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Abstract

This article builds an axiomatization of inter-temporal trade-o(s that makes an explicit ac-

count of the distant future and thus encompasses motives related to sustainability, trans-

mission to o(springs and altruism. The focus is on separable representations and the

approach is completed following a decision-theory index based approach that is applied

to utility streams. The introdu)ion of some new axioms is shown to lead to the emergence

of two distin) orders that respe)ively relate to the distant future and close future compo-

nents of some utility stream. This enlightens the limits of the commonly used fat tail

intensity requesites for the evaluation of utility streams these are supersed and replaced

by an axiomatic approach to optimal myopia degrees.

Keywords: Axiomatization, Myopia, Temporal Order Decompositions, Distant future

sensitivities.

JEL Classification: D11, D90.
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1. Introduction

Even though the long-run concerns for sustainability, conservation and the well-being of the

future generations of o(springs nowadays go far beyond the boundaries of the academic

circles and promptly come into the fore into most public agendas, it is not the least sur-

prising that there seems to have been limited e(orts towards a penetrating understanding

of the a)ual meaning of having an unbounded horizon or accounting for the in!nite.

The first endeavor towards an axiomatic approach to the topic was brought by Brown &

Lewis [5] and explicitly anchored on myopia: it has nonetheless received the sparse echo

that was due to what was perceived as a mere mathematical curiosity, i.e., the identification

of the weight of the distant future. This nevertheless raises a number of questions that may

not have hitherto received su2cient attention. Is, together with most of the social welfare

literature, an arbitrarily large finite future a satisfa)ory proxy for an unbounded horizon?

Does the very fa) of having some remote low orders tail for a stream of utils mean that it

is negligible in not exerting any influence for finite dates? More precisely, are there some

specificities attached to arbitrarily remote infinite horizon streams and is it reasonable

to compare these through the same apparatus that is used for the finite parts of these

streams? Otherwise stated, does order theory keep on being the appropriate apparatus for

such elements and, assuming this is the case, how is it to be adaptated to simultaneously

accomodate finite and infinite elements?

The purpose of this article is to provide an integrated pi)ure of myopia and the valuation

of inter-temporal utility streams as pi)ured by the properties of some index fun)ions. The

criteria used in the literature for comparing inter-temporal utility streams commonly rest

upon intuitive properties such as completeness, monotonicity, continuity, positive homogeneity

and constant additivity (the last three properties have di(erent names in di(erent works).

While an order satisfying these properties can be represented by an index fun"ion, it is

worthwhile emphasizing that these properties can be preserved through usual operators,

e.g., summation, maximum, minimum, or by any convex combination of these. As a matter of

illustration, one can consider these following examples of index fun)ions satisfying these

fundamental properties.

I

(x) = (− δ)

∞
∑

t=

δtxt for some  < δ < ,

I

(x) = liminf

t→∞
xt .
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The first index fun)ion represents an order which is very myopic, i.e, the value of each

stream is essentially defined by a finite number of dates or generations. In opposition to

this, the second index/order belongs to an other extreme non-myopic orders kind, orders.

The evaluation of the streams would not change if only the values of a !nite number of

dates were modified.

As this was mentioned before, a convex combination of these two index fun)ions can also

be considered:

I(x) = (− χ)I

(x) + χI


(x) for some  < χ < .

The evaluation is now decomposed into a convex combination of two components, a first

relating to the evaluation of the close future through the index I

and a second pertaining

to the evaluation of the distant future through the index I

. Within this expression, the

parameter χ can be understood as the degree of myopia that measures the weight of the

distant future.

This article will aim at pursuing such a line of research by avoiding often hidden myopic

negligible tail insensitivity requesites and by building an axiomatization of inter-temporal

trade-o(s that makes an explicit account of the distant future and ensuingly encompasses

motives related to sustainability, transmission to o(springs and altruism.

From a general perspe)ive, an elementary way of assessing the e(e) of the distant fu-

ture proceeds by considering constant gains or losses in the asymptotic behaviour of

inter-temporal utility streams. Given an order representing by some index fun)ion I,

the weight of the distant future could, e.g., measured through two simple parameters,

i.e., χ

= limT→∞ I(,, · · · ,,,,, . . . ), and χ


= − limT→∞ I(,, · · · ,,−,−,−, . . . ), both

with T nil components, that respe)ively depi) remote constant gains and remote constant

losses. Building on such coe2cients, two ranges of questioning naturally arise. First, is a

con!guration where both of the distant future coe#cients sum up to zero (χ

= χ

= ) associated

with some tail-insensitivity property where the distant future becomes negligible? Second, is there

some scope for systematically decomposing the evaluation of inter-temporal streams between its dis-

tant future value and its close future value and, assuming this is the case, which form could such a

fun"ion uncover?

Surprisingly enough, the answer to the first question is negative and this can be checked,

e.g., by carefully considering the following index fun)ion I as:

I(x) = min
{

ω̂ · x,max
{

ω · x, liminf
s→∞

xs

}}

, for x ∈ ℓ∞.
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for ω and ω̂ two probability measures belonging to ℓ

and satisfying ω , ω̂. This can be

understood as a social welfare fun)ion for an economy with two agents evaluating inter-

temporal utility streams. While the first agent is very myopic and only considers the close

future evaluation, the second one is partially myopic evaluates any utility stream using the

maximum between its value in the close future and its distant future value. The criterion

of the social planer eventually maximizes the welfare of the least favored agent, along

the classical maximin criterion of Rawls [14] or some more recent argument in Chambers

& Echenique [8]. For this example, letting the two coe2cients χ

and χ


be reduced to

zero keeps on preserving some scope for altering the evaluation of a sequence by the

sole modification of its distant future components, whence some tail sensitivity. Otherwise

stated, and as negligible as the value of the distant future may sound, it keeps on exerting

some influence on the evaluation of the utility streams.1

In order to reach a thorough understanding of such a potentiality but also to introduce the

scope for a systematic decomposition of the future and then answer to the second question,

supplementary stru)ures have to be superimposed on the preferences order relation. Two

new axioms are presented. The first distant future sensitivities one states that given an utility

streams and a constant stream, the decision maker can always says about her preference

between the distant futures of these two streams. The second close future sensitivities axiom

is similar but relates to a comparison that takes place between some close futures.

