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Technological changes and population growth:

the role of land in England

Abstract

This paper emphasizes the role of land and technological progress in eco-
nomic and population growth. The model is calibrated using historical data
on England concerning both economic growth rate and the factor shares
(land, capital, and labor) in total income, as well as mortality tables. It is
able to reproduce the dynamics of population since 1760. Moreover, it is pos-
sible to disentangle the relative e ect of technical changes and mortality fall
on the evolution of population. We conduct a counterfactual analysis elimi-
nating successively the increase in life expectancy and the technological bias.
With no increase in life expectancy, population would have been respectively
10% and 30% lower in 1910 and in the long run. The Þgures would have
been respectively 40% and 60% lower, with no bias in the technical progress.
Finally, population would have been 45% smaller in 1910 and 70% smaller in
the long run, neutralizing both the e ect of life expectancy and technological
bias. So the major part of population increase is due to the technological bias
evolution between land and capital.
Keywords: endogenous fertility, land.
JEL ClassiÞcation: D9, J1, O11, R21.

1 Introduction

During the industrial revolution, England has experienced a signiÞcant in-
crease in total population, associated with a decrease in mortality. The out-
standing growth rate was driven by a technical progress biased in favor of
capital that generated an unbalanced growth process. The value added pro-
duced by capital increased dramatically with respect to the one produced by
land (see Allen, 2009). At the same time, the expected life at birth rose and
infant mortality decreased (see Cervellati and Sunde, 2005, and Maddison,
2013).

In this paper, we build a model able to reproduce the actual data on
population since 1760. Technical progress and mortality are the two driving
forces of the model and generate an endogenous dynamics of capital and
population. The model is able to mimic the historical evolution of population.
Moreover, it allows to make a counterfactual analysis, and to disentangle the
relative e ect of technical changes and mortality fall on population dynamics.
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Many articles have tried to provide explanations of the historical dynam-
ics of population, growth, and industrialization. Kremer (1993) is interested
in the empirical relation between technology growth and population. Aggre-
gate relations are assumed without microeconomic foundations; technological
progress depends on population size and technology limits population growth.
Combining these assumptions leads to the prediction that the growth rate
and the size of population are positively related. Galor and Weil (2000)
propose a uniÞed growth theory to explain the qualitative features of the de-
mographic evolution. The main mechanisms are the quantity quality trade-
o in fertility and a human capital accumulation technology that depends
negatively on the growth rate of the economy. Kongsamut et al. (2001) pro-
pose a theoretical explanation of the unbalanced growth of di erent sectors
(agriculture, manufacturing, and services), using non constant consumption
elasticities that vary with the level of consumption in each sector. Hansen
and Prescott (2002) replicate fertility behaviors during the industrialization
process, driven by the substitution of capital to land in production, which is
induced by biased technical progress. Fertility behaviors are assumed to fol-
low an ad hoc function of consumption. Cervellati and Sunde (2005) provide
an explanation of the development process that is based on the interplay be-
tween human capital formation, technological progress, and life expectancy,
all endogenous in the model. But, fertility is not taken into account, neither
land. Leukhina and Turnovsky (2016) investigate the roles of technology
and trade in the structural transformation from farming to manufacturing of
England. Population is taken as exogenous in their model.

All these contributions investigate the role of some particular variables in
the development process. Our contribution is to emphasize the role of land,
life expectancy, and biased technical progress in the population growth. We
adopt a perspective close to Hansen and Prescott (2002), with three improve-
ments: a microfoundation of the fertility behavior, an explicit land market
allocation, and a confrontation of the model with historical data. We build
on Loupias and Wigniolle (2013) which have developed a theoretical model
on the same topic. The present paper adopts a very di erent perspective. Its
aim is to reproduce historical data of population in England. To do that, we
simplify the technology in taking the technical progress as exogenous. The
model is fully calibrated using historical data and succeeds in reproducing
the historical population growth.

