboa

& Schmeidler [20], and Ghirardato & al [19]. This article however considers the

total space ℓ∞ as opposed to the space of simple acts— —these are equivalent to

sequences in ℓ∞ which take a finite number of values. The order is homogeneous

of degree 1 and constantly additive, a property which means that the direction is

comparison neutral.

2.3 A DECOMPOSITION OF PREFERENCES BETWEEN THE CLOSE FUTURE AND

THE DISTANT FUTURE

2.3.1 NON-NEGLIGIBLE TAIL AND THE EFFECT OF THE DISTANT FUTURE

For every x ∈ ℓ∞ and  ≤ T ≤ T′, let

x[T,T′] = (xT,xT+, . . . ,xT′ ),

x[T+,∞[ = (xT+,xT+, . . .)

{T} = (,, . . . ,︸!!!!︷︷!!!!︸
T times

,,,, . . .).

In the literature, the notions of impatience3 or delay aversion4 can generally be under-

stood through the convergence to zero of {T} as T tends to infinity. It is however

worth emphasizing that such a property does not per se imply the convergence to

zero of the e)ect of the distant future sequence [T,+∞[. More generally, it is com-

monly assumed in the literature that the value of the distant future converges to

zero when T converges to infinity. In the current framework and under Proposi-

tion 2.1, this means that I
(


T,
(
− [T+,∞[

))
and I

(
 [,T], [T+,∞[

)
are to converge

3See Koopmans [23].
4See Bastianello & Chateauneuf [4].
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to zero when T tends to infinity5. To check about such a possibility in the current

environment, it is first useful to introduce the two following coe,cients6:

χd = lim
T→∞

I
(
 [,T], [T+,∞[

)
,

χc = − lim
T→∞

I
(


T,
(
− [T+,∞[

))

= − lim
T→∞

I
(

T, [T+,∞[

)
.

The two values χd and χc will be considered extensively in this article and play an

important role in the definition of the myopia degrees.

PROPOSITION 2.2. Assume that axiom F1 is satisfied. Suppose that χc = χd = . Then

for any constants c,d ∈ R,

lim
T→∞

I
(
c [,T],d [T+,∞[

)
= c.

The condition χd = χc =  is similar to the usual negligible-tail or tail-insensitivity

conditions. Under this condition, a natural conjecture formulates as the holding,

for any x,z ∈ ℓ∞, of

lim
T→∞

I
(
x[,T], z[T+,∞[

)
= I(x).

The following counter example however suggests that, even though the valuation

of the distant future could be nil7, it could keep on exerting some influence on

the evaluation of the sequences, the index function form being thereafter more

complicate than the above guess.

EXAMPLE 2.1. Consider two probability measures belonging to ℓ, ω˜
and ω̂

˜
, satisfying

ω
˜
! ω̂
˜
. Consider also a finitely additive measure φ ∈ ℓd . Define the index function I as:

I(x) = max
{
ω̂
˜
· x,min

{
ω
˜
· x,φ · x

}}
.

5Observe that these two properties are not equivalent.
6From themonotonicity property F1(iii), I

(
 [,T], [T+,∞[

)
and −I

(
T, [T+,∞[

)
are decreas-

ing as a function of T, these limits being well-defined.
7It can be proved that limT→∞ I

(
 [,T], z[T+,+∞[

)
=  for any z ∈ ℓ∞.
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It is readily checked that I satisfies all of the properties listed in Axiom F1. Further observe

that, for any T,

ω̂
˜
·
(
 [,T], [T+,∞[

)
=

∞∑

s=T+

ω̂s,

ω
˜
·
(
 [,T], [T+,∞[

)
=

∞∑

s=T+

ωs,

φ ·
(
 [,T], [T+,∞[

)
= .

This implies that, for large enough values of T,

ω
˜
·
(
 [,T], [T+,∞[

)
<  = φ ·

(
 [,T], [T+,∞[

)
.

Therefore:

I
(
 [,T], [T+,∞[

)
=max



∞∑

s=T+

ω̂s,

∞∑

s=T+

ωs

 ,

that converges to zero. Making use of the same arguments,

lim
T→∞

I
(
 [,T],− [T+,∞[

)
= .

There however exist x,z ∈ ℓ∞ such that limT→∞ I
(
x[,T], z[T+,∞[

)
! I(x). Indeed, since

ω̂
˜
and ω

˜
are distinct and both belong to ℓ, there exists x ∈ ℓ∞ such that:

ω̂
˜
· x < ω

˜
· x < φ · x.

Take z satisfying

ω̂
˜
· x < φ · z < ω

˜
· x < φ · x.

For any T, φ ·
(
x[,T], z[T+,∞[

)
= φ · z , it derives that:

lim
T→∞

I
(
x[,T], z[T+,∞[

)
= lim

T→∞
max

{
ω̂
˜
·
(
x[,T], z[T+,∞[

)
,

min
{
ω
˜
·
(
x[,T], z[T+,∞[

)
,φ · z

}}

=max
{
ω̂
˜
· x,min

{
ω
˜
· x,φ · z

}}

= φ · z,

that di!ers from I(x) = ω
˜
· x.

This suggests the need for a further understanding of the problem at stake that

should be apprehended through complementary structures.
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2.3.2 DISTANT FUTURE ORDER

The following axiom assumes that there exists an evaluation of the distant futurewhich

is independent from the past— —the close future.

AXIOMG1. For any x ∈ ℓ∞ and any constant d ∈ R, either, for any ǫ >  and z ∈ ℓ∞,

there exists T(ǫ, z) such that, for every T ≥ T(ǫ, z):

(
z[,T],x[T+,∞[

)
"
(
z[,T],d [T+,∞[

)
− ǫ ,

or, for any ǫ > , z ∈ ℓ∞, there exists T(ǫ, z) such that, for every T ≥ T(ǫ, z):

(
z[,T],d [T+,∞[

)
+ ǫ "

(
z[,T],x[T+,∞[

)
.

For any sequence x and a constant sequence d , the sequence x will either overtake

the sequence (d −ǫ) or be overtaken by the sequence (d +ǫ) , and this is going to

take place independently from the past——the close future. Otherwise stated, either

x dominates in the distant future, or d dominates in the distant future. This distant

future sentitivities axiom contradicts the usual negligible-tail or tail-insensitivity axioms

in the literature.

EXAMPLE 2.2. Take, e.g., a binary relation " on ℓ∞ defined as: for some  < λ < ,

 < δ < , x " y if:

(−λ)(− δ)

∞∑

t=

δtxt +λ liminf
t→∞

xt ≥ (−λ)(− δ)

∞∑

t=

δtyt +λ liminf
t→∞

yt .

For any x ∈ ℓ∞, d ∈ R, ǫ > , either liminft→∞ xt > d − ǫ, or d + ǫ > liminft→∞ xt for

any ǫ > . Consider, for example, the case liminft→∞ xt ≥ d . For any ǫ > , take T(ǫ)

large enough such that, for any T ≥ T(ǫ),

(−λ)(− δ)

∞∑

t=T

δt |xt | < λ
ǫ


,

(−λ)(− δ)

∞∑

t=T

δt |d − ǫ| < λ
ǫ


.

Therefore, and for any T ≥ T(ǫ),

λ liminf
t→∞

xt ≥ λd −λǫ +λǫ

≥ λ(d − ǫ)− (−λ)(− δ)

∞∑

t=T

δtxt + (−λ)(− δ)

∞∑

t=T

δt(d − ǫ),

11



which implies

(−λ)(− δ)

T−∑

t=

δtzt + (−λ)(− δ)

∞∑

t=T

xt +λ liminf
t→∞

xt

≥ (−λ)(− δ)

T−∑

t=

δtzt + (−λ)(− δ)

∞∑

t=T

(d − ǫ) +λ(d − ǫ),

and is equivalent to (z, z, . . . , zT,xT+,xT+, . . .) " (z, z, . . . , zT,d − ǫ,d − ǫ, . . .).

The order in the above example satisfies axiomG1. Further observe that χd = λ and

χc =  − λ are therein positive, whence the obtention of a critical time T(ǫ) that

solely depends on ǫ and can be defined independently from z.

LEMMA 2.1. Assume that axioms F1 and G1 are satisfied. For any x,y ∈ ℓ∞, either, for

any ǫ >  and z ∈ ℓ∞, there exists T(ǫ, z) such that, for every T ≥ T(ǫ, z):

(
z[,T],x[T+,∞[

)
"
(
z[,T], y[T+,∞[

)
− ǫ ,

or, for any ǫ > , z ∈ ℓ∞, there exists T(ǫ, z) such that, for every T ≥ T(ǫ, z):

(
z[,T], y[T+,∞[

)
"
(
z[,T],x[T+,∞[

)
− ǫ .

From Lemma 2.1, for x,y ∈ ℓ∞ , define x "d y if, for any ǫ >  and z ∈ ℓ∞, there

exists T(ǫ, z) such that, for every T ≥ T(ǫ, z):

(
z[,T],x[T+,∞[

)
"
(
z[,T], y[T+,∞[

)
− ǫ .

Proposition 2.3 proves that it su,ces for one of the two values χd and χc to di)er

from zero for the order "d to satisfy every property of axiom F1. This in its turn

assumes as its most immediate consequence that there also exists an index function

satisfying any of the properties listed in Proposition 2.1.

PROPOSITION 2.3. Assume that axioms F1 and G1 are satisfied.

(i) The order "d is complete.

(ii) If at least one of the two values χd ,χc di!ers from zero, the order "d is non-trivial

and satisfies every property in axiom F1.

12



(iii) If at least one of the two values χd and χc di!ers from zero, there exists an in-

dex function Id : ℓ∞ → R representing the distant future that satisfies the positive

homogeneity and constant additivity properties of Proposition 2.1.

The main properties of the distant future order "d are presented in Proposition 2.4.

PROPOSITION 2.4. Assume that axioms F1 and G1 are satisfied.

(i) For any x,z ∈ ℓ∞, for every T ∈N, Id
(
z[,T],x[T+,∞[

)
= Id(x).

(ii) For any constants c,d ∈ R such that c ≤ d ,

lim
T→∞

I
(
c [,T],d [T+,∞[

)
= (− χd )c + χdd.

(iii) For x ∈ ℓ∞, if the sequence x converges, then Id(x) = limT→∞ xT .

(iv) Consider x ∈ ℓ∞ such that the sequence x converges. For any y ∈ ℓ∞, Id(x + y) =

Id(x) + Id(y).

Otherwise stated and from (i), the value of the index function does not depend upon

the past——the close future. Further and from (ii), a simple decomposition becomes

available when the sequence assumes constant values for both the close future and

the distant future. As this is made clear in (iii), the evaluation of a given sequence x

according to Id is in its turn provided by the limit of that sequence when the later

is well-defined. Finally and in (iv), the index function satisfies some form of the

constant additivity property.

2.3.3 CLOSE FUTURE ORDER

Recall however that example 2.1 has established that the sole distant future sensitivities

axiom G1 does not su,ce to disentangle the distant future from the past— —-

the close future. In order to enable such a decomposition, consider the close future

sensitivities axiom G2, that is to be understood as the complement of axiom G1.

AXIOMG2. For any x ∈ ℓ∞, a constant c ∈ R, either, for any ǫ >  and z ∈ ℓ∞, there

exists T(ǫ, z) such that, for every T ≥ T(ǫ, z),

(
x[,T], z[T+,∞[

)
"
(
c [,T], z[T+,∞[

)
− ǫ ,

13



or, for any ǫ > , z ∈ ℓ∞, there exists T(ǫ, z) such that, for every T ≥ T(ǫ, z),

(
c [,T], z[T+,∞[

)
+ ǫ "

(
x[,T], z[T+,∞[

)
.

This assumption reads as follows: for any sequence x and a constant sequence d ,

either the sequence x will overtake the sequence (c−ǫ) or it will be dominated by

the sequence (c+ǫ) , both of these occurrences being defined whatever the distant

future. Otherwise stated, either x or d dominates in the close future.

EXAMPLE 2.3. Consider the order defined in Example 2.1, x " y if and only if

(−λ)(− δ)

∞∑

t=

δtxt +λ liminf
t→∞

xt ≥ (−λ)(− δ)

∞∑

t=

δtyt +λ liminf
t→∞

yt .

Consider the case

(− δ)

∞∑

t=

δtxt ≥ c.

For any ǫ > , any z ∈ ℓ∞, take T(ǫ) such that for any T ≥ T(ǫ),

(− δ)

T∑

t=

δtxt > (− δ)

T∑

t=

δt(c − ǫ).

But

(− δ)

T−∑

t=

δtxt + (− δ)

∞∑

t=T+

δtzt ≥ (− δ)

T∑

t=

δt(c − ǫ) + (− δ)

∞∑

t=T+

δtzt ,

that implies

(−λ)(− δ)

T∑

t=

δtxt + (−λ)(− δ)

∞∑

t=T+

δtzt +λ liminf
t→∞

zt

≥ (−λ)(− δ)

T∑

t=

δt(c − ǫ) + (−λ)(− δ)

∞∑

t=T+

δtzt +λ liminf
t→∞

zt ,

or

(x,x, . . . ,xT, zT+, zT+, . . .) " (c − ǫ, c − ǫ, . . . , c − ǫ
︸!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!︸

T+ times

, zT+, zT+, . . .).

Again observe that, in this configuration, χd = λ and χc =  − λ are both strictly

smaller than , hence the critical time T(ǫ) can be defined independently from z.
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Usual conditions in the literature assume that the e)ect of the distant future con-

verges to zero— —e.g., the Continuity at infinity of Chambers & Echenique [14],

or the axioms ensuring insensitivity to the distant future, or some sort of flat tail

for the distribution. Remark that, in opposition to this, the close future sensitivities

Axiom G2 merely assumes that the distant future does not alter the evaluation of

the close future.