The introdu)ion of this stru)ure is shown to lead to the emergence of two distin) orders

that respe)ively relate to the distant future and close future components of some utility

stream. Both the distant future and the close future orders satisfy some fundamentals prop-

erties and respe)ively assume representations through some distant future and close future

index fun"ions. Moreover, and it is the main result of this article, the evaluation of an utility

streams can be decomposed into a convex combination of its distant future and its close

future components, the parameters of this convex combination changing as a fun)ion of

the utility streams and lying between χ

and χ


. Interestingly, these two values hence play

a decisive role in the chara)erization of the eventual myopia degrees and they are chosen

as a fun)ion of the utility streams is to be understood as represents two di(erent sorts

of behaviours about considering the distant future that dire)ly relate to optimism and

pessimism.

The way this study relates to the earlier literature can easily be understood with the above

1The associated calculus are detailed in the main text of this article.
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discussion. Indeed, the notion of strong myopia, due to Brown & Lewis [5] coincides with the

upward myopia notion of Saywer [15] and means, in its version presented by Becker & Boyd

[4], that, for any x ≻ y, one has for any z, x ≻ (y

, y

, . . . , yT, zT+, zT+, . . .) for su2ciently large

values of T. In the context of this article, these cases are equivalent to the downward myopia

of by Saywer [15] where x ≻ y implies that, for any z, (x

,x

, . . . ,xT, zT+, zT+, . . .) ≻ y for

su2cient large values of T. This corresponds to an extreme occurrence where χ

= χ

= .

Another extreme, the completely patient and time invariant preferences in Marinacci [13], the

Banach limits2 correspond to the case χ

= χ


= . In parallel to this, Araujo [1] proves

that, in order for the set of non trivial Pareto allocations to exist, consumers must exhibit

some impatience in their preferences. Otherwise stated, this excludes the possibility of

preferences being represented by Banach limits, or this is equivalent to at least of one of

the two values χ

, χ

to di(er from . Following a very di(erent approach and contem-

plating a social planner problem, Chichilnisky [7] associated charges to the non-di"atorship

of present part of the social welfare criterion where the present would have no per se e(e).

Finally, and formerly related with the current study with an analysis completed over the set

of bounded real sequences ℓ∞, Chambers & Echenique [8] have recently put forth an ax-

iomatic approach to multiple discounts. The current approach is complementary to theirs

in focusing on myopia dimensions that precede discounting concerns and emerge as soon

as are relaxed the tail insensitivity of the utility sequences.

2. Some basic Axioms and a Role for the Distant Future in

the Evaluation of the Utility Streams

2.1 Fundamentals, Basic Axioms & the Construction of an Index Func-

tion

This study contemplates an axiomatization approach to the evaluation of infinite utility

streams, the whole argument being cast for discrete time sequences. In order to avoid any

confusion, letters like x,y,z will be used for sequences (of utils) with values in R while a

notation c✶, c′✶, c′′✶ will be used for constant sequences, the notation ✶ being retained

for the constant unitary sequence (,, . . . , ). In parallel to this, greek letters λ,η ,µ will be

preferred for constant scalars.

Recall first that the space of ℓ∞ is defined as the set of real sequences {xs}
∞
s= such that

2For a careful definition of Banach limits, see page 55 in Becker & Boyd [4].
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sups≥ |xs | < +∞. For every x ∈ ℓ∞ and T ≥ , let x[,T] = (x

,x

, . . . ,xT) denote its T + 

first components, x[T+,∞[ = (xT+,xT+, . . .) its tail starting from date T +  and, finally,

(x[,T], y[T+,+∞[) = (x

,x

, . . . ,xT, yT+, yT+, . . .) that considers the T+ first elements of the

sequence x and the T + -tail of the sequence y. The following axiom introduces some

fundamental properties for the order � on ℓ∞.

Axiom F. The order � satisfies the following properties:

(i) Completeness For every x,y ∈ ℓ∞, either x � y or y � x.

(ii) Transitivity For every x,y,z ∈ ℓ∞, if x � y and y � z, then x � z. Denote as x ∼ y the

case where x � y and y � x. Denote as x ≻ y the case where x � y and y � x.

(iii) Monotonicity If x,y ∈ ℓ∞ and xs ≥ ys for every s ∈N, then x � y.

(iv) Non-triviality There exist x,y ∈ ℓ∞ such that x ≻ y.

(v) Archimedeanity For x ∈ ℓ∞ and b✶ ≻ x ≻ b′✶, there are λ,µ ∈ [,] such that

(−λ)b✶+λb′✶ ≻ x and x ≻ (− µ)b✶+ µb′✶.

(vi) Weak convexity For every x,y,b✶ ∈ ℓ∞, and λ ∈ ],],

x � y⇔ (−λ)x +λb✶ � (−λ)y +λb✶.

All of the properties (i), (ii), (iii) and (iv) are standardly used in decision theory. The

Archimedeanity property (v) ensures that the order is continuous in the sup-norm topology

of ℓ∞. The eventualWeak convexity property (vi) is admittedly less immediate. It is referred

to as certainty independence in the decision theory literature and ensures that dire)ion ✶ is

comparison neutral: following that dire)ion, the comparison does not change between two

sequences.

Under these conditions, the order � can be represented by an index fun)ion which is

homogeneous of degree  and constantly additive:3

(i) For x ∈ ℓ∞, λ > , I(λx) = λI(x).

(ii) For x ∈ ℓ∞, constant b ∈ R, I(x + b✶) = I(x) + b.

3For the details of demonstration, see [9].
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Even though this dire)ly compares with the conclusions reached in Gilboa & Schmeidler

[11], and Ghirardato & al [10], it is worthwhile emphasizing that this article considers the

total space ℓ∞ as opposed to the space of simple a"s—these are equivalent to sequences in

ℓ∞ which take a finite number of values—that was used by these authors.