The present paper develops an overlapping generations model in which
fertility is endogenous. The utility of the parents is a function of good con-
sumptions, of the number of their children, and of the consumption of a Þxed
asset: land. Each child implies a Þnancial cost and induces a congestion e ect
on the utility of land. In our analysis, land can be used both as a production
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factor and as housing services for households. Under the form of housing
services, land provides utility to households. Moreover, as the demand for
housing services depends on the number of children, land is also related to
fertility behaviors.

To complement our model we introduce two types of survival probabilities:
a child survival rate and an adult survival rate. As shown in Aghion et al.
(2011), improvement in life expectancy has a signiÞcant positive impact on
per capita GDP growth.

Production uses three factors: labor, capital, and land. Capital and land
are both a ected by a speciÞc technical progress term. These two technical
progresses generate a GDP growth at aggregate level and a shift in the relative
shares of capital and land in GDP.

The model is calibrated using historical data for mortality rates, GDP
growth rates, and the shares of capital and land incomes in GDP.

The model is able to reproduce the dynamics of population since 1760.
Moreover, it is possible to disentangle the relative e ect of technical changes
and mortality fall on the evolution of population. We conduct a counter-
factual analysis eliminating successively the increase in life expectancy and
the technological bias. With no increase in life expectancy, population would
have been respectively 10% and 30% lower in 1910 and in the long run. The
Þgures would have been respectively 40% and 60% lower, with no bias in
the technical progress. Finally, population would have been 45% smaller in
1910 and 70% smaller in the long run, neutralizing both the e ect of life
expectancy and technological bias. According to our model, the major part
of population increase is due to the technological bias evolution between land
and capital.

Section Two presents the model. Section Three analyzes the dynam-
ics of the intertemporal equilibrium. Section Four describes the calibration.
Section Five compares simulation results to the stylized facts and gives coun-
terfactual analysis. Section Six concludes and section Seven gives references.
A last section of appendix provides the numerical results obtained through
counterfactual analysis.

2 The Model

We develop a two-period overlapping generations model à la Diamond (1965)
where fertility is endogenous. The life cycle of agents consists of one working
period and one retirement period. Childhood implicitly exists as an initial
period of life during which agents have a probability to survive. The number
of units of labor is equal to the number of young people and thus determined
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by households’ fertility decisions in the previous period. In every period the
economy produces a single homogenous good, using land, labor, and capital
as inputs. Production beneÞts from two biased technical progress in favor of
capital and land. The single good is used both for consumption and capital
accumulation. Land is a Þxed factor that includes agricultural land, business
building, and housing. Services of land may be used both by Þrms as input
in the production process and by households as housing. For the sake of
simplicity, its supply is assumed to be constant and exogenous.

The Þrst subsection is devoted to the Þrm, the second to the households,
and the last one to market equilibrium.

2.1 The Þrm

Production occurs according to a constant-returns-to-scale technology that
is subject to technological progress. The output produced at time , , is:

= ( )1
1

+ (1 ) ( )
1 1
¸

1
1 (1)

with 0 1, 0 1 1 where , , and are the quantities
of capital, labor, and land used in production at time . 0 is a
capital augmenting technical progress and a land augmenting technical
progress.

The capital is fully depreciated in one period. The number of units of
labor is determined by households’ decisions in the preceding period regard-
ing the number of their children. Households have property rights over land.
The land used as an input by the Þrm is rented from households. The rent
rate is taken as given by the Þrm.

The Þrm maximizes its proÞt, taking the wage rate , the interest rate
( 1), and the rent rate as given.