LEMMA 2.2. Assume that axioms F1 and G2 are satisfied. For any x,y ∈ ℓ∞, either, for

any ǫ > , z ∈, there exists T(ǫ, z) such that, for every T ≥ T(ǫ, z),

(
x[,T], z[T+,∞[

)
"
(
y[,T], z[T+,∞[

)
− ǫ ,

or, for any ǫ > , z ∈ ℓ∞, there exists T(ǫ, z) such that, for T ≥ T(ǫ, z),

(
y[,T], z[T+,∞[

)
"
(
x[,T], z[T+,∞[

)
− ǫ .

From Lemma 2.2, the close order "c can be defined as follows: for x,y ∈ ℓ∞, x "c y

if, for any ǫ > , z ∈ ℓ∞, there exists T(ǫ, z) such that, for every T ≥ T(ǫ, z),

(
x[,T], z[T+,∞[

)
"
(
y[,T], z[T+,∞[

)
− ǫ .

PROPOSITION 2.5. Assume that axioms F1 and G2 are satisfied.

(i) The close order "c is complete.

(ii) If at least one of two values χd ,χc di!ers from , then the order "c is non-trivial and

satisfies every property in axiom F1.

(iii) If at least one of two values χd ,χc di!ers from , then there exists an index function

for the close future Ic : ℓ∞→ R satisfying the positive homogeneity and constant

additivity properties of Proposition 2.1.

The following Proposition then provides another simple decomposition for con-

stant sequences and between the close and the distant futures. It moreover proves

that the close future order recovers the usual tail-insensitivity property, the corre-

sponding distant future order of "c being indeed trivial.

PROPOSITION 2.6. Assume that axioms F1 and G2 are satisfied. Suppose that at least one

of the two values χd ,χc is di!erent from 1.
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(i) For every constants c,d ∈ R such that c ≥ d ,

lim
T→∞

I
(
c [,T],d [T+,∞[

)
= (− χc)c + χcd.

(ii) For any x,y ∈ ℓ∞,

lim
T→∞

Ic
(
x[,T], y[T+,∞[

)
= Ic(x).

The following preparation lemma finally provides a useful clarification of the bound-

ary cases for which χd = χc = , or χd = χc = .

LEMMA 2.3. Assume that axiom F1 is satisfied. Fix two di!erent measures in ℓ, ω˜
and

ω̂
˜
, and two di!erent measures in ℓ



d , φ and φ̂ .

(i) There exists a complete order " satisfying axiom G1 such that the order "d is non

trivial and satisfies every property of axiom F1, and χd = χc = . It is represented by

the following index function:

I(x) = max
{
ω̂
˜
· x,min

{
ω
˜
· x,φ · x

}}

(ii) There exists a complete order "̂ satisfying axiom G2 such that the order "c is non

trivial and satisfies every property of axiom F1, and χd = χc = . It is represented by

the following index function:

Î(x) = max
{
φ̂ · x,min

{
ω
˜
· x,φ · x

}}
.

(iii) By adding axioms G1 and G2 for the order ":

a) If χd = χc = , then the order "d is trivial: for any x,y ∈ ℓ∞, x ∼d y .

b) If χd = χc = , then the order "c is trivial: for any x,y ∈ ℓ∞, x ∼c y .

From Lemma 2.3, the two axioms G1 and G2 are therefore not equivalent.

2.3.4 A DECOMPOSITION BETWEEN THE DISTANT AND CLOSE FUTURE ORDERS

From the previous developments and under axioms F1 and G1, G2, it may be sur-

mised that there is some strong potential for the index function I to restate as a

convex sum of the two index functions Id and Ic, e.g.,

I(x) = (− χ∗)Ic(x) + χ∗Id(x),
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for some value χ∗ ∈ [,]. Observe that if the chosen parameter χ∗ does not change

over time, such a decomposition implies that:

lim
T→∞

I
(

[,T], [T+,∞[

)
+ lim

T→∞
I
(
 [,T], [T+,∞[

)
= ,

which is equivalent to χc = χd , and therefore χ∗ = χd = χc. Observe however that,

under axioms F1 andG1,G2, the holding of such an equality cannot be guaranteed.

This also indicates that, when χd ! χc, the decomposition parameter must change

as a function of the sequence x.

The configuration

lim
T→∞

I
(

[,T], [T+,∞[

)
+ lim

T→∞
I
(
 [,T], [T+,∞[

)
≤ ,

which is equivalent to χd ≤ χc, can first be understood as a pessimistic, or a very

myopia-bending situation. Otherwise stated, the value brought the distant future is

not su,ciently large to compensate the loss that is incurred in the close future.

Likewise, the configuration

lim
T→∞

I
(

[,T], [T+,∞[

)
+ lim

T→∞
I
(
 [,T], [T+,∞[

)
≥ ,

which is equivalent to χd ≥ χc, can be understood as a optimistic, or a non very

myopia-bending situation. The gain in the distant future is valued more than the

lost that is incurred in the close future.

The following theorem, which is one of the main results of this article, will prove

that there exists a multiplicity of possible myopia degrees. This theorem also clarifies

how it is the choice of the optimal myopia degree χ that determines an optimal share

between the close future and the distant future indexes.

THEOREM 2.1. Assume that axioms F1 and G1, G2 are satisfied.

(i) For χd ≤ χc , let χ = χd , χ = χc . For any x ∈ ℓ∞,

I(x) = min
χ≤χ≤χ

[
(− χ)Ic(x) + χId(x)

]
.

(ii) For χd ≥ χc , let χ = χc , χ = χd . For any x ∈ ℓ∞,

I(x) = max
χ≤χ≤χ

[
(− χ)Ic(x) + χId(x)

]
.
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The Minimum operator in part (i) represents a configuration where the evaluation

the distant future is lower than the one of the close future. The Maximum operator

part (ii) represents an opposite occurrence.

Lastly, it may be wondered why an α−maximin decomposition between the close

future and the distant future indexes is not also available. The following corollary

proves that such an α−maximin behaviour just features another version of themax

and min operators.

COROLLARY 1. Assume that axioms F1 and G1, G2 are satisfied. For any α ∈ [,],

consider the index function of the α−maximin criterion

Iα(x) = α min
χ≤χ≤χ

[
(− χ)Ic(x) + χId(x)

]
+ (−α) max

χ≤χ≤χ

[
(− χ)Ic(x) + χId(x)

]
.

There exists  ≤ χ
α
≤ χα ≤  such that one of the two following assertions is true:

(i) For any x ∈ ℓ∞,

Iα(x) = min
χ
α
≤χ≤χα

[
(− χ)Ic(x) + χId(x)

]
.

(ii) For any x ∈ ℓ∞,

Iα(x) = max
χ
α
≤χ≤χα

[
(− χ)Ic(x) + χId(x)

]
.

2.4 THE CASE OF THE ℓ∞(a) SPACES

A limit of the previous argument however springs from its focus on bounded se-

quences. This section will however illustrate how it can straightforwardly be ex-

tended to deal with unbounded sequences. For a ≥ , define

ℓ∞(a) =

{
x = (x,x,x, . . . ,xs, . . .) such that sup

s

∣∣∣∣
xs
as

∣∣∣∣ < +∞.

}

The space ℓ∞ is thus the space corresponding to a = . For each a, define ‖x‖ℓ∞(a) =

sups |xs/a
s |. The coe,cient a can be understood as an actualization rate, and ℓ∞(a)

as the associated set of feasible sequences.8

8For the sake of simplicity, this article works on the case discount rate is constant. The same

arguments and results can be applied for more general spaces ℓ∞(, a, a, . . . , ) with as >  for any s
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Consider the actualization function ψa : ℓ∞(a)→ ℓ∞:

ψa(x) =
(
x,

x
a
,
x
a

, . . . ,
xs
as
, . . .

)
.

For a given discount rate a, the economic agents make comparisons between ac-

tualised sequences, which belong to ℓ∞.

Along Dolmas [15], the isomorphism ψa preserves the natural pre-order: if xs ≥ ys

for any s, then ψa(x) ≥ ψa(y). In addition to this, it preserves the norm: for any

x ∈ ℓ∞(a),
∥∥∥ψa(x)

∥∥∥
ℓ∞

= ‖x‖ℓ∞(a).

This article then considers a family of complete orders "a defined on ℓ∞(a), which

are preserved by the functions ψa: for any ℓ∞(a), and for any x,y ∈ ℓ∞(a),

x "a y if any only if ψa(x) "
 ψa(y).

The axiom F2 links the orders "a on ℓ∞(a) and the usual order " on ℓ∞.

AXIOM F2. The "a −orders satisfy:

For any space ℓ∞(a), for any x,y ∈ ℓ∞(a), x "
a y if and only if

(
x,

x
a
,
x
a

, . . . ,
xs
as
, . . .

)
"

(
y,

y
a
,
y
a

, . . . ,
ys
as
, . . .

)
.

Under axiom F2, the order "a has the same properties as the order ", with the mere

qualification the reference direction becomes a in lieu of .

PROPOSITION 2.7. Let a = (, a,a, . . . , as, . . .). Assume that axioms F1 and F2 are

satisfied.

(i) The orders "a satisfy the transitivity,monotonicity, and non-triviality properties

in axiom F1.

(ii) ℓ∞(a) - weak convexity: For any x,y ∈ ℓ∞(a) and a constant b ∈ R, λ ∈ [,[,

x "a y if and only if (−λ)x +λb a "a (−λ)y +λb a.

and the norm is defined as:

‖x‖ℓ∞(,a,a,··· ) = sup
s≥

∣∣∣∣∣
xs

aa · · ·as

∣∣∣∣∣ .
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(iii) ℓ∞(a) - Archimedeanity: For any x ∈ ℓ∞(a), if b
a ≻ x ≻ b′ a, then there exists

λ,µ ∈ [,] such that

(
(−λ)b +λb′

)
a ≻ x ≻

(
(− µ)b + µb′

)
a.

(iv) There exists an index function Ia : ℓ∞(a)→ R such that:

a) For any x,y ∈ ℓ∞(a),

x "a y if and only if Ia(x) ≥ Ia(y).

b) For any λ ≥ , x ∈ ℓ∞(a) and a constant b,

Ia
(
λx + b a

)
= λIa(x) + b.

Under axiomsG1 andG2, using the same methods as in the previous sections, there

exist a distance future order "ad and a close future order "ac which are respectively

represented by index functions Iad and Iac satisfying every property in Proposition

2.7.

For any ℓ∞(a) space,

χad = lim
T→∞

Ia
(
,, . . . ,︸!!!!︷︷!!!!︸
T+ times

, aT+, aT+, . . .
)
,

χac = − lim
T→∞

Ia
(
, a,a, . . . , aT,,, . . .

)
,

where χad ,χ
a
c are two critical values.9

THEOREM 2.2. Assume that axioms F1, F2, and G1, G2 are satisfied.

(i) Consider the case χad ≤ χac . Let χ
a = χad , χ

a = χac . For any x ∈ ℓ∞(a),

Ia(x) = min
χa≤χ≤χa

[
(− χ)Iac (x) + χIad(x)

]
.

(ii) Consider the case χad ≥ χac . Let χ
a = χac , χ

a = χad . For any x ∈ ℓ∞(a),

Ia(x) = max
χa≤χ≤χa

[
(− χ)Iac (x) + χIad(x)

]
.

9These two values exists, thanks to the monotonicity property of the "a orders.
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3. TIME-DEPENDENT ORDERS AND PREFERENCE BIASES

A natural direction of extension does emerge. It focuses on the potential role of

time by introducing time dependencies into the benchmark order and illustrates

how this may provide some renewed picture of the much discussed temporal biases.

3.1 TIME-DEPENDENT ORDERS

AXIOM B1. Consider T ≥ , x ∈ ℓ∞ and a constant c ∈ R.

Either for any ǫ > , z,z′ ∈ ℓ∞, there exists T(ǫ, z, z
′) ≥ T such that for any T′ ≥

T(ǫ, z, z
′):

(
z[,T−],x[T,T′], z

′
[T′+,∞[

)
"
(
z[,T−], c [T,T′], z

′
[T′+,∞[

)
− ǫ ,

or, for any ǫ > , z,z′ ∈ ℓ∞, there exists T(ǫ, z, z
′) ≥ T such that, for any T′ ≥

T(ǫ, z, z
′):

(
z[,T−], c [T,T′], z

′
[T′+,∞[

)
+ ǫ "

(
z[,T−],x[T,T′], z

′
[T′+,∞[

)
.

This axiom contemplates a variation of the classical limited independence condition

of Koopmans [23] where the close future evaluation of some date T does neither

depend on the past nor on the distant future. Either the sequence x[T,+∞[ domi-

nates the constant sequence independently from the beginning and the tail of the

sequences, or it is dominated by the constant sequence independently from the

beginning and the tail of the sequences.

LEMMA 3.1. Consider axioms F1, G1, G2, and B1. Consider T ≥ , x ∈ ℓ∞. For any

constant c, either, for any z ∈ ℓ∞:

(
z[,T−],x[T,∞[

)
"c

(
z[,T−], c [T,∞[

)
,

or, for any z ∈ ℓ∞:

(
z[,T−], c [T,∞[

)
"c

(
z[,T−],x[T,∞[

)
.
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With Lemma 3.1, the analysis of temporal biases rests upon the one of the properties

of the future order "c. Define

χT
d = Ic

(
 [,T−], [T,∞[

)
,

χT
c = − Ic

(
[,T−], [T,∞[

)
.

Under axiom B1, the close future evaluation after some date T can be represented

by the order "T and the index function IT, satisfying every property of Proposition

2.1.

PROPOSITION 3.1. Consider axioms F1, G1, G2 and B1.

(i) For every T ≥ , there exists a complete order "T on ℓ∞ such that, for any x,y ∈ ℓ∞,

x "T y if and only if for any z, z, . . . , zT−,

(
z[,T−],x

)
"c

(
z[,T−], y

)
.