2.2 Non-negligible distant future and non-negligible close future

In the literature, the notions of impatience4 or delay aversion5 are generally understood

through the convergence of ✶{T} to zero and as T tends to infinity. It is however to be

stressed that such a property does not per se imply the convergence to zero of the e(e) of

the associated tail, i.e., some constant distant future sequence ✶[T,+∞[. More generally, it is

commonly assumed in the literature that the value of the distant future converges to zero

when T converges to infinity. In the current framework and under Proposition 2.1, this is

to mean that I
(

✶[,T],−✶[T+,∞[

)

and I
(

✶[,T],✶[T+,∞[

)

are to converge to zero when T

tends to infinity6. To check upon such this property in the current environment, it is first

useful to introduce the two following coe2cients:7

χ

= lim

T→∞
I
(

✶[,T],✶[T+,∞[

)

,

χ

= − lim

T→∞
I
(

✶[,T],−✶[T+,∞[

)

= − lim
T→∞

I
(

✶[,T],✶[T+,∞[

)

.

These two values χ

and χ


, which will be considered extensively in the course of this study,

will further play an important role in the definition of the myopia degrees. Under the above

definition, the condition χ

= χ

=  is similar to the usual negligible-tail or tail-insensitivity

conditions of the literature. A natural conje)ure hence formulates as the satisfa)ion, under

this condition and for any x,z ∈ ℓ∞, of:

lim
T→∞

I
(

x[,T], z[T+,∞[

)

= I(x),

i.e, for su2ciently large values of T, the tail of the sequence z would become irrelevant and

the whole evaluation of the utility stream would proceed from the sequence x. The following

counter example will however provide an illustration where, in spite of a valuation of the

4See Koopmans [12].

5See Bastianello & Chateauneuf [2].

6Observe that these two properties are not equivalent.

7From the monotonicity property, I
(

✶[,T],✶[T+,∞[

)

and −I
(

✶[,T],✶[T+,∞[

)

are decreasing as a fun)ion

of T, so these limits are well defined.
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distant future that could be nil,8 this future remote component of the sequence could

keep on exerting some influence on the evaluation of the whole sequence. This suggests a

stru)ure for the index fun)ion that could well be more complex than the one previously

claimed on an intuitive intuitive basis.

Example 2.1. Consider two probability measures belonging to the set ℓ

, namely ω and ω̂, and

satisfying ω , ω̂.9 De!ne the index fun"ion I as:

I(x) = min
{

ω̂ · x,max
{

ω · x, liminf
s→∞

xs

}}

, for x ∈ ℓ∞.

This representation can be understood as a social welfare fun"ion for an economy with two agents.

While the !rst agent would be highly myopic and only consider the close future of the utility stream

ω̂ ·x, the second one would be rely on a weaker form of myopia by considering the maximum between

the close future value ω · x and the in!mum limit of the distant future value of the stream. The

criterion of the social planer would eventually maximizes the welfare of the least favored agent

along the classical maximin criteria of Rawls [14] or its more recent acception due to Chambers &

Echenique [8].

It is readily checked that I satis!es the fundamental axiom F. Further observe that, for large enough

values of T, both ω ·
(

✶[,T],✶[T+,∞[

)

and ω̂ ·
(

✶[,T],✶[T+,∞[

)

are bounded above by , which

implies that the value of the index de!ned for asymptotically constant unitary gains, namely χ

,

sums up to:

I
(

✶[,T],✶[T+,∞[

)

=min















∞
∑

s=T+

ω̂s,















,

an expression that converges to zero. Likewise, the value of the index de!ned for asymptotically

constant unitary losses satis!es:

lim
T→∞

I
(

✶[,T],−✶[T+,∞[

)

= .

Remark that there however exist x,z ∈ ℓ∞ such that limT→∞ I
(

x[,T], z[T+,∞[

)

, I(x). Indeed, the

two sequences ω̂ and ω having been assumed to be distin" and both belonging to ℓ

, there exists

x ∈ ℓ∞ such that ω̂ ·x > ω ·x > liminfs→∞ xs. Considering now z satisfying ω̂ ·x > liminfs→∞ zs >

ω · x > liminfs→∞ xs. It is !nally obtained that:

lim
T→∞

I
(

x[,T], z[T+,∞[

)

= liminf
s→∞

zs,

8One can prove that limT→∞ I
(

✶[,T], z[T+,+∞[

)

=  for any z ∈ ℓ∞.

9ℓ is the set of real sequences {ωs}
∞
s= such that

∑∞
s= |ωs | < +∞. For ω ∈ ℓ and x ∈ ℓ∞, the scalar produ)

ω · x =
∑∞

s=ωsxs . The word "probability" in the statement means that ωs , ω̂s are non-negative for any s and
∑∞

s=ωs =
∑∞

s= ω̂s = .

7



i.e., the in!mum of the asymptotic behaviour of the sequence z, that di*ers from I(x) = ω · x.

Along Example 2.1 where the sole occurrence to two nil values for the myopia parame-

ters, i.e., χ

= χ

=  was not su2cient to ensure the negligibility of the distant future, the

following example shows that, under a configuration χ

= χ

=  where the two myopia pa-

rameters assume unitary values, the close future can keep on influencing on the evaluation

of the distant future.

Example 2.2. Consider an order being represented by the following index fun"ion

Î(x) = min

{

limsup
s→∞

xs,max
{

ω · x, liminf
s→∞

xs

}

}

,

with ω a probability measure in ℓ

. Along the interpretation of Example , while the !rst agent in

this economy is extremely non-myopic and evaluates utility streams by the sole consideration of the

supremum of its asymptotic values, the second one is only partially myopic. Relying on the same

arguments as in Example 2.2, it derives that:

lim
T→∞

Î(✶[,T],✶[T+,∞[) = ,

− lim
T→∞

Î(✶[,T],−✶[T+,∞[) = −
(

lim
T→∞

Î(✶[,T],✶[T+,∞[)− Î(✶)
)

= 

whence the obtention of unitary values for the two myopia parameters χ

= χ

= .10 Considering

again x,z satisfying liminfs→∞ xs < ω · x < ω · z < limsups→∞ xs. It can be checked that

lim
T→∞

Î(z[,T],x[T+,∞[) = ω · z,

which di*ers from Î(x) = ω · x.