First order conditions for the optimization problem are derived below.
All markets are perfectly competitive. On the labor market the quantity of
labor used in production is equal to the number of young households at
period . DeÞning, and , the competitive wage, the interest
factor, and the rent rate are:

4



= (1 ) ( )1
1

+ (1 ) ( )
1 1
¸

1

(2)

= ( )1
1 1

( )1
1

+ (1 ) ( )
1 1
¸

1
1

(3)

= (1 )( )1
1 1

( )1
1

+ (1 ) ( )
1 1
¸

1
1

(4)

2.2 Households

Households are behaving as in Loupias and Wigniolle (2013). In each period
a generation consists of identical adult individuals. Members of generation

live with probability for two periods and die with probability (1 ) at
the end of the Þrst period. is taken as exogenous, as it will be calibrated
following historical data. Generation agents work in the Þrst period and
are retired during the second one. Members of generation choose at date
consumption while young ( ) and old ( +1), as well as the number of their
children per adult ( ), and their use of land ( ). Only a fraction of
the children survives. Individuals of generation implicitly live for three
periods: childhood (in 1), young adult (in ), and old adult (in + 1).

The preferences of members of generation are represented by the utility
function

( +1 ) = 1 ln + 2 ln +1+ 3 ln + 4 ln( ) (5)

where is a positive parameter and 1 + 2 + 3 + 4 = 1.
Households maximize their expected utility taking into account the prob-

ability of reaching the second period. One can deÞne that
measures the services of land per adult. It is increasing with the total amount
of land per adult and decreasing with the number of surviving children per
adult. For tractability, it is assumed that households value the land services
only when young adults.

Since Dusansky and Wilson (1993), it is a standard assumption to con-
sider that land services are an argument of the utility function. What is
new here is the congestion e ect due to children introduced by Loupias and
Wigniolle (2013).

Land plays two roles for households. The Þrst role is housing for which
they pay the rent when young adult. Secondly, land is a portfolio asset
that is bought in period , that yields rents in +1, and that is sold in +1

5



to the next generation. In +1, rents are paid both by households and Þrms
to owners.

Each newborn child entails a rearing cost of 1 . Moreover, for each
surviving child, an additional cost of 2 is borne: the costs of rearing
children are proportional to the standard of living of their parents. Through
the paper 1 and 2 are assumed to be constant parameters. The total cost
of children in consumption good (housing not included) is thus

( 1 + 2 )

The number of surviving children per adult is 0 . The corre-
sponding cost is 0 with

=
1

+ 2

The agent saves an amount that is shared between two assets: produc-
tive capital and land. As agents can arbitrate between the two assets, the
non arbitrage condition implies that land o ers the same return as capital.
The gross return on capital is +1. One unit of land has a price in period

and is resold +1 in +1 Moreover, it allows to earn a rent +1. The non
arbitrage condition is written as follows:

+1 =
+1 + +1

(6)

Members of generation maximize their intertemporal utility function
under the following budget constraints:

+ + 0 + = (7)

+1 =
+1

(8)

The actual return on savings is +1
+1 as the savings of the dead

agents are redistributed to the surviving ones. This is equivalent to assume
the existence of a perfect annuity market. Note that using (the services of
land per adult), one can easily make clear the real cost of one surviving child
( + ) which can be broken down as the sum of the cost in consumption
good and the cost in land:

+ + ( + ) 0 + = (9)
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The intertemporal budget constraint may be rewritten as:

+
+1

+1

+ ( + ) 0 + = (10)

First order conditions for the optimization problem lead to the following
solutions:

= 1 (11)

= 2 (12)

+1 = 2 +1 (13)

0 =
3

( + )
(14)

=
3

( + )
+ 4 (15)

with

1 =
1

1 + 2 + 3 + 4
(16)

2 =
2

1 + 2 + 3 + 4
(17)

3 =
3

1 + 2 + 3 + 4
(18)

4 =
4

1 + 2 + 3 + 4
(19)

As shown in equations (16), (17), (18), and (19), a rise in life expectancy
( ) increases 2 , and savings . It decreases Þrst period consumption ,
fertility 0 , and demand for land .