(ii) The order "T satisfies the transitivity, monotonicity and weak convexity prop-

erties in axiom F1.

(iii) If at least one of the two values χT
d and χT

c di!ers from zero, then the order "T

satisfies the non-triviality and Archimedeanity properties in axiom F1.

(iv) If at least one of the two values χT
d and χT

c di!ers from zero, then there exists an index

function of the T−order, IT : ℓ∞→ R, such that x "T y if and only if IT(x) ≥ IT(y)

satisfies:

a) IT(λx) = λIT(x), for every λ ≥ .

b) IT(x + c ) = IT(x) + c.

In the same way as in Section 2, the following lemma characterizes a configuration

under which the order "T becomes trivial: for any x ∈ ℓ∞, the evaluation of x at T

merely depends on the past before T and the distant future of x.

LEMMA 3.2. Consider axioms F1, G1, G2 and B1. Suppose that there exists T such that

χ
T
d = χ

T
c = ; then, for any T ≥ T, the order "T is trivial and x ∼T y for any x,y ∈ ℓ∞.

Also note that, for every T′ ≥ T, the order "T′ would then be similarly trivial.
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PROPOSITION 3.2. Consider axioms F1, G1, G2 and B1. Suppose that, for any T, at least

one of the two values χT
d , χ

T
c is di!erent from zero. Then, and for every T ≥ ,

(i) Let χT
d ≤ χT

c and define δT = χT
d et δT = χT

c . For any x ∈ ℓ∞:

IT
(
x[T,∞[

)
= min

δT≤δ≤δT

[
(− δ)xT + δIT+(x[T+,∞[)

]
.

(ii) Let χT
d ≥ χT

c and define δT = χT
c et δT = χT

d . For any x ∈ ℓ∞:

IT
(
x[T,∞[

)
= max

δT≤δ≤δT

[
(− δ)xT + δIT+(x[T+,∞[)

]
.

At any given date, the evaluation of a utility stream consists of a recursive convex sum

between the utility level at that date, and the evaluation at the subsequent date of

the utility stream. Interestingly, a multitude of choices are shown to be admissible

for the weight parameters of this convex sum. The min solution here represents a

configurationwhere the value of the future beyond some date T is not large enough

to compensate the lost that is incurred in present, the max solution representing the

opposite occurrence.

3.2 TEMPORAL DISTANCES, PRESENT BIAS AND DISTANT FUTURE BIAS

3.2.1 TEMPORAL DISTANCES & PRESENT BIAS

AXIOM B2. For any T ≥ , constant c ∈ R,

(i) If there exists T′ such that, for any T′ ≥ T′,

(
 [,T], [T+,T′], [T′+,∞[

)
"
(
 [,T−], c [T,T′], [T′+,∞[

)
,

then there exists T′ such that, for any T′ ≥ T′,

(
 [,T+], [T+,T′], [T′+,∞[

)
"
(
 [,T], c [T+,T′], [T′+,∞[

)
.

(ii) If there exists T′ such that, for any T′ ≥ T′,

(
[,T−], c [T,T′], [T′+,∞[

)
"
(

[,T], [T+,∞[

)
,

then there exists T′ such that, for any T′ ≥ T′,

(
[,T], c [T+,T′], [T′+,∞[

)
"
(

[,T+], [T+,∞[

)
.
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The supremum—the greatest of the minorants—of the values of the parameter c in

part (i) and the infimum—the smallest of the majorants—of the values of the pa-

rameter c in part (ii) can both be used to figure out the perception of the temporal

distance between date T and date T+. These extremum values are evaluated using

the perception at date T of the two sequences (, ) and (, ). Axiom B2 means

that this temporal distance is decreasing as a function of T. Another intuition for-

mulates as follows: the evaluation of the sequences (, ) and (, (− ))—these are

determinant in the formulations of the index functions—at time T+ is influenced

by the evaluation at the time T.

The following lemma provides a straigthforward implication of axiom B2.

LEMMA 3.3. Consider axioms F1, G1, G2 and B1, B2. Suppose that, for any T, at least

one of the two values χT
d and χT

c di!ers from  and at least one of the two values χT
d and

χT
c di!ers from zero. For any T ≥  and a constant c ∈ R,

(i) If (, ) "T c , then (, ) "T+ c .

(ii) If c "T (, ), then c "T+ (, ).

Otherwise stated, the temporal distance that is perceived between dates T and T+ 

is greater that the one that is perceived between dates T+ and T+: at date T, the

valuation of a constant sequence from tomorrow on is lower than its corresponding

valuation at date T+ .

REMARK 1. The two axioms B1 and B2 are not equivalent because axiom B1 does not

imply axiom B2. In order to parallely establish that axiom B2 does neither imply axiom

B1, consider the order " that is represented by the index function

I(x) = max
{
φ̂ · x,min

{
ω
˜
· x,φ · x

}}
,

where φ̂,φ are two di!erent charges in the ℓd space, and ω˜
is a weights measure that belongs

to ℓ and satisfies for any T ≥ ,

ωT = δδ · · ·δT−(− δT),

with a sequence
{
δT

}∞
T=

that is increasing and limT→∞

(
ΠT

s=δs
)
= . The order "

satisfies axiom B2 but cannot satisfy axiom B1.
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PROPOSITION 3.3. Consider axioms F1, G1, G2 and B1, B2. The order " is present-

biased in that the two sequences
{
δT

}∞
T=

and
{
δT

}∞
t=

of the min or max occurrences in

Proposition 3.2 are increasing according to δT ≤ δT+ and δT ≤ δT+ for any T.

3.2.2 DISTANT FUTURE BIAS

Taking a reverse conjunction fromAxiomB2 and a temporal distance between two

consecutive dates that would be greater in the future than in the present, could

admittedly provide a version of a future bias in preferences; it however sounds

somewhat artificial.

This article rather tries to shed another light on the potential for future bias in

preferences. Exhibiting a future bias here means the emergence, for large values of

T, of some sort of continuity between the temporal orders "T and the distant order

"d . More explicitly, there does emerge a range of influences that spring from the

evaluation of the distant future—the infinite—on the "T-evaluations of the close

future— —the finite.

AXIOM B3. Take x,z ∈ ℓ∞ and some constants d,d ′ ∈ R: if there exists T such that,

for any T ≥ T,

(
z[,T],d [T+,∞[

)
"
(
z[,T],x[T+,∞[

)
"
(
z[,T],d

′
[T+,∞[

)
,

then, for any ǫ > , there exist T′(ǫ, z) such that, for any T ≥ T′(ǫ, z), there exists s

that depends on T, such that, for any large enough s ≥ s,

(
z[,T],d [T+,∞[

)
+ ǫ "

(
z[,T],x[T+,T+s],d [T+s+,∞[

)
,

(
z[,T],x[T+,T+s],d

′
[T+s+,∞[

)
"
(
z[,T],d

′
[T+,∞[

)
− ǫ .

This axiom means that, for a large finite time T, the evaluation of the sequence in

a future that is close from T is influenced by the distant future evaluation. Even

though its formulation is complex, the underlying intuition is rather simple and

presented in the following proposition.

PROPOSITION 3.4. Consider axioms F1, G1, G2 and B1, B3.

(i) For any x ∈ ℓ∞, d,d
′ ∈ R, if

d "d x "d d
′ ,
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then, for any ǫ > , there exists T(ǫ) such that, for T ≥ T(ǫ),

(d + ǫ)[T,∞[ "T x[T,∞[ "T (d ′ − ǫ) [T,∞[.

(ii) For any x ∈ ℓ∞, limT→∞ IT
(
x[T,∞[

)
= Id(x).

(iii) The sequence
{
δT

}∞
t=

is such that limsupT→∞ δT = .

(iv) Adding axiom B2 and present bias to distant future bias, the sequence
{
δT

}∞
t=

further

satisfies limT→∞ δT = .

Otherwise stated and in (i), the sequence x will either always dominate or be dom-

inated by a constant sequence under the order "T and for su,ciently large values

of T. In these regards, a similitude should be pointed out with the former distant fu-

ture sensitivities axiomG1, where a sequence x either always dominates or is always

dominated by a constant sequence in the distant future. (ii), in its turn, enlightens

the scope for some sort of continuity between IT and Id for su,ciently large values

of T. Even though the underlying intuition behind (iii) and (iv) is not necessarily

very clear, the subsequent example illustrates how they closely articulate with (ii):

EXAMPLE 3.1. Consider an example in which, for T su%ciently large, δT = . For s = ,

define the index functions IT as:

IT

(
x[T,∞[

)
= liminf

T→∞
xt .

For each s ≥ , let

Is+T

(
x[T,∞[

)
= min

δT≤δ≤

[
(− δ)xT + δIsT+(x[T+,∞[)

]
.

For each T, let finally IT
(
x[T,∞[

)
= liminfs→∞ IsT

(
x[T,∞[

)
. By construction and using a

recurrence argument, for any s,

IsT

(
x[T,∞[

)
≤ liminf

t→∞
xt ,

whence, for any T, the satisfaction of IT
(
x[T,∞[

)
≤ liminft→∞ xt . Further noticing that

liminfT→∞ IT
(
x[T,∞[

)
≥ liminft→∞ xt and finally taking Id(x) = liminft→∞ xt , it

follows that

lim
T→∞

IT
(
x[T,∞[

)
= Id(x).

The order represented by the index function I therefore satisfies the future bias property.
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4. THE ROBUSTNESS PRE-ORDERS "∗, "∗c, "
∗
d

4.1 REPRESENTATION OF THE ROBUSTNESS PRE-ORDER "∗

In order to reach more explicit properties for the index functions I, Ic and Id ,

consider a pre-order, as opposed to the earlier complete order, "∗ ⊆ ", featuring

the robustness of the order ": whatever the convex modifications with a common

component, the comparison would ensuingly not be modified.

DEFINITION 1. Let the pre-order "∗ be defined by

x "∗ y if, for every  ≤ λ ≤ , z ∈ ℓ∞,λx + (−λ)z " λy + (−λ)z.

It is first to be noticed that, in the general case, the pre-order "∗ is not complete.

The completeness of "∗ is equivalent to the linearity of the index function I or,

more precisely, the existence of
(
( − λ)ω

˜
,λφ

)
in

(
ℓ∞

)∗
with ω

˜
∈ ℓ, φ ∈ ℓ



d , and

 ≤ λ ≤  such that I(x) = (−λ)
∑∞

s=ωsxs +λφ · x.

Lemma 4.1 then gathers the fundamental properties of the pre-order "∗.

LEMMA 4.1. Assume that axiom F1 is satisfied. For every x,y: x "∗ y if and only if either

of the two following assertions is satisfied:

(i) For every z ∈ ℓ∞,x + z " y + z.

(ii) There exists z ∈ ℓ∞, x + z "∗ y + z.

The understanding of the properties of the pre-order "∗ is important in the analysis

of the order " and proposition 4.1 will clarify its precise status. The initial order

" can be considered as a family of linear sub-orders, the pre-order "∗ featuring

the particular one that deals with robustness or unanimity. This pre-order "∗ can

be considered as depicting an unanimous class of preferences: a given sequence x is

robustly preferred to another sequence y if and only if any sub-preference to the order

" prefers x to y. These sub-preferences are a convex set with a measure belonging

to (ℓ∞)
∗, defined as the normalized positive polar cone of the set x such that x "∗  .

PROPOSITION 4.1. Assume that axiom F1 is satisfied. There exists a convex set Ω of

weights
(
(−λ)ω

˜
,λφ

)
which can be considered as finitely additive probabilistic measures

on N where:
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(i)  ≤ λ ≤ ,

(ii) ω
˜
= (ω,ω,ω, . . .) is a probability measure, i.e., a sequence of weights, belonging

to ℓ,

∞∑

s=

ωs = .

(iii) φ is a charge in ℓd satisfying φ(N) = , such that, for every x,y ∈ ℓ∞, x "
∗ y if and

only if, for any
(
(−λ)ω

˜
,λφ

)
∈Ω ,

(−λ)

∞∑

s=

ωsxs +λφ · x ≥ (−λ)

∞∑

s=

ωsys +λφ · y.

It is worth emphasizing that the value λ can change between di)erent measures.

Upon the addition of axioms G1 and G2, the set Ω can be considered as the set of

measures that subsume an index function along Proposition 2.6, the set of possible

myopia degrees being then reduced to a unique value. The family of weights can here

be considered as a family of finitely additive probabilities.

Since the robustness order "∗ can be represented by a set of possible evaluations, it

is will prove fruitful to consider the best evaluation and the worst evaluation values.

For each x ∈ ℓ∞, define

γ∗x = sup
{
γ such that x "∗ γ

}
,

γ∗x = inf
{
γ such that γ "∗ x

}
.

The values γ∗x and γ∗x represent the best and worst scenario,s or the best and worst

possible evaluations of x. A first clarification is then in order.

LEMMA 4.2. Assume that axiom F1 is satisfied.

(i) The coe%cients values γ∗x and γ∗x restate as:

γ∗x = sup
((−λ)ω

˜
,λφ)∈Ω


(−λ)

∞∑

s=

ωsxs +λφ · x


 ,

γ∗x = inf
((−λ)ω

˜
,λφ)∈Ω


(−λ)

∞∑

s=

ωsxs +λφ · x


 .
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(ii) For any x ∈ ℓ∞,

γ∗x ≤ I(x) ≤ γ∗x.

Since γ∗x ≥ I(x) ≥ γ∗x, there exists ax ∈ [,] such that

I(x) = axγ
∗
x + (− ax)γ

∗x.

If γ∗x < γ∗x, then ax is unique. The value ax can be considered as the pessimism

degree associated with the sequence x ∈ ℓ∞, as −ax the optimism degree associated

with x. It is natural to study the case where the optimism degree does not decrease

in respect to the robustness order "∗.