The consideration of Examples 2.1 and 2.2 urges the need for a deeper understanding

of the problem at stake, i.e., the precise influence of the remote components of a utility

stream. As this shall be argued in the next se)ion, a clear pi)ure becomes available when

the preferences order is apprehended through appropriate complementary stru)ures.

3. A Decomposition for the Future: Closeness vs

Distantness

3.1 Distant Future Order

The following axiom assumes that there exists an evaluation of the distant future components

of the utility stream which is independent from the starting components—the close future—of

10This implies for any x ∈ ℓ∞, limT→∞ Î(x[,T],✶[T+,∞[) = .
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that utility stream.

Axiom G1. For any x ∈ ℓ∞ and any constant d ∈ R, either, for any ǫ > , there exists T

(ǫ)

such that for any z ∈ ℓ∞, for every T ≥ T

(ǫ):

(

z[,T],x[T+,∞[

)

�
(

z[,T],d✶[T+,∞[

)

− ǫ✶,

or, for any ǫ > , there exists T

(ǫ) such that for any z ∈ ℓ∞, for every T ≥ T


(ǫ):

(

z[,T],d✶[T+,∞[

)

�
(

z[,T],x[T+,∞[

)

− ǫ✶.

For any sequence x and a constant sequence d✶, the distant future component of the

sequence x will either overtake the sequence (d − ǫ)✶ or be overtaken by the sequence

(d + ǫ)✶, and this is going to take place independently from the initial components—the

close future—of the sequence z. Otherwise stated, either x or d✶ dominates in the distant

future. This distant future sensitivities axiom contradi)s with the usual negligible-tail or tail-

insensitivity axioms in the literature. Along these considerations, the simplest conceivable

order satisfying both F and G1 relates to the infimum limit of a sequence in ℓ∞ and is

represented by I(x) = liminfs→∞ xs. It is associated with the occurrence of unitary values

for both of the myopia parameters, i.e., χ

= χ

= .

Definition 3.1. De!ne the order �d as, for any x,y ∈ ℓ∞, the satisfa"ion of x �d y if and only

if, for any ǫ > , there exists T

(ǫ) such that, for any z ∈ ℓ∞ and for every T ≥ T


(ǫ):

(

z[,T],x[T+,∞[

)

�
(

z[,T], y[T+,∞[

)

− ǫ✶.

The order in Example 2.2 also satisfies axioms F and G1.

Example 3.1. Consider again the order represented by the index fun"ion I in Example 2.1.

I(x) = min
{

ω̂ · x,max
{

ω · x, liminf
s→∞

xs

}}

, for x ∈ ℓ∞.

For any x ∈ ℓ∞ and some scalar d ∈ R, consider !rst the con!guration liminfs→∞ xs ≥ d . Fixing

any ǫ > , sele" T

(ǫ) such that, for any T ≥ T


(ǫ):

∞
∑

s=T+

ωsxs ≥ d

∞
∑

s=T+

ωs − ǫ,

∞
∑

s=T+

ω̂sxs ≥ d

∞
∑

s=T+

ω̂s − ǫ.

9



This translates, for any z ∈ ℓ∞ and any T ≥ T

(ǫ), as the satisfa"ion of:

I
(

z[,T],x[T+,∞[

)

≥min
{

ω̂ · (z[,T],d✶[T+,∞[)− ǫ,

max
{

ω ·
(

z[,T],d✶[T+,∞[

)

− ǫ, liminf
s→∞

xs − ǫ
}}

≥ I
(

z[,T],d✶[T+,∞[

)

− ǫ.

Whence, and again for any T ≥ T

(ǫ), the behaviour described by Axiom G1:

(

z[,T],x[T+,∞[

)

� (z[,T],d✶[T+,∞[)− ǫ✶,

a similar line of argument being available for the remaining con!guration liminfs→∞ xs ≤ d .

Moreover, and even though χ

= χ


= , the order �d is not trivial. Sele" indeed z∗ satisfying

ω̂ · z∗ >  > ω · z∗. It derives that:

lim
T→∞

I
(

z∗[,T],✶[T+,∞[

)

=min
{

ω̂ · z∗,max {ω · z∗,}
}

= ,

lim
T→∞

I
(

z∗[,T],✶[T+,∞[

)

=min
{

ω̂ · z∗,max {ω · z∗,}
}

=min
{

ω̂ · z∗,
}

> .

Whence ✶ �d ✶ and ✶ 6�d ✶, or ✶ ≻d ✶: he order � is not trivial.

Proposition 3.1 proves that it su2ces for one of the two myopia parameters χ

and χ


to

di(er from zero for the order �d to satisfy axiom F. This in its turn assumes as its most

immediate consequence that there also exists an index fun)ion satisfying any axiom F.

Proposition 3.1. Assume that the initial order � satis!es axioms F and G1.

(i) The order �d is complete.

(ii) If at least one of the two values χ

,χ

di*ers from zero, the order �d is non-trivial, satis!es

axiom F and can be represented by an index fun"ion Id , which is positively homogeneous,

constantly additive, satisfying:

Id
(

z[,T],x[T+,∞[

)

= Id(x) for any x,z ∈ ℓ∞,T ∈N.

Otherwise stated and from (ii), the value of the index fun)ion does not depend upon

the starting components of the sequence z—the close future. More generally and, upon a

change in a mere finite number of values of the inter-temporal stream, the distant future

evaluation of that stream is let unmodified.
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3.2 Close future order

In order to enable a decomposition between the distant future and the close future, consider

a close future sensitivities axiom G2, that is to be understood as the complement of axiom G1.