The number of young households at date + 1 is by deÞnition equal to:

+1
0 (20)

Total population at date can be written as

= 1 1 + + +1 (21)

Thus, the survival probability at old age has a direct e ect on total
population (via the number of old individuals) and indirect e ects via 0

1

and 0 as 3 1 and 3 are respectively depending on 1 and .
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From now on, the lower case designates the upper case variable divided
by the number of young individuals. For instance, is deÞned as the
quantity of land available per young living agent. The evolution of land per
young alive can thus be described by the following equation:

+1 = 0
(22)

2.3 Market equilibrium

Land has two prices: the rent rate and the price for sale . There are
thus two markets: one for land services and one for ownership. It is the
rent rate that determines the allocation of rented land between Þrms and
consumers. The equilibrium on the rent market expressed per head of young
household is:

+ = (23)

The price of land for sale depends on the global equilibrium on savings
market. Household savings have to be split into physical capital and land.

2 = 0

+1 + (24)

where +1 stands for the capital per young household at date + 1. The
amount of physical capital per young household available in the economy in
+ 1 is thus depending on the value of land .

Agents are indi erent in investing in capital or land as long as the non
arbitrage condition in portfolios holds (6).

3 Dynamics

In this section, we characterize the dynamics and transform the model in
a way that makes it comparable to historical data. The Þrst subsection de-
Þnes the intertemporal equilibrium. In the second subsection variables are
deßated with respect to technological progress parameters. The third sub-
section replaces some unobservable variables by observable ones, and the
fourth conducts a theoretical analysis of the dynamics.

3.1 Intertemporal equilibrium

The dynamics of the economy is characterized by the set of the nine previous
equations:
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- (2), (3), and (4), the equilibrium prices of production factors , , ,
- (14), and (15), the optimal behavior of households for fertility and

housing, 0 and ,
- (22), the evolution of land per young alive, ,
- (23), the equilibrium allocation of rented land between Þrms and house-

holds,
- (24), the equilibrium allocation of savings between land and capital,
- (6), the non arbitrage condition between the yields of land and capital.
These equations determine the nine endogenous variables , , , 0 ,

, , , , and .

3.2 Deßated model

Variables are deßated in order to be stationary in the long run.
We deÞne and as follows

=
+1

=
( )1 (1 )

is the growth factor of the capital productivity level and is a measure
of the technological bias between the capital and the land factor. DeÞning
the deßated variables ˜ , ˜ , ˜ , and ˜ , as

˜ =
( ) (1 )

we rewrite the model of the previous section as a system of nine equations
with nine endogenous variables (˜ , , , 0 , , ˜ , ˜ , ˜ , and ) and two
exogenous variables ( and ).

Substituting in the model of the previous section, one has:

˜ = (1 ) (˜ )1
1

+ (1 ) ( )
1 1
¸

1

(25)

= ˜
1

(˜ )1
1

+ (1 ) ( )
1 1
¸

1
1

(26)

˜ = (1 )( )1
1 1

(˜ )1
1

+ (1 ) ( )
1 1
¸

1
1

(27)
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0 =
3 ˜

( ˜ + ˜ )
(28)

=
3 ˜

( ˜ + ˜ )
+ 4

˜

˜
(29)

+1 = 0
(30)

+ = (31)

2 ˜ = 0˜
+1

(1 )

+ ˜ (32)

+1 =
˜+1 + ˜ +1

˜

(1 )

(33)

So we have a system of nine equations with nine endogenous variables
(˜ , , , 0 , , ˜ , ˜ , ˜ , and ) and two exogenous variables ( and

).
Unfortunately, and are not directly observable. In the next subsec-

tion we Þnd a way to replace and by observable exogenous variables.

3.3 Capital share and growth rate

From the theoretical model we can compute the three factor shares in pro-
duction:

=
˜

˜ + ˜ + ˜

=
˜

˜ + ˜ + ˜

=
˜

˜ + ˜ + ˜

We deÞne as the growth factor of production:

=
+1

Our aim is to calibrate the model using historical data. As (the growth
factor of the capital productivity level) and (a measure of the technological
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bias) are unobservable, we replace them in the equations of the model by
and , which are observable in the data.