The following axiom imposes that if y is robustly better than x, then the pessimism

degree associated with y must not be larger than the one associated with x.

AXIOM G3. Consider x,y ∈ ℓ∞ satisfying γ∗x < γ∗x and γ∗y < γ∗y . If y "∗ x then

ax ≥ ay .

The following Proposition proves that the only situation for which the degree of

optimism does not decrease in respect to the robustness order "∗ is the well-known

case α−maximin in the literature.

PROPOSITION 4.2. Assume that axioms F1 and G3 are satisfied. For every x ∈ ℓ∞ such

that γ∗x < γ∗x , ax is equal to a constant a
∗. For every x ∈ ℓ∞,

I(x) = a∗γ∗x + (− a∗)γ∗x

= a∗ inf
((−λ)ω

˜
,λφ)∈Ω


(−λ)

∞∑

s=

ωsxs +λφ · x




+ (− a∗) sup
((−λ)ω

˜
,λφ)∈Ω


(−λ)

∞∑

s=

ωsxs +λφ · x


 .

4.2 REPRESENTATION OF THE DISTANT FUTURE PRE-ORDER "∗d

Following the same idea about the robustness order, one can define the robustness

order"∗d for the order"d . Since the order"d does not take into account the present

and the close future, the pre-order "∗d satisfies the same property.
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DEFINITION 2. Let "∗d be defined as

x "∗d y if and only if ∀ λ ∈ [,], z ∈ ℓ∞,λx + (−λ)z "d λy + (−λ)z.

PROPOSITION 4.3. There exists a weights set Ωd ⊂ ℓ


d such that x "∗d y if and only if

φ · x ≥ φ · y for every φ ∈Ωd .

As in subsection 4.1, define, for each x ∈ ℓ∞, define d∗x, d
∗x as the best and worst

evaluation of sequence x:

d∗x = sup
{
d ∈ R such that x "∗d d

}
= inf

φ∈Ωd

(φ · x) ,

d∗x = inf
{
d ∈ R such that d "∗d x

}
= sup

φ∈Ωd

(φ · x) .

For any x ∈ ℓ∞, define the degree of pessimism in distant future associated with x:

the value ad,x satisfying

Id(x) = ad,xd
∗
x + (− ad,x)d

∗x.

The value ad,x is unique if d
∗
x < d∗x.

AXIOM G4. Consider x,y ∈ ℓ∞ satisfying d∗x < d∗x, and d∗x < d∗,y . If y "∗d x then

ad,x ≥ ad,y .

Along Proposition 4.2, under the assumption that the degree of pessimism cannot

increase with respect to the robust pre-order "∗d , the index of distant future order

assumes a α−maximin representation.

PROPOSITION 4.4. Assume that axioms F1, G1, G2 and G4 are satisfied. For any x ∈ ℓ∞

such that d∗x < d∗x , ad,x is equal to a constant a
∗
d . For any x, the distant index assumes the

following representation:

Id(x) = a∗dd
∗
x + (− a∗d )d

∗x.

4.3 REPRESENTATION OF THE CLOSE FUTURE PRE-ORDER "∗c

4.3.1 FUNDAMENTAL PROPERTIES

DEFINITION 3. Let "∗c be defined as

x "∗c y if and only if, for every λ ∈ [,], z ∈ ℓ∞,λx + (−λ)z "c λy + (−λ)z.
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Using the same arguments as the ones developed for the proof of Lemma 4.1, the

following characterization of the robustness order "∗ becomes available:

LEMMA 4.3. Assume that axioms F1 and G2 are satisfied. For every x,y ∈ ℓ∞, x "
∗
c y if

and only if, for every z ∈ ℓ∞, x + z "c y + z .

For every x,y ∈ ℓ∞ that have the same limit at the infinity, which implies that they

have the same distant future, the comparison between the two according to the

pre-orders "∗ and "∗c is equivalent.

LEMMA 4.4. Assume that axioms F1, G1 and G2 are satisfied and let x,y ∈ ℓ∞ satisfy

limT→∞ xT = limT→∞ yT . Then

x "∗ y⇔ x "∗c y.

Proposition 2.6 proves that, for any sequence x, the value I
(
x[,T], z[T+,∞[

)
con-

verges to I(x) when T tends to infinity. This convergence is not uniform: indeed,

even-though the distant order of "c is trivial, the order "c does not necessarily sat-

isfy the usual tail-insensitivity condition of the literature. To ensure this property,

the article considers axiom A1. Axiom A1 is the close future version of well-know

axioms—the continuity at infinity axiom of Chambers and Echenique [14] or other

axioms in the literature—ensuring a strong version of myopia and, moreover, the

compactness of the weights set Ωc when it belongs to ℓ.

AXIOM A1. For every  < c < , there exists T(c) such that, for every T ≥ T(c),

(
[,T(c)], [T(c)+,∞[

)
"∗

(
c [,T], [T+,∞[

)
.

Under axiom A1, Lemma 4.5 is a direct implication of Lemma 4.4 and proves that

"c satisfies a tail-insensitivy property.

LEMMA 4.5. For every  < c < , there exists T(c) such that:

(
[,T(c)], [T(c)+,∞[

)
"∗c c .

Under axiom A1, the weights set Ωc is tight, or weakly compact in ℓ.
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LEMMA 4.6. Assume that axioms F1, G1, G2 and A1 are satisfied. There exists a set

Ωc ⊂ ℓ that is weakly compact and such that, for x,y ∈ ℓ∞, x "
∗
c y if and only if, for

every ω
˜
∈Ωc ,

∞∑

s=

ωsxs ≥

∞∑

s=

ωsys.

4.3.2 PESSIMISM AND OPTIMISM DEGREES

As in subsection 4.1, for each x ∈ ℓ∞, define c
∗
x, c
∗x as

c∗x = sup
{
c ∈ R such that x "∗c c

}
= inf

ω
˜
∈Ωc

∞∑

s=

ωsxs,

c∗x = inf
{
c ∈ R such that c "∗c x

}
= sup

ω
˜
∈Ωc

∞∑

s=

ωsxs.

For each sequence x ∈ ℓ∞, there exists ac,x such that

Ic(x) = ac,xc
∗
x + (− ac,x)c

∗x.

Again, the value ac,x is unique if c
∗
x < c∗x.

AXIOM G5. Consider x,y ∈ ℓ∞ satisfying c∗x < c∗x and c∗y < c∗y . If y "∗ x then

ac,x ≥ ac,y .

PROPOSITION 4.5. Assume that axioms F1 and G1, G2 and G5 are satisfied. For any

x ∈ ℓ∞ such that c∗x < c∗x , ax is equal to a constant a
∗
c . For any x,

Ic(x) = a∗cc
∗
x + (− a∗c)c

∗x.

4.3.3 GEOMETRICAL REPRESENTATION

In order to better characterize the set Ω, consider axiom G6 which characterizes

the impatience and the stability properties of the pre-order "∗.

AXIOM G6. Impatience and stationarity Given x ∈ ℓ∞ and a constant c. For every

T ∈N,

(
x[,T], c [T+,∞[

)
"∗ c ⇒

(
x[,T], c [T+,∞[

)
"∗

(
c,x[,T], c [T+,∞[

)
"∗ c .
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In axiomG6, the first "∗ characterizes impatience whereas the second one features

stability. Otherwise stated, if a combination is robustly better than a constant se-

quence, it remains robustly better if it is moved forward into the future, the e)ect

according to the order "∗ becoming lower over time.

PROPOSITION 4.6. Assume that axioms F1, G1, G2, G6 and A1 are satisfied. For any

x ∈ ℓ∞, a constant c, x "
∗
c c implies:

(i) x "∗c (c,x) "
∗
c (c, c,x) "

∗
c · · · "

∗
c

(
c [,T],x

)
"∗c · · · "

∗
c c ;

(ii) for any T, c∗
(c∗x [,T],x)

= c∗x;

(iii) for any T, c∗
(/)x+(/)(c∗x [,T],x)

= c∗x.

In Proposition 4.6, under axiom G6, for each sequence x ∈ ℓ∞, the value of the

worst scenario corresponding to x, evaluated under the order "c, does neither

change with the shift of the sequence to the future nor with a convex combination

with this shift.

LEMMA 4.7. For each weight ω
˜
∈ ℓ and T ∈N, define ω

˜
T as

ωT
s =

ωT+s∑∞
s′=ωT+s′

,∀ s ≥ .

If, for every T, ω
˜
= ω
˜
T , then there exists  < δ <  such that ωs = (− δ)δs for every s.

Lemma 4.7 provides a characterization of the exposed points of the set Ωc. From

Theorem 4 in Amir & Lindenstrauss [1], a weakly compact convex set is indeed the

convex hull of its exposed points.

PROPOSITION 4.7. Consider axioms F1, G1, G2, G6 and A1. Then there exists a subset

D of ],[ such that Ωc is the convex hull of
{(
(− δ), (− δ)δ, · · · , (− δ)δs, · · ·

)}
δ∈D

.

Chambers & Echenique [14] impose instead an indi!erence stationarity axiom, which

supposes that any x which is equivalent to a constant sequence c , x is equivalent to

any convex combination between x and
(
c [,T],x

)
, for any T. This article supposes

another property, namely the axiom G6. The di)erence between the two articles

essentially springs from the fact that, while Chambers & Echeniquework on a com-

plete order " and complete amin−representation of the index function, this article
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works on a partial order "∗, corresponding to a larger family of possible orders and

index functions, for example the α− maximin representation. Unsurprisingly, the

two di)erent approaches involve two rather di)erent systems of axioms.

4.4 A SUMMARY REPRESENTATION FOR THE ROBUST ORDERS "∗, "∗d , AND "
∗
c

Even for small values of a∗c , the current index representation can be fairly realistic.

The decision maker could indeed be optimistic for some close future but oppositely

cautious for some more distant future, thereby selecting a large enough value for

a∗d . The following statement is then a direct consequence of Propositions 4.4 and

4.5:

PROPOSITION 4.8. Consider axioms F1, G1, G2, G4 and G5. For any x ∈ ℓ∞,

Ic(x) = a∗c inf
ω
˜
∈Ωc

∞∑

s=

ωsxs +
(
− a∗c

)
sup
ω
˜
∈Ωc

∞∑

s=

ωsxs,

Id(x) = a∗d inf
φ∈Ωd

φ · x +
(
− a∗d

)
sup
φ∈Ωd

φ · x.

Moreover, there exist  ≤ χ ≤ χ ≤  such that one of the two following assertions is true:

(i) For any x ∈ ℓ∞,

I(x) = min
χ≤χ≤χ

[
(− χ)Ic(x) + χId(x)

]
,

the boundaries on the myopia degree χ being defined by χd = χ and χc = χ.

(ii) For any x ∈ ℓ∞,

I(x) = max
χ≤χ≤χ

[
(− χ)Ic(x) + χId(x)

]
,

the boundaries on the myopia degree χ being defined by χd = χ and χc = χ.

4.5 THE ROBUST TEMPORAL PRE-ORDERS "∗T

Define the robust time-dependent order "∗T as the satisfaction of x "∗T y if and only

if, for any z, x + z "∗T y + z. Lemma 4.8 then provides a characterization of the

weights set ΩT that represents the robustness order "∗T.

LEMMA 4.8. Consider axioms F1, G1, G2 and B1.
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(i) For any T, x,y ∈ ℓ∞ and some constant c ∈ R,

x[T+,∞[ "
∗
T+ y[T+,∞[ if and only if

(
c,x[T+,∞[

)
"∗T

(
c,y[T+,∞[

)
.

(ii) There exists a weights set ΩT ⊂ ℓ such that x "
∗
T y if and only if, for any ω

˜
∈ΩT ,

∞∑

s=

ωsxs ≥

∞∑

s=

ωsys.

(iii) For any T, ΩT =
{
ω
˜
T
}
ω
˜
∈Ωc

.

Proposition 4.9 then equips the analysis with a representation of the weights sets

Ωc and ΩT.

PROPOSITION 4.9. Consider axioms F1, G1, G2 and B1.

(i) The weights set Ωc is the convex hull of the set

{(
− δ,δ(− δ),δδ(− δ), . . . ,δδ . . .δT(− δT+), . . .

)}
,

where δT ∈
{
δT,δT

}
for any T.

(ii) The weights set ΩT is the convex hull of the set

{(
−δT,δT(−δT+),δTδT+(−δT+), . . . ,δTδT+ . . .δT+s(−δT+s+), . . .

)}
,

where δT+s ∈
{
δT+s,δT+s

}
for any s.

5. RELATED LITERATURE

5.1 AXIOMATIZATION OF DISCOUNTING

E)orts towards the understanding of discounting and choice date back the break-

through contributions of Tjalling Koopmans. The classical axiomatization of dis-

counted utility, and, noticeably, the first formulation of the stationarity postulate on

the preference ordering, was indeed completed byKoopmans [23, 24] and provided

the hallmark of all of the subsequent developments in the theory of inter-temporal

choice, a recent contribution due to Bleichrodt, Rohde & Wakker [9] having ex-

tended its argument to unbounded utility while an earlier argument of Dolmas [15]
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had provided some steps in that direction. Another influential line of axiomatiza-

tions was inaugurated by Fishburn & Rubinstein [17] with a focus on the realization

of a single outcome at a given date ; it has more recently been extended and gener-

alized by Masatlioglu & Ok [30]. Following parallel roads and the decision theory

multiple priors axiomatizations of Gilboa & Schmeidler [20] but relying upon a

di)erent system of axioms based upon time-variability aversion, Wakai [33] has pro-

vided an insightful account of smoothing behaviours where the optimal discount

assumes an maxmin representation. This has just been comforted by Chambers &

Echenique [14] who, following a multiple priors approach, have introduced new

Invariance to stationary relabeling and compensation axioms and established a larger

scope for a maxmin based geometric representation of the preference order that

would then provide an optimal determination of discount.