Axiom G2. For any x ∈ ℓ∞, a constant c ∈ R, either, for any ǫ > , there exists T

(ǫ) such

that, for any z ∈ ℓ∞ and for every T ≥ T

(ǫ),

(

x[,T], z[T+,∞[

)

�
(

c✶[,T], z[T+,∞[

)

− ǫ✶,

or there exists T

(ǫ) such that, for any z ∈ ℓ∞ and for every T ≥ T


(ǫ),

(

c✶[,T], z[T+,∞[

)

�
(

x[,T], z[T+,∞[

)

− ǫ✶.

This assumption reads as follows: for any sequence x and a constant sequence d✶, either

the sequence x will overtake the sequence (c − ǫ)✶ or it will be dominated by the sequence

(c + ǫ)✶, both of these occurrences being defined whatever the behaviour in the distant

future. Otherwise stated, either x or d✶ dominates in the close future.

Usual conditions in the literature typically assume that the e(e) of the distant future

converges to zero—e.g., the Continuity at in!nity of Chambers & Echenique [8], or the

axioms ensuring insensitivity to the distant future, or some sort of negligible tail for the

distribution. Remark that, in opposition to this, the close future sensitivities Axiom G2

merely assumes that the distant future does not alter the evaluation of the close future.

As a basic illustration, consider the order represented by the index fun)ion I(x) = ( −

δ)
∑∞

s= δ
sxs, for some  < δ < . Such an order satisfies both F and G2, its myopia parame-

ters being both nil χ

= χ

= . A more elaborated formulation is provided in the following

example:

Example 3.2. Consider the order represented by the index fun"ion Î in Example 2.2:

Î(x) = min

{

limsup
s→∞

xs,max
{

ω · x, liminf
s→∞

xs

}

}

, for x ∈ ℓ∞.

Fixing any x ∈ ℓ∞ and some constant c ∈ R, consider !rst the con!guration ω ·x ≥ c. For any given

ǫ > , sele" a date T

(ǫ) such that, for any T ≥ T


(ǫ), one has:

T
∑

s=

ωsxs ≥ c

T
∑

s=

ωs − ǫ.

For any sequence z ∈ ℓ∞ and any date T ≥ T

(ǫ), the value of the index Î satis!es:

Î
(

x[,T], z[T+,∞[

)

≥min

{

limsup
s→∞

zs,max
{

ω · (c✶[,T], z[T+,∞[)− ǫ, liminf
s→∞

zs

}

}

≥ Î
(

c✶[,T], z[T+,∞[

)

− ǫ.

11



Whence, and for any T ≥ T

(ǫ), the behaviour described by Axiom G2:

(

x[,T], z[T+,∞[

)

�
(

c✶[,T], z[T+,∞[

)

− ǫ✶.

The con!guration ω · x ≤ c could be understood following the same line of arguments. Moreover,

and even though χ

= χ


= , the close order �c is not trivial. Indeed, sele" z∗ ∈ ℓ∞ such that

liminfs→∞ z∗s <  < limsups→∞ z∗s .

lim
T→∞

Î
(

✶[,T], z
∗
[T+,∞[

)

=min

{

limsup
s→∞

z∗s ,max
{

, liminf
s→∞

z∗s

}

}

= ,

lim
T→∞

Î
(

✶[,T], z
∗
[T+,∞[

)

=min

{

limsup
s→∞

z∗s ,max
{

, liminf
s→∞

z∗s

}

}

=min
{

limsup
s→∞

z∗s ,
}

> .

Whence ✶ �c ✶ and ✶ 6�c ✶, or ✶ ≻c ✶ and the order �c is not trivial.

Definition 3.2. De!ne the close future order �c as, for any x,y ∈ ℓ∞, the satisfa"ion of x �c y

if and only if for any ǫ > , there exists T

(ǫ) such that, for any sequence z ∈ ℓ∞ and for every date

T ≥ T

(ǫ),

(

x[,T], z[T+,∞[

)

�
(

y[,T], z[T+,∞[

)

− ǫ✶.

Proposition 3.2. Assume that the initial order � satis!es axioms F and G2.

(i) The close order �c is complete.

(ii) If at least one of the two values χ

,χ

di*ers from , then the order �c is non-trivial, satis!es

axiom F and be represented by an index fun"ion Ic which is positively homogeneous, constantly

additive and satis!es:

lim
T→∞

Ic
(

x[,T], z[T+,∞[

)

= Ic(x) for any x,z ∈ ℓ∞.

The property (ii) illustrates the close future order recovers a tail-insensitivity related prop-

erty, the corresponding distant future order of �c being indeed trivial.

The results in Propositions 3.1 and 3.2 as well as the chara)erizations in Examples 3.1

and 3.2, suggest the need for a more achieved chara)erization of the configurations where

the two myopia parameters assume boundary values, i.e., χ

= χ


= , or χ


= χ


= .

The following statement aims at providing a clarified view of the way these relate with the

triviality of either the distant or the future order:

Proposition 3.3. Assume that the order � satis!es axioms F and G1, G2.

a) If χ

= χ

= , then the order �d is trivial: for any x,y ∈ ℓ∞, x ∼d y.
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b) If χ

= χ

= , then the order �c is trivial: for any x,y ∈ ℓ∞, x ∼c y.

Otherwise stated, it is only in the case where the initial order satisfies both axioms G1 and

G2, i.e., the one where the decomposition between the distant and the close components

future is fully completed, that the boundary values for the myopia coe2cients may result

into the triviality of one of the two orders.

3.3 A decomposition between the distant and close future orders

From the previous developments and under axioms F, G1 and G2, one may surmise that

there is some potential for the index fun)ion I to be decomposed into a convex sum of

two index fun)ions Id and Ic, e.g.,

I(x) = (− χ∗)Ic(x) + χ∗Id(x),

for some value χ∗ ∈ [,]. First observe that, would the sele)ed parameter χ∗ not modify

over time, such a decomposition ought to imply that:

lim
T→∞

I
(

✶[,T],✶[T+,∞[

)

+ lim
T→∞

I
(

✶[,T],✶[T+,∞[

)

= ,

which is equivalent to χ

= χ


, and therefore χ∗ = χ


= χ


. Remark however that, under

axioms F, G1 and G2, the satisfa)ion of such an equality cannot be guaranteed. This

also indicates that, when χ

, χ

, the decomposition parameter must change as a fun)ion

of the involved sequence x.