Computations are given in appendix 1. Two key equations allow under-
standing how it is possible to identify and from , , and the other
endogenous variables of the model:

=
˜ µ

1

¶
1
µ

1

1

¶
1

(34)

=

µ

0

¶ (1 ) Ã
+1

! (1 )
1
Ã

˜

˜
+1

!(1 )

(35)

(34) shows the relation between technical bias and the share of capital
income in total production . When becomes close to zero, the bias in
favor of capital is huge, the share of capital income in total production
becomes close to , and the share of land income in total production
close to zero.

(35) shows that the technical progress on capital is the main determi-
nant of production growth .

Using historical data for and , the model allows to recover the values
for and through equations (34) and (35). In other words, these two
observable variables and are substituted to the two exogenous variables

and , as they are functions of and and the three endogenous
variables 0 , ˜ , and .

In the end, the dynamics of the economy can be written as:
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˜ = (1 )˜
¸

1

(36)

= ˜ 1

¸
1

(37)

˜ = ˜
¸

1

(38)

0 =
3 ˜

( ˜ + ˜ )
(39)

=
3 ˜

( ˜ + ˜ )
+ 4

˜

˜
(40)

+1 =
0

(41)

= + (42)

2 ˜ =

Ã
+1

!
1

˜ ˜1
+1 + ˜ (43)

+1 =
˜+1 + ˜ +1

˜ 0

Ã
+1

!
1
Ã

˜

˜
+1

!

(44)

So we have a system of nine equations with nine endogenous variables
(˜ , , , 0 , , ˜ , ˜ , ˜ , and ) and two observable variables and

.

3.4 Theoretical analysis of the dynamics

The dynamics of the variables , , 0 , and can be studied as an au-
tonomous subsystem as

˜

˜
=

(1 )

( )

and thus only depends on the quantity of land used by Þrms , and not on
˜ .

Using this property, equation (39) can be written

0 =
3 (1 )

(1 ) + ( )
(45)
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Equation (40) can be written

=
3 (1 )

(1 ) + ( )
+

4 (1 )

( )

Replacing in (42), we obtain a relation between and :

= +
3 (1 )

(1 ) + ( )
+

4 (1 )

( )
(46)

Thus, one can get from as is monotonically increasing in .
Finally, equation (41) with (45) determines the dynamics of :

+1 =
(1 ) + ( )

3 (1 )
(47)

In the end, the dynamics of does not depend on ˜ due to the ho-
mothetic assumptions on the utility and the production functions combined
with a child cost proportional to wages.

has no e ect on population. , (via ), and (via 3 ) are the
exogenous shocks that determine .

Equations (45), (46) and (47) allow to understand how the technological
progress a ects fertility and population growth. The bias of technological
progress in favor of capital induces an increase in , which increases the
net fertility factor 0 , all other things being equal. Firms substitute capital
to land, ˜ ˜ increases, fertility increases as relative cost of land is cheaper
for households. As long as population increases, both and decrease.
The decrease of the quantity of land per adult used by Þrms leads to
a decrease in fertility 0 . These two antagonistic e ects on 0 lead to an
inverse U-shaped evolution of fertility.

The two equations (43) and (44) determine the dynamics of ˜ and ˜ , with
the prices , ˜ , and ˜ , given by (37), (36), and (38). The other variables,
0 and , have been determined by the autonomous system analyzed above.

Introducing the variable

=
˜
˜

the system of the two equations (43) and (44) becomes
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2 (1 )

¸
1

=

Ã
+1

!
1

˜1
+1 + (48)

+1
˜ 1
+1

"

+1

#
1

=
+1 +

+1

+1

h

+1

i
1

0

Ã
+1

!
1

(49)

Eliminating ˜1
+1 between these two equations, an autonomous dynamic

equation in is obtained. is a forward looking variable determined by the
terminal condition. As is determined, equation (48) allows to Þnd ˜

+1.
Thus, ˜

0 has no impact on the dynamics, as ˜
+1 does not depend on ˜ .