The contribution with the closest concerns from the ones of this article is a recent

work due to Lapied & Renault [25] who consider a decision maker facing alterna-

tives that are defined on a very distant future, i.e., a time horizon that exceeds his

life-time horizon. They emphasize the emergence of an asymptotic patience prop-

erty, meaning that, for some remote date, no time tradeo) between alternative

any longer prevails. Mention should also be made of the recent and independently

completed contribution of Gabaix & Laibson [18] with a subtle articulation be-

tween forecasting accuracy, discounting and myopia in an imperfect information

environment that relies upon a recent literature on experiments.

Montiel Olea & Strzalecki [29] have already completed an axiomatic approach to

the quasi-hyperbolic discounting representation of Phelps & Pollack [31], Laibson [26]

and, more generally, to present biased preferences. They suppose that, for any two

equivalent future sequences, a patient one and an impatient one, pushing both of

them towards the present will distort the preference towards the impatient choice.

This article assumes the present bias notion for every date T and not only the initial

one. The index functions IT are determined from a set of multiple discount rates.

Hence the notion present bias in this article must contain two parts, one part for the

upper bound of discount rates, and one part for the lower bound of discount rates.

The axiom 10 in Montiel Olea & Strzalecki [29] correspond to the section part of
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the axiom B2, or the second part of Lemma 3.3. Finally, Chakraborty [11] has just

completed a generalized appraisal of present bias within the Fishburn & Rubinstein

[17] approach where preferences are defined on the realization of a single outcome

at a given date. Even though it builds from a from an approach that di)ers from the

current utility streams appraisal, hisweak present bias axiomA4 shares some similarity

with the current axiom B2.

Ghirardato, Marinacci & Maccheroni [19] introduced the robustness orders. A

robustness order is characterized by a set of finitely additive measures. Under the

axiom stated that two sequences are robustly equivalents if they have the same eval-

uations of the best scenarios, the index function assumes the well known α-maxmin

representation, its value being decomposed as a convex combination—with con-

stant weight parameters—of the values of the worst and best scenarios.

5.2 AXIOMATIZATION OF MYOPIA & CHARGES

The concept of impatience, that is due to Koopmans [23], is generally defined as

letting the e!ect of a unit of consumption, or utils, to diminish as it is moved forward

in time. A weaken version of this notion, delay aversion, was initiated by Benoit

& Ok [5], and has recently been considered in the works of Bastianello [3], and

Bastianello & Chateauneuf [4]: it pre-supposes that the e)ect of a given unit of

consumption, or utils, is to converge towards zero as the consumption, or utility,

is pushed to infinity. On other concerns, the first approach to myopia is due to

Brown & Lewis [10] and considers the implications of the infinite postponment of

a sequence of consumptions. The main contribution of this article closely relates

with the advances of this myopia literature.

The notion of strong myopia, due to Brown & Lewis [10], means, in the version

presented by Becker & Boyd [6], that for any x ≻ y, for any z, x ≻
(
y[,T], z[T+,∞[

)

is satisfied for su,ciently large values of T. This coincides with the notion up-

ward myopia of Saywer [32]. In the context of this article, these cases are equiv-

alent to downward myopia of by Saywer [32] where x ≻ y implies that, for any z,
(
x[,T], z[T+,∞[

)
≻ y for T su,ciently big. This corresponds to an extreme occur-

rence where χd = χc = . Another extreme, the completely patient and time invariant
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preferences in Marinacci [28], Banach limits correspond to the case χd = χc = .

The Banach limits10, a special case of the charges, were first introduced by Bewley

[7] in a general equilibrium context. A charge is a linear function on ℓ∞ whose value

solely depends on the long-run behaviour of the sequence. Bewley [7] proves the

existence of a price belonging to the ba11 set for an economywith an infinite number

of dimensions and that is endowedwith a ℓ∞ topology. Following these ideas, Gilles

[21] considered the possibility of charges in studying the asset bubbles. The ℓ part

of the price system represents the fundamental value of the asset, while the bubble is

represented by the purely finitely additive part in ℓ
d
 .
12 Araujo [2] proves that, in

order for the set of non trivial Pareto allocations to exist, consumers must exhibit

some impatience in their preferences. Otherwise stated, this excludes the possibility

of preferences being represented by Banach limits, or this is equivalent to at least of

one of the two values χd , χc to di)er from . Following a very di)erent approach

and contemplating a social planner problem, Chichilnisky [13] associated charges

to the non-dictatorship of present part of the social welfare criterion where the present

would have no per se e)ect. Kahn & Stinchcombe [22] is another recent example

of the use of Banach limits in the context of social welfare functions for that treat

present and future people equally and respect the Pareto criterion.

A. PROOFS FOR SECTION 2

A.1 PROOF OF PROPOSITION 2.1

(i) Suppose that x " y. First, and for  ≤ λ ≤ , x " y is equivalent to λx+(−λ) "

λy + (−λ) .

Considering then the configuration λ > , λx " λy then prevails if and only if

(/λ)λx " (/λ)λy , or x " y, also prevails.

(ii) Suppose that x " y. By the weak convexity property, x " y implies (/)x +

(/)b " (/)y+(/)b . Multiplying the two sides by , it follows that x+b "

10For a careful definition, see page 55 in Becker & Boyd [6].
11The dual of ℓ∞ is given by (ℓ∞)

∗ = ℓ⊕ℓ
d
 , where ℓd is the set of purely finitely additivemeasures.

12A short and excellent review of the theory of charges and of their link with bubbles can be found

in Gilles [21].
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y+b . Finally, and if x+b " y+b , then x+b +(−b ) " y+b +(−b ), or x " y.

(iii) and (iv) For x ∈ ℓ∞, define bx = sup
{
b ∈ R such that x " b

}
. By theArchimedean-

ity property, it follows that x ∼ bx . Let then I(x) = bx. But x " y if and only

if I(x) ≥ I(y). Making use of (i) and (ii), for any λ >  and a constant b ∈ R,

I(λx) = λI(x) and I(x + b ) = I(x) + b for every constant b. QED

A.2 PROOF OF PROPOSITION 2.2

First consider the parametric configuration c ≤ d. It follows that:

I
(
c [,T],d [T+,∞[

)
= c + I

(
 [,T], (d − c) [T+,∞[

)

= c + (d − c)I
(
 [,T], [T+,∞[

)
,

that converges to zero when T tends to infinity. Then observe that

lim
T→∞

I
(
 [,T],− [T+,∞[

)
= lim

T→∞
I
(

[,T], [T+,∞[

)
− I( )

= − χc − 

= −χc

= .

This also implies that, for c ≥ d:

I
(
c [,T],d [T+,∞[

)
= c + I

(
 [,T], (d − c) [T+,∞[

)

= c + (c − d)I
(
 [,T],− [T+,∞[

)
,

that converges to zero. QED

A.3 PROOF OF LEMMA 2.1

For x ∈ ℓ∞, define D(x) as the set of values d such that for any ǫ > , for any z ∈ ℓ∞,

there exists T(ǫ, z) such that, for any T ≥ T(ǫ, z), one has

(
z[,T],x[T+,∞[

)
"
(
z[,T],d [T+,∞[

)
− ǫ .

DefineD(y) accordingly, consider the case supD(x) ≥ supD(y) and first let supD(y) <

+∞. Then define dy = supD(y), that is finite. Fix any ǫ > : since dy +(ǫ/) does
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not belong to D(y) and d − (ǫ/) belongs to D(y), for any z ∈ ℓ∞, there exists

T(ǫ, z) such that, for T ≥ T(ǫ, z):
((
z +

ǫ



)

[,T]
,
(
dy +

ǫ



)

[T+,∞[

)
+
ǫ


"
(
z[,T], y[T+,∞[

)

"

((
z −

ǫ



)

[,T]
,
(
dy −

ǫ



)

[T+,∞[

)
−
ǫ


.

This implies, for T ≥ T(ǫ, z), the satisfaction of:

(
z[,T],dy [T+,∞[

)
+ ǫ "

(
z[,T], y[T+,∞[

)
"
(
z[,T],dy [T+,∞[

)
− ǫ .

Since dx ≥ dy , for every ǫ >  and z ∈ ℓ∞, there exists T(ǫ, z) such that

(
z[,T],x[T+,∞[

)
"
(
z[,T],dy [T+,∞[

)
− ǫ

"
(
z[,T], y[T+,∞[

)
− ǫ .

Consider now the case supD(y) = +∞. This implies that supD(x) = +∞. Take

d > sups ys : since d ∈ D(x), for every ǫ >  and z ∈ ℓ∞, there exists T(ǫ, z) such

that, for T ≥ T(ǫ, z):

(
z[,T],x[T+,∞[

)
"
(
z[,T],d [T+,∞[

)
− ǫ

"
(
z[,T], y[T+,∞[

)
− ǫ .

For the remaining configuration supD(y) ≥ supD(x), making use of the same

arguments, for every ǫ >  and z ∈ ℓ∞, there exists T(ǫ, z) such that, for T ≥ T(ǫ, z):

(
z[,T], y[T+,∞[

)
"
(
z[,T],x[T+,∞[

)
− ǫ ,

whence the statement. QED

A.4 PROOF OF PROPOSITION 2.3

(i) Using Lemma 2.1, the order "d is complete.

(ii) It must be proveed that there exists x,y ∈ ℓ∞ such that x ≻d y. Chose by example

and  . Obviously, "d  is first satisfied. Suppose now that  "d . Consider

first the configuration χd >  . Then, and for  < ǫ < χd , there exists T(ǫ, ) such

that for T ≥ T(ǫ, ),

I
(
 [,T], [T+,∞[

)
≥ I

(
 [,T], [T+,∞[

)
− ǫ.
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Letting T tend to infinity, it follows that  ≥ χd − ǫ, a contradiction. Consider

then the configuration χc > . For  < ǫ < χc, there exists T(ǫ, ) such that, for

T ≥ T(ǫ, ):

(
[,T], [T+,∞[

)
≥ I

(
[,T], [T+,∞[

)
− ǫ.

Letting T tend to infinity, it follows that ǫ ≥ χc, a contradiction. The distant order

"d is hence not trivial.

Further observe that, if x "d d , then, for every d ′ ∈ R, x+d ′ "d (d+d
′) . Indeed,

for ǫ >  and z ∈ ℓ∞, there exists T(ǫ, z) such that, for T ≥ T,

(
(z − d ′ )[,T],x[T+,∞[

)
"
(
(z − d ′ )[,T],d [T+,∞[

)
− ǫ .

From Proposition 2.1 and for T ≥ T(ǫ, z),

(
z[,T], (x + d ′ )[T+,∞[)

)
"
(
z[,T], (d + d ′) [T+,∞[)

)
− ǫ .

Then consider x ∈ ℓ∞ and a constant d such that, for any z ∈ ℓ∞, ǫ > , there exists

T(ǫ, z) with, for T ≥ T(ǫ, z),

(
z[,T],x[T+,∞[

)
"
(
z[,T],d [T+,∞[)

)
− ǫ .

Fix then any λ > . From axiom G1, there exists T′(ǫ, z) such that, for T ≥ T′(ǫ, z),
((
λ
z
)
[,T]

,x[T+,∞[

)
"

((
λ
z
)
[,T]

,d [T+,∞[

))
−


λ
ǫ ,

that in its turn implies, for T ≥ T′(ǫ, z),
(
z[,T],

(
λx[T+,∞[

))
"

(
z[,T],λd [T+,∞[

)
− ǫ .

Hence, for x "d y and for every λ > , the occurrence of λx "d λy.

Consider now x,y ∈ ℓ∞ such that x "d y. For every  < λ < , using the same

arguments as in the proof of Proposition 2.1, (−λ)x +λd "d (−λ)y + d .

The order "d having been proved to be non trivial, the value dx = supD(x) is

finite and, for every d > dx > d ′, the relation d ≻d x ≻d d
′ is to hold. There thus

obviously exists λ,µ ∈ [,] such that ( − λ)d + λd ′ > dx > ( − µ)d + µd ′ and the

order "d satisfies the Archimedeanity property.
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(iii) Define Id(x) = supxD(x). The order "d satisfying every property in axiom F1,

from Proposition 2.1, Id satisfies every property asserted in the statement. QED

A.5 PROOF OF PROPOSITION 2.4

(i) This property is the direct consequence of the definition.

(ii) For every T, since d − c ≥ , the index function restates along:

I
(
c [,T],d [T+,∞[

)
= c + I

(
 [,T], (d − c) [T+,∞[

)

= c + (d − c)I
(
 [,T], [T+,∞[

)
.

Letting T converge to infinity,

lim
T→∞

I
(
c [,T],d [T+,∞[

)
= (− χd )c + χdd.

(iii) Take indeed any d > limT→∞ xT ; for every z ∈ ℓ∞ and for large enough values

of T,

(
z[,T],d [T+,∞[

)
"
(
z[,T],x[T+,∞[

)
,

that implies d ≥ dx. Making use of the same argument for d < limT→∞ xT, it follows

that d ≤ dx. Whence the obtention of dx = limT→∞ xT.

(iv) Consider x,y ∈ ℓ∞ such that limT→∞ xT does exist. Take then any d > dx; for

every z and for every large enough values of T,

(
z[,T], (d + y)[T+,∞[

)
"
(
z[,T], (x + y)[T+,∞[

)
.

This in its turn implies that d +dy = Id(d +y) ≥ Id(x+y). It follows that dx +dy ≥

Id(x+y). For every d < dx, and relying upon the same line of arguments, it similarly

follows that dx + dy ≤ Id(x + y). QED

A.6 PROOF OF LEMMA 2.2

For x ∈ ℓ∞, define C(x) as the set of values c such that, for any ǫ >  and for z ∈ ℓ∞,

there exists T(ǫ, z) such that, for T ≥ T(ǫ, z),

(
x[,T], z[T+,∞[

)
"
(
c [,T], z[T+,∞[

)
− ǫ.