The configuration

lim
T→∞

I
(

✶[,T],✶[T+,∞[

)

+ lim
T→∞

I
(

✶[,T],✶[T+,∞[

)

≤ ,

which is equivalent to the holding of χ

≤ χ

, can first be understood as a pessimistic, or a

mainly myopia-bending occurrence: the value brought by the distant future is not su2ciently

large to compensate the loss that is incurred in the close future.

Likewise, the configuration

lim
T→∞

I
(

✶[,T],✶[T+,∞[

)

+ lim
T→∞

I
(

✶[,T],✶[T+,∞[

)

≥ ,

which is equivalent to the holding of χ

≥ χ


, can be understood as an optimistic, or an

essentially nonmyopia-bending situation: the gain in the distant future is valued more than

the lost that is incurred in the close future.

13



The following theorem, which is the main result of this article, will prove that there exists a

multiplicity of admissible myopia degrees. This theorem also clarifies how it is the very choice

of the myopia degree χ that determines an optimal share between the close future and the

distant future indexes.

Theorem 3.1. Assume that the initial order � satis!es axioms F and G1, G2.

(i) For any x ∈ ℓ∞,

a) Let cx = Ic(x), dx = Id(x),

I(x) = lim
T→∞

I(cx✶[,T],dx✶[T+,∞[).

b) If cx ≤ dx, then

I(x) = (− χ

)cx + χ


dx.

c) If cx ≥ dx, then

I(x) = (− χ

)cx + χ


dx.

(ii) Let χ =min
{

χ

,χ


}

, and χ =max
{

χ

,χ


}

.

a) If χ

≤ χ

, then and for every x ∈ ℓ∞,

I(x) = min
χ≤χ≤χ

[

(− χ)Ic(x) + χId(x)
]

.

b) If χ

≥ χ

, then and for every x ∈ ℓ∞,

I(x) = max
χ≤χ≤χ

[

(− χ)Ic(x) + χId(x)
]

.

First remark that, from Theorem 3.1(i), the evaluation can be expressed as a fun)ion of

the distant and close future values. The weight of the convex combination being provided

by the remote gains myopia coe2cient χ

for the case where the close future is less valued

than the distant future and by the remote losses myopia coe2cient χ

in the opposite case.

Theorem 3.1(ii) is a dire) consequence of Theorem 3.1(i). For χ

≤ χ

, the decision maker

will always assign the highest possible parameter to the smallest value between Ic(x) and

Id(x); he indeed always sele)s the minimum value of a convex combination whose weight

is given by χ. It should finally be pointed out that neither the operator min can prevail

under χ

> χ

, nor the operator max under χ


< χ

, the behaviour of decision maker being

thus appropriately described by the comparison between χ

and χ


.
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While a convex combination between Examples 3.1 and 3.2 could have been conje)ured

to provide an interesting illustration of this decomposition, it is readily checked that such

a formulation is inappropriate would satisfy neither Axiom G1, nor Axiom G2. The

following illustration will however provide an elementary of the properties at stake:

Example 3.3. As a basic illustration, consider the two orders represented by the two following

index fun"ions:

(i) The index fun"ion

I(x) = min
χ≤χ≤χ













(− χ)

∞
∑

s=

(− δ)δsxs + χ liminf
s→∞

xs













,

is such that Ic(x) =
∑∞

s=( − δ)δ
sxs and Id(x) = liminfs→∞ xs with χ


= χ, and χ


= χ.

Fixing indeed any sequence x ∈ ℓ∞ and a constant c ∈ R, or any scalar ǫ > . Consider the

case
∑∞

s=( − δ)δ
sxs ≥ c and !x a date T


(ǫ) such that for any date T ≥ T


(ǫ) and any

z ∈ ℓ∞, one has
∑T

s=(− δ)δ
sxs ≥ c

∑T
s=ωs − ǫ. This in turn implies that, for any z ∈ ℓ∞

and for any χ ≤ χ ≤ χ, the following inequality is satis!ed:

(− χ)















T
∑

s=

(− δ)δsxs +

∞
∑

s=T+

(− δ)δszs















+ χ liminf
s→∞

zs

≥ (− χ)















c

T
∑

s=

ωs +

∞
∑

s=T+

ωszs















+ χ liminf
s→∞

zs − ǫ.

Such an inequality holding for any χ, it derives that, for any T ≥ T

(ǫ) and z ∈ ℓ∞, the index

I satis!es:

I
(

x[,T], z[T+,∞[

)

≥ I
(

d✶[,T], z[T+,∞[

)

− ǫ.

The remaining occurrence
∑∞

s=( − δ)δ
sxs ≤ c can be analysed with a related argument.

The order thus satis!es the close future sensitivities axiom G2, its close future order being

represented by the fun"ion Ic(c) =
∑∞

s=( − δ)δ
sxs. Relying on the same arguments, it is

readily proved that this order also satis!es the distant future sensitivities axiom G1, its

distant future index fun"ion being given by Id(x) = liminfs→∞ xs. The properties χ = χ

and χ

= χ !nally result from the minimum form of the operator.

(ii) Likewise and following the same line of arguments, it is readily checked that the index fun"ion

Î(x) = max
χ≤χ≤χ













(− χ)

∞
∑

s=

(− δ)δsxs + χ liminf
s→∞

xs













assumes a decomposition with Ic(x) =
∑∞

s=( − δ)δ
sxs and Id(x) = liminfs→∞ xs and for

χ

= χ and χ


= χ.
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Lastly, one may wonder about the absence of an α−maximin decomposition between the

close future and the distant future indexes.

Corollary 3.1. Assume that the initial order � satis!es axioms F, G1 and G2. For any α ∈

[,], consider the index fun"ion of the α−maximin criterion

Iα(x) = α min
χ≤χ≤χ

[

(− χ)Ic(x) + χId(x)
]

+ (−α) max
χ≤χ≤χ

[

(− χ)Ic(x) + χId(x)
]

.