This is a usual property in endogenous fertility models with Cobb-Douglas
production function and log-linear preferences.

4 Calibration

Subsection 1 is devoted to the value of parameters and exogenous variables
and subsection 2 to the simulation strategy.

4.1 Parameters and exogenous variables

The model incorporates ten parameters:
- , , and for technology,
- 1, 2, 3, 4, and for households’ preferences,
- 1 and 2 for child costs.
The parameters used to simulate the dynamics are the following:
Parameters

Technology = 0 5 = 10 = 0 45
Utility 1 = 0 35 2 = 0 25 3 = 0 3 4 = 0 1 = 1

Cost of a child 1 = 0 08 2 = 0 07

Four variables are taken from historical data:
- and for surviving probabilities,
- and for the share of capital in production and the growth factor.

Details on parameters and historical data are given below.
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4.1.1 Technology

We recall that the production function is

= ( )1
1

+ (1 ) ( )
1 1
¸

1
1 (50)

Parameters and are taken as = 10 and = 0 5. We assume a high sub-
stitutability between capital and land. The impact of the two technological
progresses and is measured indirectly by and where is the
growth factor and the share of capital in production. is measured as
the England production growth factor on 30 years for periods between 1730
and 1910, and is the share of capital incomes in production for England
at the same dates.

1730 1760 1790 1820 1850 1880 1910 1940 1970 2000
0.21 0.23 0.25 0.30 0.35 0.40 0.43 0.43 0.44 0.44
- 1.31 1.20 1.66 1.75 1.90 1.72 1.60 1.81 2.02

The share of capital income in production is taken from Allen (2009).
From these data, the share of labor income = 1 can be considered as
constant over the period and equal to 0 55. Therefore, = 0 45. The rest of
the income is shared between land and capital . The Þgure for 1730
is not available, so we have taken = 0 21 assuming that the evolution is
the same between 1730 and 1760 than between 1790 and 1760. The share of
capital income in production is bounded by 0 45 as + = 0 45. As
the share of agricultural land income in GDP for UK is around 1% in 2000
(from the World Bank database), we report 0 44 for 2000.

The growth factor reported in the 1760 column is the one from 1730 to
1760, and so on. The Þgures come from the Historical Statistics of the World
Economy: 1-2006 AD from Maddison (2009). Details at the beginning of the
18th century are inferred from Craft (2004). Data for the growth factor
have been also reported after 1910 from Maddison (2009) for U.K. in order
to be consistent with demographic data (see below).

4.1.2 Preferences and costs

As mentioned above, utility is written as (5)

( +1 ) = 1 ln + 2 ln +1 + 3 ln + 4 ln( )

The parameters are Þxed to 1 = 0 35, 2 = 0 25, 3 = 0 3, 4 = 0 1,
and = 1. With this choice, the rate of time preference is such that
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(1 + )30 = 2 1. The rate of time preference is thus decreasing from
6.7% per year to 1.3%, thanks to the increase in the surviving probability .

3 determines fertility and is chosen to replicate the evolution of population.
Population also crucially depends on , and we can Þnd several combinations
of 3 and able to match data on population growth.

The cost in consumption good of one surviving child is =
1

+ 2. We

have chosen 1 = 0 08 and 2 = 0 07. The total cost of one surviving child
including housing, expressed as a fraction of time per adult, is

+

In the long run, according to equation (39), as 0 = 1, we get =

3 . Thus the total cost of one surviving child ( + 3 ) per
adult including housing in the long run is 3 = 0 354 which is in line with
the calculations of Apps and Rees (2001) and Bargain and Donni (2012).
Some sensitivity analysis have shown that what matters for the results is
mainly the relative values of 3 and , and not their level.