Follow then the same line of arguments as the ones developed for the proof of

Proposition 2.3 and consider first the configuration supC(x) ≥ supC(y). For any
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ǫ >  and for z ∈ ℓ∞, there exists T(ǫ, z) such that, for T ≥ T(ǫ, z),

(
x[,T], z[T+,∞[

)
"
(
y[,T], z[T+,∞[

)
− ǫ .

For the remaining configuration with supC(y) ≥ supC(x), for any ǫ >  and z ∈

ℓ∞, there similarly exists T(ǫ, z) such that, for T ≥ T(ǫ, z),

(
y[,T], z[T+,∞[

)
"
(
x[,T], z[T+,∞[

)
− ǫ .

The proof is complete. QED

A.7 PROOF OF PROPOSITION 2.5

(i) From Lemma 2.2, the order "c is complete.

(ii) It can first be proved that ≻c  . Suppose the opposite and  "c and

consider the case χd < . For  < ǫ <  − χd , there exists T(ǫ, ) such that, for

T ≥ T(ǫ, ),

I
(
 [,T], [T+,∞[

)
≥ I

(
[,T], [T+,∞[

)
− ǫ.

Letting T tend to infinity, one gets χd ≥ − ǫ: a contradiction. For the remaining

case χc < , make use of the same arguments. For the proof of the other properties

in axiom F1, follow the arguments developed for the proof of Proposition 2.3.

(iii) Define Ic(x) = supC(x). Follow the arguments of the proof of Proposition

2.3. QED

A.8 PROOF OF PROPOSITION 2.6

(i) Observe that, for c − d ≥ ,

lim
T→∞

I
(
c [,T],d [T+,∞[

)
= lim

T→∞
I
(
(c − d) [,T], [T+,∞[

)
+ d

= (c − d) lim
T→∞

I
(

[,T], [T+,∞[

)
+ d

= (− χc)(c − d) + d

= (− χc)c + χcd.

(ii) First observe that limT→∞ Ic
(

[,T], [T+,∞[

)
= . Suppose indeed the opposite

and let limT→∞ Ic
(

[,T], [T+,∞[

)
< . There hence exists c >  such that, for
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every T, ( − c) "c
(

[,T], [T+,∞[

)
. But this in its turn implies that, for every

ǫ >  and for every T, there exists T(ǫ, ) ≥ T such that, for every T′ ≥ T(ǫ, ),

(
(− c) [,T′], [T′+,∞[

)
"
(

[,T], [T+,∞[

)
− ǫ ,

or, for large enough values of T′,

I
(
(− c) [,T′], [T′+,∞[

)
≥ I

(
[,T], [T+,∞[

)
− ǫ.

Letting T′ tend to infinity, it follows that, for every ǫ >  and for every T,

(− χc)(− c) ≥ I
(

[,T], [T+,∞[

)
− ǫ.

Letting ǫ converge to zero and letting T tend to infinity, it follows that (−χc)(−

c) ≥ − χc, a contradiction. Consequently, either limT→∞ Ic
(

[,T], [T+,∞[

)
= 

or limT→∞ Ic
(
 [,T],− [T+,∞[

)
= .

Relying to the same arguments, limT→∞ Ic
(
 [,T], [T+,∞[

)
= . These two limits

being equal to zero, for any constants c and d,

lim
T→∞

Ic
(
c [,T],d [T+,∞[

)
= c.

Consider any x ∈ ℓ∞ and fix a constant d. For every ǫ >  and for large enough

values of T,

Ic
(
cx [,T],d [T+,∞[

)
+ ǫ ≥ Ic

(
x[,T],d [T+,∞[

)
≥ Ic

(
cx [,T],d [T+,∞[

)
− ǫ.

Letting T tend to infinity and ǫ converge to zero,

lim
T→∞

Ic
(
x[,T],d [T+,∞[

)
= Ic(x).

For every x,y ∈ ℓ∞, fix then d ≥ sups ys ≥ infs ys ≥ d ′. Whence, for every T,

Ic
(
x[,T],d [T+,∞[

)
≥ Ic

(
x[,T], y[T+,∞[

)
≥ Ic

(
x[,T],d

′
[T+,∞[

)
.

Letting T tend to infinity, if eventually follows that limT→∞ Ic
(
x[,T], y[T+,∞[

)
=

Ic(x), that completes the proof. QED

A.9 PROOF OF LEMMA 2.3

(i) Observe that, for the index function I(x), it first derives that χd = χc = . More-

over, and for every x,z ∈ ℓ∞:

lim
T→∞

I
(
z[,T],x[T+,∞[

)
=max

{
ω̂
˜
· z,min

{
ω
˜
· z,φ · x

}}
.
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This implies that the order " represented by the index function I satisfies axiomG1.

Following the same arguments developed for the proof of Proposition 2.3, it can

readily be checked that " satisfies every property of axiom F1 but the non-triviality

and Archimedeanity properties. In order to prove that the non-triviality property is

satisfied, take z∗ satisfies ω̂
˜
· z∗ <  <  < ω

˜
· z∗. First notice that such a sequence z∗

does exist: take any z satisfying ω̂
˜
· z < ω

˜
· z and define ẑ = z − (/)

(
ω̂
˜
· z +ω

˜
· z
)
.

The inequalities ω̂
˜
· ẑ <  < ω

˜
· ẑ are satisfied. Define then z∗ = (/ω

˜
· ẑ)ẑ. It derives

that ω̂
˜
· z∗ <  and ω

˜
· z∗ = /. Consequently:

lim
T→∞

I
(
z∗[,T], [T+,∞[

)
=max

{
ω̂
˜
· z∗,min

{
ω
˜
· z∗,φ · 

}}
= ,

lim
T→∞

I
(
z∗[,T], [T+,∞[

)
=max

{
ω̂
˜
· z∗,min

{
ω
˜
· z∗,φ ·

}}
=



.

Whence "d  and  4"d , or ≻d  . Once the non-triviality property has

been proved to be satisfied, the obtention of the Archimedeanity property follows as

a direct consequence. For the details of the argument, consult the proof of Propo-

sition 2.3. Finally, and for every x,y ∈ ℓ∞, x "d y if and only if φ · x ≥ φ · y.

Take any x ∈ ℓ∞ such that ω̂
˜
· x < φ · x < ω

˜
· x. Take then d and d ′ such that

ω̂
˜
· x < d ′ < d < φ · x < ω

˜
· x. Finally take z = d ′ and z = x. It follows that:

lim
T→∞

I
(
x[,T], z



[T+,∞[

)
=max

{
ω̂
˜
· x,min

{
ω
˜
· x,φ · z

}}
= φ · z,

lim
T→∞

I
(
d [,T], z



[T+,∞[

)
=max

{
ω̂
˜
· d ,min

{
ω
˜
· d ,φ · z

}}
= d,

where φ · z < d. For z = x, it derives that:

lim
T→∞

I
(
x[,T], z



[T+,∞[

)
=max

{
ω̂
˜
· x,min

{
ω
˜
· x,φ · x

}}
= φ · x,

lim
T→∞

I
(
d [,T], z



[T+,∞[

)
=max

{
ω̂
˜
· d ,min

{
ω
˜
· d ,φ · x

}}
= d,

where φ ·x > d. The close future comparison between x and d is hence influenced

by the choice of z, that in its turn implies that " cannot satisfy axiom G2.

(ii) For the case of the order "̂ and the index function Î, making using of the same

arguments, it follows that χc = χd = , the close future order "̂c satisfying every

property of axiom F1 and, for every x,y ∈ ℓ∞, x "̂c y if and only if ω
˜
· x ≥ ω

˜
· y.

Observe that, for every x,z ∈ ℓ∞,

lim
T→∞

Î
(
x[,T], z[T+,∞[

)
=max

{
φ̂ · z,min

{
φ · z,ω

˜
· x
}}
.
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This implies that the order "̂ satisfies axiom G2. In order to prove that "̂ does

oppositely not satisfyG1, consider x ∈ ℓ∞, d,d
′ ∈ R such that φ̂ ·x < d ′ < d < w

˜
·x <

φ · x. Take then z = d ′ and z = x. It follows that:

lim
T→∞

Î
(
z[,T],x[T+,∞[

)
=max

{
φ̂ · x,min

{
φ · x,ω

˜
· z

}}
= d ′ ,

lim
T→∞

Î
(
z[,T],d [T+,∞[

)
=max

{
φ̂ · d ,min

{
φ · d ,ω

˜
· d ′

}}
= d,

where d ′ < d. For the sequence z = x, it follows that:

lim
T→∞

Î
(
z[,T],x[T+,∞[

)
=max

{
φ̂ · x,min

{
φ · x,ω

˜
· x
}}
= ω
˜
· x,

lim
T→∞

Î
(
z[,T],d [T+,∞[

)
=max

{
φ̂ · x,min

{
φ · x,ω

˜
· d

}}
= d,

where d < ω
˜
·x. The distant future comparison between x and d depending upon

the specific choice of z, the order "̂ cannot satisfy G1

(iii) Suppose that G1 and G2 are satisfied and first consider the configuration χd =

χc = . Define then the set D(x) as in the proof of Proposition 2.3. Recall that, for

every x,y ∈ ℓ∞, x "d y if and only if supD(x) ≥ supD(y). It is then to be proved

that, for every x ∈ ℓ∞, supD(x) = +∞. Making use of part (ii) of Proposition 2.4

and Proposition 2.6, the following holds for any constants c,d ∈ R:

lim
T→∞

I
(
c [,T],d [T+,∞[

)
= c.

This implies that, for every d,d ′ in R and for any ǫ > , there exists a large enough

T(ǫ) such that

(
c [,T],d

′
[T+,∞[

)
"
(
c [,T],d [T+,∞[

)
− ǫ .

Fix now any x,z ∈ ℓ∞, d ∈ R and any ǫ > . Define cz = Ic(z), that is finite since

neither χd nor χc is equal to zero. Finally fix any d ′ such that d ′ ≤ infs xs.

There then exists some T(ǫ,x) such that, for T ≥ T(ǫ,x),

(
z[,T],x[T+,∞[

)
"
(
cz [,T],x[T+,∞[

)
−
ǫ



"
(
cz [,T],d

′
[T+,∞[

)
−
ǫ


.

Since, for large enough values of T,

(
c [,T],d

′
[T+,∞[

)
"
(
c [,T],d [T+,∞[

)
−
ǫ


,
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for such values of T, the following also holds:

(
z[,T],x[T+,∞[

)
"
(
cz [,T],d [T+,∞[

)
−
ǫ


.

But, by the very definition of cz and for large enough values of T,

(
cz [,T],d [T+,∞[

)
"
(
z[,T],d [T+,∞[

)
−
ǫ


,

that implies

(
z[,T],x[T+,∞[

)
"
(
z[,T],d [T+,∞[

)
− ǫ .

Hence, for every x,y ∈ ℓ∞, supD(x) = supD(y) = +∞, or x ∼d y. Finally and

for the remaining case χd = χc = , making use of the same arguments, for every

x,y ∈ ℓ∞, the holding x ∼c y is eventually established. QED

A.10 PROOF OF THEOREM 2.1

(i) First suppose that χd ≤ χc, define cx = Ic(x) and dx = Id(x) and fix ǫ > . From

the definition of cx and dx, for large enough values of T,

x =
(
x[,T],x[T+,∞[

)

"
(
cx [,T],x[T+,∞[

)
− ǫ

"
(
cx [,T],dx [T+,∞[

)
− ǫ .

Therefore

I(x) ≥ limsup
T→∞

I
(
c [,T],d [T+,∞[

)
− ǫ .

This inequality being further true for any arbitrary ǫ > ,

I(x) ≥ limsup
T→∞

I
(
cx [,T],dx [T+,∞[

)
.

Likewise,

I(x) ≤ liminf
T→∞

I
(
cx [,T],dx [T+,∞[

)
.

Therefore

I(x) = lim
T→∞

I
(
cx [,T],dx [T+,∞[

)
.
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First consider the configuration cx ≤ dx or, equivalently, Ic(x) ≤ Id(x). As dx − cx ≥

, it follows that:

I(x) = lim
T→∞

I
(
cx [,T],dx [T+,∞[

)

= cx + lim
T→∞

I
(
 [,T], (dx − cx) [T+,∞[

)

= cx + (dx − cx) lim
T→∞

I
(
 [,T], [T+,∞[

)

= (− χd )cx + χddx

= (− χd )Ic(x) + χd Id(x).

But Ic(x) ≤ Id(x), that implies the holding of:

(− χd )Ic(x) + χd Id(x) ≤ (− χ)Ic(x) + χId(x),

for any χ ∈ [χ,χ], with χ = χd , χ = χc. As for the remaining configuration Ic(x) ≥

Id(x), and making use of the same arguments

I(x) = χcIc(x) + (− χc)Id(x)

≤ (− χ)Ic(x) + χId(x),

for any χ ∈ [χ,χ]. Whence, finally

I(x) = min
χ≤χ≤χ

[
(− χ)Ic(x) + χId(x)

]
.

(ii) For the other configuration χd ≥ χc and making use of the same line of argu-

ments, it similarly follows that:

I(x) = max
χ≤χ≤χ

[
(− χ)Ic(x) + χId(x)

]
,

where χ = χc, χ = χd . QED

A.11 PROOF OF COROLLARY 1

First assume that Ic(x) ≤ Id(x). The value of Iα(x) is therefore defined as:

Iα(x) = α
[
(− χ)Ic(x) + χId(x)

]
+ (−α) [(− χ)Ic(x) + χId(x)]

=
[
−

(
αχ + (−α)χ

)]
Ic(x) +

[
αχ + (−α)χ

]
Id(x).
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Consider then the remaining configuration Ic(x) ≥ Id(x). The value of Iα(x) is

therefore defined as:

Iα(x) = α
[
(− χ)Ic(x) + χId(x)

]
+ (−α)

[
(− χ)Ic(x) + χId(x)

]

=
[
−

(
αχ + (−α)χ

)]
Ic(x) +

[
αχ + (−α)χ

]
Id(x).