Let χ
α
=min

{

αχ + (−α)χ, (−α)χ +αχ
}

and χα =max
{

αχ + (−α)χ, (−α)χ +αχ
}

.

(i) Let α satisfy / ≤ α ≤ . For any x ∈ ℓ∞,

Iα(x) = min
χ
α
≤χ≤χα

[

(− χ)Ic(x) + χId(x)
]

.

(ii) Let α satisfy  ≤ α ≤ /. For any x ∈ ℓ∞,

Iα(x) = max
χ
α
≤χ≤χα

[

(− χ)Ic(x) + χId(x)
]

.

Otherwise stated, Corollary 3.1 clarifies how the choice under an α−maximin behaviour

can be fully described by an immediate reformulation of the max or min operators of

Theorem 3.1.

A. Proof of Proposition 3.1

(i) For x ∈ ℓ∞, define D(x) as the set of values d such that for any ǫ > , there exists T

(ǫ)

such that, for any z ∈ ℓ∞, for any T ≥ T

(ǫ), one has

(

z[,T],x[T+,∞[

)

�
(

z[,T],d✶[T+,∞[

)

− ǫ✶.

Define D(y) accordingly. Without loss of generality, suppose that supD(x) ≥ supD(y) and

first let supD(y) < +∞. Then define dy = supD(y), that is finite. Fix any ǫ > : since

dy + (ǫ/)✶ does not belong to D(y) and d − (ǫ/)✶ belongs to D(y), there exists T

(ǫ) such

that, for any z ∈ ℓ∞, for T ≥ T

(ǫ):

(

(

z +
ǫ



✶

)

[,T]
,
(

dy +
ǫ



✶

)

[T+,∞[

)

+
ǫ



✶ �
(

z[,T], y[T+,∞[

)

�

(

(

z −
ǫ



✶

)

[,T]
,
(

dy −
ǫ



✶

)

[T+,∞[

)

−
ǫ



✶.

This implies, for T ≥ T

(ǫ), the satisfa)ion of:

(

z[,T],dy✶[T+,∞[

)

+ ǫ✶ �
(

z[,T], y[T+,∞[

)

�
(

z[,T],dy✶[T+,∞[

)

− ǫ✶.
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Since dx ≥ dy , for every ǫ >  and z ∈ ℓ∞, there exists T(ǫ) such that

(

z[,T],x[T+,∞[

)

�
(

z[,T],dy✶[T+,∞[

)

− ǫ✶

�
(

z[,T], y[T+,∞[

)

− ǫ✶.

This implies that x �d y.

Consider now the case supD(y) = +∞. This implies that supD(x) = +∞. Take d > sups ys.

Since d ∈D(x), for every ǫ > , there exists T

(ǫ) such that, for any z ∈ ℓ∞, for T ≥ T


(ǫ):

(

z[,T],x[T+,∞[

)

�
(

z[,T],d✶[T+,∞[

)

− ǫ✶

�
(

z[,T], y[T+,∞[

)

− ǫ✶.

(ii) First, one must prove the existence of x,y ∈ ℓ∞ such that x ≻d y. Chose by example ✶

and ✶. Obviously, ✶ �d ✶ is first satisfied. Suppose now that ✶ �d ✶. Consider first the

case χ

>  . Then, and for  < ǫ < χ


, there exists T


(ǫ) such that for T ≥ T


(ǫ),

I
(

✶[,T],✶[T+,∞[

)

≥ I
(

✶[,T],✶[T+,∞[

)

− ǫ.

Letting T tend to infinity, it follows that  ≥ χ

−ǫ, a contradi)ion. Consider then the case

χ

> . For  < ǫ < χ


, there exists T


(ǫ) such that, for T ≥ T


(ǫ):

(

✶[,T],✶[T+,∞[

)

≥ I
(

✶[,T],✶[T+,∞[

)

− ǫ.

Letting T tend to infinity, it follows that ǫ ≥ χ

, a contradi)ion. The distant order �d is

hence not trivial.

Further observe that, if x �d d✶, then, for every d ′ ∈ R, x + d ′✶ �d (d + d ′)✶. Indeed, for

ǫ > , there exists T

(ǫ) such that, for any z ∈ ℓ∞, for T ≥ T


(ǫ),

(

(z − d ′✶)[,T],x[T+,∞[

)

�
(

(z − d ′✶)[,T],d✶[T+,∞[

)

− ǫ✶.

From the constantly additive property, for T ≥ T

(ǫ),

(

z[,T], (x + d ′✶)[T+,∞[)
)

�
(

z[,T], (d + d ′)✶[T+,∞[)
)

− ǫ✶.

Hence x + d ′✶ �d (d + d ′)✶.

Then consider x ∈ ℓ∞ and a constant d such that, ǫ > , there exists T

(ǫ) with, for any

z ∈ ℓ∞, for T ≥ T

(ǫ),

(

z[,T],x[T+,∞[

)

�
(

z[,T],d✶[T+,∞[)
)

− ǫ✶.
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Fix then any λ > . From axiom G1, there exists T′

(ǫ) such that, for T ≥ T′


(ǫ),

(

(



λ
z
)

[,T]
,x[T+,∞[

)

�

(

(



λ
z
)

[,T]
,d✶[T+,∞[

)

−


λ
ǫ✶,

that in its turn implies, for T ≥ T′

(ǫ),

(

z[,T],
(

λx[T+,∞[

)

)

�

(

z[,T],λd✶T+,∞[

)

− ǫ✶.

Hence, for x �d y and for every λ > , the occurrence of λx �d λy.

Consider now x,y ∈ ℓ∞ such that x �d y. For every  < λ < , one has ( − λ)x + λd✶ �d

(−λ)y +λd✶.

The order �d having been proved to be non trivial, the value dx = supD(x) is finite and,

for every d > dx > d ′, the relation d✶ ≻d x ≻d d ′✶ is to hold. There thus obviously exists

λ,µ ∈ [,] such that ( − λ)d + λd ′ > dx > ( − µ)d + µd ′ and the order �d satisfies the

Archimedeanity property.