4.1.3 Demographics

Population for England before 1870 is taken from Wrigley and SchoÞeld
(1989). Other Þgures are taken from University of Portsmouth (2015). The
Þgures are reported below.

We use the surviving probability of young children (from birth to seven
years old included) , and the surviving probability at 50 years old .

1730 1760 1790 1820 1850 1880 1910 1940 1970 2000
0.64 0.66 0.67 0.68 0.69 0.73 0.83 0.94 0.98 0.99
0.20 0.21 0.23 0.24 0.35 0.33 0.43 0.57 0.78 0.95

is computed from the death rates of England and Wales from the
Human Mortality Database (2015) of the University of California (USA)
and the Max Planck Institute for Demographic Research (Germany) that
gives mortality per age from 1841. Figures for previous years are taken from
Maddison (2013) on England.

The surviving probability at 50 years old are computed in the following
way. We assume that the childhood period is of 20 years, and that the two
periods of adulthood last both for 30 years. Thus, children born in period
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arrive on the eleventh year of this period. The three stages of life are then
0-20 years, 21-50 years, and 51-80 years. Observed expected life at birth is
taken from Cervellati and Sunde (2005). Theoretical expected life at birth
in our model is equal to (20 years) + (30 years) +(30 years) ; this
allow us to compute in a way that is consistent with the model. Computed
values are reported in the above table.

4.2 Simulation strategy

Each simulation date corresponds to an historical year.

The model has two state variables (backward looking) and ˜ . For ˜ ,
the initial condition ˜

0 has no impact on the dynamics, as shown in section
3.4, as ˜

+1 does not depend on ˜ . 0 is chosen in order to reproduce the
historical dynamics of population.

Using equations (46) and (47), the limit value of ¯ can be determined:

=
(1 )( 3 )

£
(1 )( 3 ) + ( ) + 4 (1 )

¤

The limit value of the size of the young adult generation tends to =
¯

. The value of ¯ is chosen such that the limit value of population is 58
million, where the total population tends to + + Thus,

¯ = 58
2 +

The value of 0 is chosen in order that the computed value for population
in our model for date = 2 Þts the observed value in 1790. Indeed, population
at date = 2 is equal to 2+ 1+ 0 0, thus it is the Þrst computation that
depends only on one initial condition 0.

Total population in dates = 0 and = 1 in our model are taken from
historical values. It is consistent with the model as population in = 0
depends on 1 and on 2, and population in = 1 depends on 0 and on

1. Thus, 1 and 2 are chosen in order to get the historical values for
population in = 0 and = 1.
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5 Simulations and stylized facts

This section presents di erent results obtained through simulations with
Dynare (cf. Adjemian et al., 2011). The central scenario tries to reproduce
historical data. Then, di erent counterfactual analyses are computed.

The di erent scenario focus on the period 1760-1910, although graphics
are shown for 1730-2000 for historical data and to the end of the convergence
process for counterfactual analysis. The initial condition in 1730 is due to
the availability of data and allows encompassing the pre-industrial revolution
period. We interpret the results from 1760, since this is the Þrst simulated
point. To avoid the e ects of the two world wars, we restrict interpretations
to the period 1760-1910.

Appendix 2 provides all computed data corresponding to the Þgures for
all subsections.

5.1 The central scenario

The model is able to reproduce the dynamics of population on the period
1760-1910 as shown by Figure 1, where Nhist is the historical value for total
population in England and Ntot_model is the value computed from the
model.

Figure 1: Historical and Computed Total Population for England
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Moreover, it is possible to disentangle the relative e ect of technical
changes and mortality fall on the evolution of population. We conduct a coun-
terfactual analysis eliminating successively the increase in life expectancy, the
technological bias, and both of them.

5.2 Life expectancy

In this section, we successively neutralize the impact of the increase in
life expectancy at 50 years old and the decrease in child mortality. Re-
sults are presented in Figure 2. Ntot_pinitial is the computed total pop-
ulation for a surviving probability at 50 years that keeps its value of 1730.
Ntot_pinitial_etatinitial is the computed total population for both the sur-
viving probability of young children and the surviving probability at 50
years that keep their values of 1730.