For / ≤ α ≤ , define

χ
α
= αχ + (−α)χ,

χα = αχ + (−α)χ.

It obviously holds that χ
α
≤ χα. Hence, for Ic(x) ≤ Id(x),

Iα(x) =
(
− χ

α

)
Ic(x) + χ

α
Id(x),

while, for Ic(x) ≥ Id(x),

Iα(x) =
(
− χα

)
Ic(x) + χαId(x).

These properties are equivalents to the holding, for any x ∈ ℓ∞, of

Iα(x) = min
χ
α
≤χ≤χα

[
(− χ)Ic(x) + χId(x)

]
.

For  ≤ α ≤ / and making use of the same arguments for

χ
α
= αχ + (−α)χ,

χα = αχ + (−α)χ,

it similarly follows that:

Iα(x) = max
χ
α
≤χ≤χα

[
(− χ)Ic(x) + χId(x)

]
.

The statement follows. QED

B. PROOFS FOR SECTION 3

B.1 PROOF OF LEMMA 3.1

Taking advantage of the decomposition of the order index I into the order indexes

Ic and Id through Theorem 2.1 and from axiom B1, letting T′ tends to infinity,

either

Ic
(
z[,T−],x[T,∞[

)
≥ Ic

(
z[,T−], c [T,∞[

)
− ǫ,
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or

Ic
(
z[,T−], c [T,∞[

)
+ ǫ ≥ Ic

(
z[,T−],x[T,∞[

)
.

For any constant c, this is equivalent to the holding of either, for any z ∈ ℓ∞, of:

(
z[,T−],x[T,∞[

)
"c

(
z[,T−], c [T,∞[

)
,

or, for any z ∈ ℓ∞, of:

(
z[,T−], c [T,∞[

)
"c

(
z[,T−],x[T,∞[

)
,

that completes the argument of the proof. QED

B.2 PROOF OF PROPOSITION 3.1

(i) Define CT(x) the set of values c such that, for any z, z, . . . , zT−,

(
z[,T−],x

)
"c

(
z[,T−], c [T,∞[

)
.

Define the order "T as the holding of x "T y if and only if supC(x) ≥ supC(y).

Fix x,y ∈ ℓ∞ and suppose that for any z, z, . . . , zT−,

(
z[,T−],x

)
"c

(
z[,T−], y

)
.

This implies that CT(y) ⊂ CT(x), or x "T y. First consider the case supCT(y) < +∞

and take cTy = supCT(y). It is readily checked that CT(y) is closed, whence the

satisfaction of cTy ∈ CT(y) ⊂ CT(x). Further and from the definition of cTy , which is

finite, for any z, z, . . . , zT−,

(
z[,T−],x

)
"c

(
z[,T−], c

T
y [T,∞[

)
"c

(
z[,T−], y

)
.

Secondly consider the case supCT(y) = +∞, that implies the holding of supCT(x) =

+∞. Whence, for any c ≥ sups ys and for any z, z, . . . , zT−:

(
z[,T−],x

)
"c

(
z[,T−], c [T,∞[

)
"c

(
z[,T−], y

)
.

(ii) For the transitivity, monotonicity and weak convexity properties, replicate the ar-

guments used for the proof of Proposition 2.3.
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(iii) Suppose that at least one of two values χT
d ,χ

T
c di)ers from zero. It is to be proved

that the order "T satisfies the technical non-triviality property. The Archimedeanity

propertywould then follow as a direct corollary. But, and from the definition of χT
d ,

if χT
d > , then Ic

(
 [,T−],

)
> Ic

(
 [,T−],

)
. This implies ≻T  . Likewise

and from the definition of χT
c , if χ

T
c > , then Ic

(
[,T−],

)
> Ic

(
[,T−],

)
. This

in its turn implies ≻T  .

(iv) Suppose that at least one of two values χT
d ,χ

T
c is di)erent from zero. From (i),

(ii) and (iii), supCT(x) < +∞ for any x and the order "T satisfies every property in

axiom F1. The index function IT(x) = supC(x) therefore satisfies every property

listed in Proposition 2.1. QED

B.3 PROOF OF LEMMA 3.2

First suppose that χT
d = . This implies that Ic

(
 [,T−], [T,∞[

)
=  but also, and

from the monotonicity property, the alike holding of Ic
(
 [,T−], [T,∞[

)
=  for

any T ≥ T, or χ
T
d =  for any T ≥ T. Then consider the holding of χT

c = , which

is equivalent, from the definition of χc, to Ic
(

[,T−], [T,∞[

)
= . The sequence

{
Ic
(

[,T−], [T,∞[

)}∞
T=

being further increasing in T, this implies the holding of

Ic
(

[,T−], [T,∞[

)
=  for any T ≥ T.

Now and for any constant c, as χT
d = χT

c = , c ∼T (−c) . From the weak convexity

property, this also implies that c ∼T  . Then take any x ∈ ℓ∞ and consider a

constant c such that c ≥ sups |xs |: from the monotonicity property, this also implies

the holding of c "T x "T (−c) , or the one of x ∼T  . The statement follows.

B.4 PROOF OF PROPOSITION 3.2

Fix x ∈ ℓ∞, let c = IT+
(
x[T+,∞[

)
and consider the case xT ≤ c. From Proposition

3.1 and as d − xT ≥ ,

IT
(
x[T,∞[

)
= IT

(
xT, c

)

= xT + IT
(
, (c − xT)

)

= xT + (c − xT)IT(, )

=
(
− IT(, )

)
xT + IT(, )c.
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Likewise and for xT ≥ d:

IT
(
x[T,∞[

)
= IT

(
xT, c

)

= IT
(
xT − c,

)
+ d

=
(
xT − c

)
IT(, ) + d

= IT(,)xT +
(
− IT(, )

)
c.

First suppose that χT
d ≤ χT

c , or IT(, ) + IT(, ) ≤ , and let δT = χT
d = I(, ) and

δT = χT
c = − I(, ). It follows that  < δT ≤ δT <  and

IT
(
x[T,∞[

)
= min

δT≤δ≤δT

[
(− δ)xT + δIT+

(
x[T+,∞[

)]
.

Consider the remaining case χT
d ≥ χT

c , or IT(, ) + IT(, ) ≥  and let δT = χT
c =

− IT(, ), δT = χT
d = IT(, ). It follows that  < δT ≤ δT <  and

IT
(
x[T,∞[

)
= max

δT≤δ≤δT

[
(− δ)xT + δIT+

(
x[T+,∞[

)]
,

which establishes the statement. QED

B.5 PROOF OF LEMMA 3.3

(i) Consider the constant c such that (, ) ∼T c . From Proposition 3.1, this implies

that:

(
 [,T], [T+,∞[

)
∼c

(
 [,T−], c [T,∞[

)
.

The order "c further satisfying every property in axiom F1, for any c′ < c, the

following is to hold:

(
 [,T], [T+,∞[

)
≻c

(
 [,T−], c

′
[T,∞[

)
.

From Proposition 2.6, there then exists a large enough T such that, for T′ ≥ T,

(
 [,T], [T+,T′], [T′+,∞[

)
"c

(
 [,T−], c

′
[T,T′], [T′+,∞[

)
.

The left hand side and the right hand side of the above equation assuming the same

distant future valuation, this implies that:

(
 [,T], [T+,T′], [T′+,∞[

)
"
(
 [,T−], c

′
[T,T′], [T′+,∞[

)
.
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From axiom B2, this can be strengthened to:

(
 [,T+], [T+,T′], [T′+,∞[

)
"
(
 [,T], c

′
[T+,T′], [T′+,∞[

)
,

which is equivalent to

(
 [,T+], [T+,T′], [T′+,∞[

)
"c

(
 [,T], c

′
[T+,T′], [T′+,∞[

)
.

Letting T′ tends to infinity, it follows that:

(, ) "T+ c
′ .

As this is true for any c′ < c, letting c′ converge to c, it derives that:

(, ) "T+ c .

(ii) Follow the same line of arguments as for (i). QED

B.6 PROOF OF PROPOSITION 3.3

First observe that, for any T,

δT =min
{
IT(, ),− IT(, )

}
,

δT =max
{
IT(, ),− IT(, )

}
.

But and fromLemma 3.3, both of the two sequences
{
IT(, )

}∞
T=

and
{
−IT(, )

}∞
T=

are increasing. This in its turn implies that the two sequences
{
δT

}∞
T=

and
{
δT

}∞
T=

are also increasing.

B.7 PROOF OF PROPOSITION 3.4

(i) Suppose that x ∈ ℓ∞, d,d
′ ∈ R such that

d "d x "d d
′ .

Fix z ∈ ℓ∞ and ǫ > . From axiomG1, there exists T(ǫ, z) such that, for T ≥ T(ǫ, z)

it holds that:

(
z[,T], (d + ǫ) [T+,∞[

)
"
(
z[,T],x[T+,∞[

)
"
(
z[,T], (d

′ − ǫ) [T+,∞[

)
.
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From axiom B3, there then exists some date T′(ǫ, z) such that, for any T ≥ T′(ǫ, z)

and for any s ≥ s there exists s(T) such that, for s ≥ s(T),

(
z[,T], (d + ǫ) [T+,∞[

)
"
(
z[,T],x[T+,T+s], (d + ǫ) [T+s+,∞[

)
,

(
z[,T],x[T+,T+s], (d

′ − ǫ) [T+s+,∞[

)
"
(
z[,T], (d

′ − ǫ) [T+,∞[

)
.

From axiom B1 and for any T ≥ T(ǫ, z), letting s tends to infinity, it holds that:

(d + ǫ) [T,∞[ "T x[T,∞[ "T (d ′ − ǫ) [T,∞[.

(ii) Take d = Id(x). For any ǫ > , there exists T(ǫ) such that, for T ≥ T(ǫ),

(d + ǫ) [T,∞[ "T x[T,∞[ "T (d − ǫ) [T,∞[,

which is equivalent to

d + ǫ ≥ IT
(
x[T,∞[

)
≥ d − ǫ.

Letting ǫ converge to zero, it follows that:

lim
T→∞

IT
(
x[T,∞[

)
= Id(x).

(iii) Take any sequence
{
Tk
}∞
k=
⊂N converging to infinity and satisfying, for any

k, Tk− < Tk − . Then define x̂ as x̂T =  for any T "
{
Tk
}∞
k=

and x̂Tk =  for any

k. It follows that  ≤ Id(x̂) ≤ . From Proposition 3.2 and for every T, there exists

δT ∈
[
δT,δT

]
such that:

IT
(
x̂[T,∞[

)
=
(
− δT

)
x̂T + δTIT+

(
x̂[T+,∞[

)
.

Recall then that limT→∞ IT
(
x̂[T,∞[

)
= Id(x̂) and consider the case Id(x̂) = . For any

k and as Tk− < Tk − , x̂Tk− = , one has, for any k:

ITk−
(
x̂[Tk−,∞[

)
=
(
− δTk−

)
x̂Tk− + δTk−ITk

(
x̂[Tk ,∞[

)

=
(
− δTk−

)
x̂Tk− + δTk−ITk

(
x̂[Tk ,∞[

)
.

Letting k tends to infinity, ITk−
(
x̂[Tk−,∞[

)
and ITk

(
x̂[Tk ,∞[

)
converge to Id(x̂), which

sums up to zero. This implies that  − δTk− converges to zero, or that δTk− con-

verges to . As δTk− ≤ δTk− ≤ , it derives that δTk− converges to 1.
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Considering now the case Id(x̂) >  and for any k,

ITk

(
x̂[Tk−,∞[

)
= (− δTk )x̂Tk + δTk ITk+

(
x̂[Tk+,∞[

)

= δTk ITk+
(
x̂[Tk+,∞[

)
.

Letting k tends to infinity, both ITk

(
x̂[Tk ,∞[

)
and ITk+

(
x̂[Tk+,∞[

)
do converge to

Id(x̂), which is strictly positive, whence the convergence to  of δTk and δTk .

(iv) Adding axiomB2, the sequence
{
δT

}∞
T=

becomes increasing, whence and from

(iii), the satisfaction of:

lim
T→∞

δT = ,

which establishes the statement. QED

C. PROOFS FOR SECTION 4

C.1 PROOF OF LEMMA 4.1

Suppose that x "∗ y, then and for every z, (/)x+ (/)z " (/)y + (/)z. Recall

that this is equivalent to x + z " y + z. Suppose that for every z, x + z " y + z. Fix

any  ≤ λ < . Fix any z ∈ ℓ∞. One has

x +
λ

−λ
z " y +

λ

−λ
z,

which implies the holding of ( − λ)x + λz " ( − λy) + λz, whence the one of

x "∗ y. QED

C.2 PROOF OF PROPOSITION 4.1

Define P
∗ as the positive polar cone of P =

{
x ∈ ℓ∞ such that x "∗ 

}
in the dual

space
(
ℓ∞

)∗
:

P
∗ =

{
P ∈ (ℓ∞)

∗ such that P · x ≥  for every x "∗ 
}
.

Observe that by the very definition of the order "∗, P is convex and separable by

the vector − , the cone P
∗ does not degenerate to {}.

For each P ∈P
∗, define

π(P) =


P ·
P.
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Since x "∗  for every x ∈ ℓ∞ satisfying xs ≥  for all s, it follows that P ·x ≥  for

every x such that xs ≥  for every s. Let then Ω = π(P). As P · x ≥  if and only

if π(P) · x ≥ , x "∗  is equivalent to π(P) · x ≥  for every P ∈P . For every P,

π(P) can be decomposed as π(P) = λcω˜
+ λdφ, where ω

˜
= (ω,ω, · · · ,ωs, · · · ) ∈ ℓ

and φ ∈ ℓd is a finite additive measure: considering φ as a measure onN, φ(A) = 

for every finite subset of N. From the definition of Ω, for every
(
λcω˜

,λdφ
)
∈ Ω,

λc
∑∞

s=ωs + λdφ · = . The set Ω can be considered as a set of finite additive

probabilities on N. QED

C.3 PROOF OF PROPOSITION 4.2

Consider x,y ∈ ℓ∞ satisfying γ∗x < γ∗x, γ∗y < γ∗y : it is then to proved that ax = ay .