Since �d satisfies F, there exists an index fun)ion Id which is homogeneous and constantly

additive. The last property is a dire) consequence of the definition of the order �d . QED

B. Proof of Proposition 3.2

(i) Using the same arguments as in the proof of Proposition 3.1, the order �c is complete.

(ii) It can first be proved that ✶ ≻c ✶. Suppose the opposite and ✶ �c ✶ and consider the

case χ

< . For  < ǫ < − χ


, there exists T


(ǫ) such that, for T ≥ T


(ǫ),

I
(

✶[,T],✶[T+,∞[

)

≥ I
(

✶[,T],✶[T+,∞[

)

− ǫ.

Letting T tend to infinity, one gets χ

≥  − ǫ: a contradi)ion. For the remaining case

χ

< , make use of the same arguments. For the proof of the other properties in axiom F,

follow the arguments developed for the proof of Proposition 3.1.

Consider any x ∈ ℓ∞ and fix a constant d. For every ǫ >  and for large enough values of

T,

Ic
(

cx✶[,T],d✶[T+,∞[

)

+ ǫ ≥ Ic
(

x[,T],d✶[T+,∞[

)

≥ Ic
(

cx✶[,T],d✶[T+,∞[

)

− ǫ.

Letting T tend to infinity and ǫ converge to zero,

lim
T→∞

Ic
(

x[,T],d✶[T+,∞[

)

= Ic(x).
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For every x,y ∈ ℓ∞, fix then d ≥ sups ys ≥ infs ys ≥ d ′. Whence, for every T,

Ic
(

x[,T],d✶[T+,∞[

)

≥ Ic
(

x[,T], y[T+,∞[

)

≥ Ic
(

x[,T],d
′
✶[T+,∞[

)

.

Letting T tend to infinity, if eventually follows that limT→∞ Ic
(

x[,T], y[T+,∞[

)

= Ic(x), that

completes the proof. QED

C. Proof of Theorem 3.1

(i) First suppose that χ

≤ χ


, define cx = Ic(x) and dx = Id(x) and fix ǫ > . From the

definition of cx and dx, for large enough values of T,

x =
(

x[,T],x[T+,∞[

)

�
(

cx✶[,T],x[T+,∞[

)

− ǫ✶

�
(

cx✶[,T],dx✶[T+,∞[

)

− ǫ✶.

Therefore

I(x) ≥ limsup
T→∞

I
(

c✶[,T],d✶[T+,∞[

)

− ǫ✶.

This inequality being further true for any arbitrary ǫ > ,

I(x) ≥ limsup
T→∞

I
(

cx✶[,T],dx✶[T+,∞[

)

.

Likewise,

I(x) ≤ liminf
T→∞

I
(

cx✶[,T],dx✶[T+,∞[

)

.

Therefore

I(x) = lim
T→∞

I
(

cx✶[,T],dx✶[T+,∞[

)

.

First consider the configuration cx ≤ dx or, equivalently, Ic(x) ≤ Id(x). As dx − cx ≥ , it is

obtained that:

I(x) = lim
T→∞

I
(

cx✶[,T],dx✶[T+,∞[

)

= cx + lim
T→∞

I
(

✶[,T], (dx − cx)✶[T+,∞[

)

= cx + (dx − cx) lim
T→∞

I
(

✶[,T],✶[T+,∞[

)

= (− χ

)cx + χ


dx

= (− χ

)Ic(x) + χ


Id(x).
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For the case Ic(x) ≥ Id(x), using similar arguments,

I(x) = (− χ

)Ic(x) + χ


Id(x).

(iia) Consider first the configuration χ

≤ χ

. This implies χ = χ


, χ = χ


.

For the case Ic(x) ≤ Id(x), for any χ ≤ χ ≤ χ,

I(x) = (− χ

)Ic(x) + χ


Id(x) ≤ (− χ)Ic(x) + χId(x).

As for the remaining case Ic(x) ≥ Id(x), and making use of the same arguments

I(x) = (− χ

)Ic(x) + χ


Id(x)

≤ (− χ)Ic(x) + χId(x),

for any χ ∈ [χ,χ]. Whence, finally

I(x) = min
χ≤χ≤χ

[

(− χ)Ic(x) + χId(x)
]

.

(iib) For the other configuration χ

≥ χ

and making use of the same line of arguments, it

is similarly obtained that:

I(x) = max
χ≤χ≤χ

[

(− χ)Ic(x) + χId(x)
]

,

where χ = χ

, χ = χ


. QED

C.1 Proof of Corollary 3.1

First assume that Ic(x) ≤ Id(x). The value of Iα(x) is therefore defined as:

Iα(x) = α
[

(− χ)Ic(x) + χId(x)
]

+ (−α) [(− χ)Ic(x) + χId(x)]

=
[

− (αχ + (−α)χ)
]

Ic(x) +
[

αχ + (−α)χ
]

Id(x).

Consider then the remaining configuration Ic(x) ≥ Id(x). The value of Iα(x) is therefore

defined as:

Iα(x) = α
[

(− χ)Ic(x) + χId(x)
]

+ (−α)
[

(− χ)Ic(x) + χId(x)
]

=
[

−
(

(−α)χ +αχ
)]

Ic(x) +
[

(−α)χ +αχ
]

Id(x).

For / ≤ α ≤ , χ
α
≤ χα. Hence, for Ic(x) ≤ Id(x),

Iα(x) =
(

− χ
α

)

Ic(x) + χ
α
Id(x),
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while, for Ic(x) ≥ Id(x),

Iα(x) =
(

− χα
)

Ic(x) + χαId(x).

These properties are equivalents to the holding, for any x ∈ ℓ∞, of

Iα(x) = min
χ
α
≤χ≤χα

[

(− χ)Ic(x) + χId(x)
]

.

For  ≤ α ≤ / and making use of the same arguments, it is similarly obtained that:

Iα(x) = max
χ
α
≤χ≤χα

[

(− χ)Ic(x) + χId(x)
]

.

The statement follows. QED
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