Figure 2: Counterfactual Analysis With no Improvement in Life Expectancy

With no increase in life expectancy, neither during childhood nor at 50
years old, the population would have been 10% lower in 1910 and 30% lower
in the long run, according to our model.
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5.3 Technological Bias

In this section, we neutralize the impact of the technological bias: keeps
its 1730 value.

Figure 3 displays the evolution of the computed population without the
technological bias (Ntot_technoinit).

Figure 3: Counterfactual Analysis with No Technological Bias

The population would have been 40% lower in 1910 with no bias in the
technical progress and 60% lower in the long run.
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5.4 Life expectancy and Technological Bias

In this section, we neutralize successively the impact of surviving probabili-
ties, the impact of the technological bias, and both of them. Results are all
depicted in Figure 4 where Ntot_technoinit_pinitial_etainitial stands for
total computed population without any increase in surviving probabilities
and no technological bias.

Figure 4: Total Decomposition: Life Expectancy, Technological Bias, and
Both

Population would have been 45% smaller in 1910 and 70% smaller in the
long run, without any technological progress and without life expectancy
increase. This scenario gives the natural evolution of population for the 1730
parameter values.
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We observe that the major part of population increase from 1730 is due
to the technological bias evolution between land and capital.
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6 Conclusion

In this paper, we reproduce the dynamics of population in England since
1760, using an overlapping generations model with endogenous fertility and
land. The population growth is driven by a bias technological progress and
life expectancy improvement. It is possible to disentangle the relative e ect
of technical changes and mortality fall on the evolution of population. We
conduct a counterfactual analysis eliminating successively the increase in life
expectancy and the technological bias. With no increase in life expectancy,
population would have been respectively 10% and 30% lower in 1910 and
in the long run. The Þgures would have been respectively 40% and 60%
lower, with no bias in the technical progress. Finally, population would have
been 45% smaller in 1910 and 70% smaller in the long run, neutralizing both
the e ect of life expectancy and technological bias. So the major part of
population increase is due to the technological bias evolution between land
and capital.
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8 Appendix

8.1 Appendix 1

As the production technology is Cobb-Douglas between and the other
factors, = 1 and + = . Using equations (26), (27), and (25),

=
˜1

1

˜1
1

+ (1 ) ( )
1 1

then

˜1
1

+ (1 ) ( )
1 1

=
˜1

1

(51)

then from equation (25),

˜ = (1 )

µ ¶
1

˜ (52)

Thus, we write as:

=
+1 ( +1) 1

( ) 1

³
˜ +1 + +1

˜
+1 + ˜ +1 +1

´

³
˜ + ˜ + ˜

´

As the share of wages = 1 , ˜ = (1 )
³
˜ + ˜ + ˜

´
, thus

= 0
(1 ) ˜ +1

˜

and using (52), we get

= 0
(1 )

Ã

+1

!
1
Ã
˜
+1

˜

!

and so

(1 )

=
0

Ã
+1

!
1
Ã

˜

˜
+1

!

(53)
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We can also rewrite and ˜ given by (26) and (27), using (51), thus

= ˜ 1

¸
1

˜ = ˜
¸

1

Using equation (53), (32) becomes

2 ˜ =

Ã
+1

!
1

˜ ˜1
+1 + ˜

Using equation (53), (33) becomes

+1 =
˜+1 + ˜ +1

˜ 0

Ã
+1

!
1
Ã

˜

˜
+1

!

Note that from equations (51) and (53), it is possible to recover and
from and .

=
˜ µ

1

¶
1
µ

1

1

¶
1

(54)

=

µ

0

¶ (1 ) Ã
+1

! (1 )
1
Ã

˜

˜
+1

!(1 )

(55)

8.2 Appendix 2

TableA1: counterfactual Analysis on Total Population for England
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