Take a constant γ su,ciently big such that x + γ "∗ y. One gets γx+γ = γ∗x + γ,

γ∗,x+γ = γ∗x + γ and I(x + γ ) = I(x) + γ. This implies ax+γ = ax, whence ax =

ax+γ ≤ ay . Take then a constant γ′ such that y + γ′ "∗ x. Relying to the same

arguments, ay = ay+γ′ ≤ ax, whence for every x,y ∈ ℓ∞ such that γ∗x < γ∗x and

γ∗y < γ∗y , the satisfaction of ax = ay . QED

C.4 PROOF OF PROPOSITION 4.3

Define P
d the set of x ∈ ℓ∞ such that x "∗d  , denote by P

d∗ its positive polar

cone and let

Ωd =
{


P ·
P with P ∈P

d∗
}
.

It is first claimed that, for all
(
(−λ)ω

˜
,λφ

)
∈Ωd , (−λ)ω˜

= . Suppose the opposite;

then there exists T such that ωT > . Take a constant c >  such that (−λ)ωTc > λ

and let x =
(
−c [,T],

T+
)
. But, and from Proposition 2.4, x converges for every

z ∈ ℓ∞ and Id(x + z) = Id(x) + Id(z) = + Id(z) > Id(z), whence x "∗d  . Since

(−λ)ω
˜
· x +λφ · x ≤ −(−λ)ωTc +λ < ,

this is however a contradiction, whence the satisfaction of (−λ)ω
˜
= , which also

implies the holding of λ = . To sum up, the weights set Ωd can therefore be

considered as a charges subset belonging to ℓ


d . QED

56



C.5 PROOF OF PROPOSITION 4.4

Rely to the same arguments as for the proof of Proposition 4.2. QED

C.6 PROOF OF LEMMA 4.4

First suppose that χd +χc ≤  and recall that, for every z ∈ ℓ∞, x+z " y+z is equiv-

alent to I(x + z) ≥ I(y + z). From Proposition 2.4 and the holding of limT→∞ xT =

limT→∞ yT, then observe that Id(x + z) = Id(y + z) and

I(x + z) = min
χ≤χ≤χ

[
(− χ)Ic(x + z) + χId(x + z)

]

= min
χ≤χ≤χ

[
(− χ)Ic(x + z) + χId(y + z)

]
.

This implies that, for every z ∈ ℓ∞, I(x+z) ≥ I(y+z) if and only if Ic(x+z) ≥ Ic(y+z),

or x "∗ y if and only if x "∗c y. This line of arguments extends to the remaining

configuration χd + χc ≥ . QED

C.7 PROOF OF LEMMA 4.6

Relying upon the same arguments as in the proof of Proposition 4.1, there exists a

probability set Ωc ⊂ ℓ ⊕ ℓ


d such that

x "∗c y⇔ (−λ)

∞∑

s=

ωsxs +λφ · x ≥ (−λ)

∞∑

s=

ωsxs +λφ · x,

for every
(
(−λ)ω

˜
,λφ

)
∈ Ωc. Suppose that there exists

(
(−λ)ω

˜
,λφ

)
∈ Ωc satis-

fying λφ ! , or equivalently λφ · > , and fix d >  and  < ǫ <  such that for

every T, ǫ + (−λ)
∑T

s=ωs < dλφ · . Recollect that, from Lemma 1, there exists a

large enough T such that for T ≥ T,

(
ǫ [,T], [T+,∞[

)
"∗

(
 [,T],d [T,T], [T+,∞[

)
,

or

(
 [,T],

(
−d [T,T]

)
, [T+,∞[

)
"∗

(
−ǫ [,T], [T+,∞[

)
.

Whence, for every z ∈ ℓ∞ and from the definition of the pre-order "∗,

(
 [,T],−d [T,T], [T+,∞[

)
+
(
z[,T], [T+,∞[

)

"
(
−ǫ [,T], [T+,∞[

)
+
(
z[,T], [T+,∞[

)
.
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But this is true for every T ≥ T, so that, for every z,

(
 [,T],−d [T,T], [T+,∞[

)
+ z "c −ǫ + z.

In its turn, this implies that:

(
 [,T],−d [T,T], [T+,∞[

)
"∗c −ǫ ,

or, equivalently,

(−λ)ω ·
(
 [,T],−d [T,∞[

)
+λφ ·

(
 [,T],−d [T,∞[

)
≥ −ǫ,

that gives

(−λ)

∞∑

s=T

ωs −λd ≥ −ǫ,

which is a contradiction. To sum up and for every
(
(−λ),λφ

)
∈Ωc, φ = . Since

Ωc is a set of probabilities, this implies that λ = , and Ωc can be considered as

a subset of probabilites that is included in ℓ. With axiom A1, the set Ωc can be

considered as a set of tight measures ; it is therefore compact in the weak topology.

Otherwise stated, Ωc is weakly compact in ℓ. QED

C.8 PROOF OF PROPOSITION 4.5

Rely to the same arguments as the ones used in the proof of Proposition 4.4. QED

C.9 PROOF OF PROPOSITION 4.6

(i) First suppose that x "∗c c and fix any c′ < c: there exists a ǫ >  such that

x "∗c (c
′ + ǫ) . But, and from Lemma 4.6, the set Ωc is weakly compact, so that

there exists T such that for every T ≥ T and for every ω
˜
∈ Ωc, c

′∑∞
s=T+ωs < ǫ.

This implies that, for every T ≥ T,

(
x[,T], c

′
[T+,∞[

)
"∗c c

′ .

From Lemma 4.4, this implies that

(
x[,T], c

′
[T+,∞[

)
"∗ c′ ,

whence

(
x[,T], c

′
[T+,∞[

)
"∗

(
c′ ,x[,T], c

′
[T+,∞[

)
"∗ c′ .
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Relying again upon Lemma 4.4, it derives that:

(
x[,T], c

′
[T+,∞[

)
"∗c

(
c′ ,x[,T], c

′
[T+,∞[

)
"∗c c

′ .

Since this is true for every large enough value of T, this simplifies to:

x "∗c (c
′ ,x) "∗c c

′ .

Finally, and as c′ was arbitrarily selected to be strictly smaller than c, by continuity,

it eventually derives that:

x "∗c (c,x) "
∗
c c .

Referring to a classical recurrence argument, the result is available.

(ii) Since x "∗c c
∗
x , from (i),

x "∗c
(
c∗x [,T],x

)
"∗ c∗x ,

that implies c∗
(c∗x [,T],x)

≥ c∗x. Fixing now c > c∗x and from the definition of cx, x !
∗ c ,

or, equivalently there exists z ∈ ℓ∞ such that c + z ≻c x + z. But x "∗c
(
c∗x [,T],x

)
,

so that it eventually holds that x + z "c
(
c∗x [,T],x

)
+ z, or, equivalently, c + z ≻c

(
c∗x [,T],x

)
+ z. The coe,cient c having been chosen arbitrarily larger than c∗x, it

derives that c∗
(c∗x [,T],x)

= cx.

(iii) Consider the sequences x and
(
c∗x [,T],x

)
. Since x "∗c

(
c∗
(c∗x [,T],x)

,x
)
"∗c cx , it

follows that:

x +
(
c∗x [,T],x

)
"∗c c

∗
x +

(
c∗x [,T],x

)

"∗c c
∗
x [,T] + c∗x

= c∗x ,

whence the satisfaction of c∗
(/)x+(/)(c∗x [,T],x)

≥ c∗x. Fix then c > c∗x. From the

definition of c∗x, there exists z ∈ ℓ∞ such that c +z ≻c x+z. This in its turn implies

that c + z ≻c x + z. Since x "
∗
c

(
c∗x [,T],x

)
"∗c,

c + z ≻c x + z

= x + (x + z)

"c

(
c∗x [,T],x

)
+ x + z.
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This implies that c > c∗
(/)x+(/)(c∗x [,T],x)

. Since c was chosen arbitrarily bigger

than c∗x, it finally holds that c∗x ≥ c∗
(/)x+(/)(c∗x [,T],x)

. QED

C.10 PROOF OF LEMMA 4.7

Since ω
˜
= ω
˜
T, for every T ∈ , it follows that

ωs =
ωT+s∑∞

s′=ωT+s′
and ωs+ =

ωT+s+∑∞
s′=ωT+s′

.

This implies, for every T, s, that:

ωs+

ωs
=
ωT+s+

ωT+s
,

But this is equivalent, for some δ >  and for every s ≥ , to

ωs+

ωs
= δ,

or to ωs = δsω for every s ≥ . Since
∑∞

s=ωs = , it eventually follows that

 < δ <  and ω∗s =
(
− δ∗

)(
δ∗
)s
for s ≥ . QED

C.11 PROOF OF PROPOSITION 4.7

The main part of this proof establishes that for every ω
˜
∗ that corresponds to an

exposed point ofΩc, ω˜
∗ = ω

˜
∗,T for all T. Since ω

˜
∗ is an exposed point ofΩc, which

is a subset of ℓ, for every ω
˜
∈Ωc \ {ω˜

∗}, there exists x ∈ ℓ∞ such that ω
˜
∗ · x < ω

˜
· x.

This in its turn implies that c∗x = ω
˜
∗ ·x. But and from the definition ofΩc, x "

∗
c c
∗
x ;

fixing any T ∈ and from Proposition Proposition 4.6,

c∗
(/)x+(/)(c∗x [,T],x)

= c∗x.

This implies that there exists ω
˜
′ such that

c∗x = ω
˜
′ ·

(



x +



(c∗x [,T],x)

)
= min

ω
˜
∈Ωc

ω
˜
·

(



x +



(c∗x [,T],x)

)
.

But x∗ "∗c (c
∗
x ,x) "∗ c∗x , for every ω

˜
∈ Ωc, ω˜

· x ≥ c∗x and ω
˜
· (c∗x ,x∗)) ≥ c∗x. This

implies that:

ω
˜
′ · x = c∗x,

ω
˜
′ ·
(
c∗ [,T],x

)
= c∗x.
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ω
˜
∗ being an exposed point of Ωc, the first equality implies that ω

˜
′ = ω

˜
∗. Then

observe that ω
˜
∗ ·
(
c∗x [,T],x

)
= c∗x is equivalent to ω

˜
∗,T ·x = c∗x. But, and for every T,

ω
˜
∗,T belongs toΩc. Indeed, suppose the contrary: Ωc being weakly compact, there

exists ǫ >  such that the intersection betweenΩ and the open set
{
ω
˜
such that

∥∥∥ω
˜
−

ω
˜
∗,T

∥∥∥
ℓ
< ǫ

}
is empty. By the Hahn-Banach theorem, there exists x′ and a constant

c such that ω
˜
· x′ > c > ω

˜
∗,T · x′ for every ω

˜
∈ Ωc. This implies that x′ "∗c c

and therefore that x′ "∗c
(
c [,T],x

′
)
"∗c c , whence ω

˜
∗ ·

(
c [,T],x

′
)
≥ c, which is

equivalent to ω
˜
∗,T · x′ ≥ c, a contradiction.

The vector ω
˜
∗,T belongs to Ω, and satisfies ω

˜
∗,T · x = c∗x. From the definition of

ω
˜
∗ and x, ω

˜
∗ = ω

˜
∗,T for every T ∈ N : by Lemma 4.7, there therefore exists  <

δ∗ <  such that for every s, ω∗s = ( − δ∗)(δ∗)s. To sum up, every exposed point

of Ω assumes a geometrical representation. The set Ωc being weakly compact, by

Theorem 4 in Amis & Lindenstrauss [1],Ωc is the convex hull of its exposed points.

In its turn, this implies the existence of a subset D ∈],[ such that

Ωc = convex
{
(− δ, (− δ)δ, · · · , (− δ)δs, · · · )

}
δ∈D

,

that establishes the statement. QED

C.12 PROOF OF LEMMA 4.8

(i) Fix T, x,y ∈ ℓ∞, c ∈ R. From the recursive form of the time-dependent index

function IT,
(
c,x[T+,∞[

)
"∗T

(
c,y[T+,∞[

)
if and only if, for any z ∈ ℓ∞,

(
c + zT,x[T+,∞[ + z[T+,∞[

)
"T

(
c + zT, y[T+,∞[ + z[T+,∞[

)
,

which is equivalent to

x[T+,∞[ + z[T+,∞[ "T+ y[T+,∞[ + z[T+,∞[.

Whence the satisfaction of
(
c,x[T+,∞[

)
"∗T

(
c,y[T+,∞[

)
if and only if x[T+,∞[ "

∗
T+

y[T+,∞[.

(ii)-(iii). From (i), x[T,∞[ "
∗
T y[T,∞[ if and only if

(
 [,T−],x[T,∞[

)
"∗c

(
 [,T−], y[T,∞[

)
.

This is equivalent, for every ω
˜
∈Ωc, to:

ω
˜
·
(
 ,x[T,∞[

)
≥ ω
˜
·
(
 , y[T,∞[

)
.
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Whence the satisfaction of x[T,∞[ "
∗
T y[T,∞[ if any only if, for any ω

˜
∈Ωc,

ω
˜
T · x[T,∞[ ≥ ω

˜
T · y[T,∞[.

The set ΩT therefore exists and ΩT =
{
ω
˜
T
}
ω
˜
∈Ωc

. QED

C.13 PROOF OF PROPOSITION 4.9

This is a direct consequence of Lemma 4.8.
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