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Abstract

This article considers an inter-temporal optimization problem in a fairly general

form and give sufficient conditions ensuring the convergence to infinity of the

economy. These conditions are easy to verify and can be applied for a large class

of problems in literature. As examples, some applications for different economies

are also given.

1 Introduction

Initiated by Bellman [3], the dynamic programming literature becomes rapidly a

workhorse of economic dynamic analysis. The tradition approach, culminated in

Stokey & Lucas (with Prescott) in [19], gives a good explanation and prediction

for many economic phenomena. The theory of dynamic programming described in

Stokey & Lucas (with Prescott) bases on a relatively strong structure of convexity.

One of its implications is that generally, the economy converges to a steady state

independently with the point of beginning.

Many works have been given in the configurations where this strong convexity

structure is not satisfied. Clark [5], Majumdar and Mitra [16], Majumdar & Ner-

muth [15], Skiba [18] consider the economies where production functions exhibit

∗EPEE, University of Evry, University Paris-Saclay; TIMAS, Thang Long University
†EPEE, University of Evry, University Paris-Saclay; DaLat University
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an early phase of increasing returns, usually known as convex-concave functions.

Dechert & Nishimura [8] extend their works to a general non-concave produc-

tion function. These works prove the existence of a critical level of capital stock,

usually named "Dechert-Nishimura-Skiba" point1. Beginning with a level capital

stock under this level, the economy shrinks and collapses to zero, otherwise it

increases to a steady state.

Kamihigashi & Roy [11] extend the analysis to a larger class of production function,

by assuming only the upper-semi continuity. They characterize the critical point

below it the economy collapses in long run and above it survival (bounded away

from zero) is possible.

Another line of literature studies conditions allowing the convergence to infinity of

the economy. Jones & Manuelli [9] work with concave production function which

keeps sufficiently high productivity even with a large accumulation of capital.

Under this condition, the economy always converges to infinity.

Kamihigashi & Roy [12] relax not only the concavity but also the continuity of

production, and prove that under the condition that the productivity is sufficiently

high for large accumulation of capital stock, if the economy begins with a initial

state higher than a critical level, it will increasing to infinity2.

Roy [20] studies an economy with wealth effects, where the utility depends not

only on the consumption but also on the capital level. He prove that the high

capitalism spirit (represented under a condition requiring that the marginal rate

of capital-consumption is sufficiently large) can compensate the low productivity.

If the sum of this two quantities overcomes the discount rate, beginning with a level

of capital accumulation, the economy continues accumulate and hence converges

to infinity.

In this article, we consider the same question about conditions ensuring sustained

growth, in the most generalized possible general case, i.e. where the dynamics of

1For a more detail survey, see Akao & al [1].
2Since the production function is not continuous, their condition must be stated under the

form of upper and under derivaties of this function.
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the economy can be characterized as a solution of

max

[

∞
∑

s=0

δsV (xs, xs+1)

]

,

where δ ∈ (0, 1) is the discount factor and V denotes the payoffs function.

We prove that with some mild conditions, the following inequality is sufficient for

characterizing sustained growth:

V2(x, x) + δV1(x, x) > 0, (1.1)

for any x large enough.

The results in this article allow us, in our subjective opinion, gather a class of

cases considered in the literature under a same viewpoint. It can be applied

for the situations where the Kamihigashi & Roy’s [12] techniques for one-sector

economy can not be used. For example the two-sectors economies, the economy

with wealth effects presented Roy [20] and capitalism spirit of Kamihigashi [10],

or the economy with accumulation of human capital, presented in this article.

The rest of the paper is organized as follows. Section 2 presents the fundamentals

of the model. Under the tail-insensitivity condition, optimal solution exists, and

under the super-modularity, its monotonicity is ensured. Section 3 studies the

conditions ensuring sustained growth, with the main one being (1.1). Section

4 concludes and Section 5 gives some applications in different configurations in

literature. Proofs are given in Appendix.

2 Fundamentals

2.1 The model

The time is discrete: t = 0, 1, 2, . . . . The discount factor is 0 < δ < 1. The

technology of this economy is characterized by a correspondence Γ : R+ → R+.
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For any x0 ≥ 0, denote by Π(x0) the set of feasible paths {xs}
∞
s=0 satisfying

xs+1 ∈ Γ(xs) for any s ≥ 0.

Given capital stocks at some consecutive dates xs and xs+1, the indirect utility

level at date s is V (xs, xs+1), where V is a real function whose domain is the graph

of Γ.

For given x0 ≥ 0, the economy solves the following inter-temporal optimization

problem

max

[

∞
∑

t=0

δsV (xs, xs+1)

]

,

s.c xs+1 ∈ Γ(xs), ∀ s ≥ 0.

Denote by v the value function of this problem:

v(x0) = sup
Π(x0)

[

∞
∑

t=0

δsV (xs, xs+1).

]

2.2 Existence of solution and the Bell-man functional

equation

Assumption A1 establishes standard conditions ensuring the existence of solution

for the maximization problem. For the details of comments about these conditions,

curious readers can refer to Le Van & Morhaim [13].

Assumption A1. i) The correspondence Γ is no-empty, convex compact values

and ascending3.

ii) The function V is continuous in graph of Γ, strictly increasing in respect to

the first argument and decreasing in respect to the second one.

3In the spirit of Amir [2]. For any x ≤ x′, y ∈ Γ(x), y′ ∈ Γ(x′), we have min{y, y′} ∈ Γ(x)
and max{y, y′} ∈ Γ(x′).
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iii) Non-triviality: For any x0 > 0, there exists {xs}
∞
s=0 ∈ Π(x0) such that

∞
∑

s=0

δsV (xs, xs+1) > −∞.

iv) Tail-insensitivity: Fixed x0 > 0, for any ǫ > 0, there exist T0, a neighbourhood

V of x0 such that for any x′0 ∈ V, any {x′s}
∞
s=0 ∈ Π(x′0), any T ≥ T0:

∞
∑

t=T

δsV (x′s, x
′
s+1) < ǫ.

The conditions (i), (ii) and (iii) are usual in literature, characterizing the main

properties of the technology, the trade-off between consume today and invest in

tomorrow, and ensure that the problem is not trivial.

The most important condition is tail-insentivity one. This condition not only

states that the value function should be finite, but moreover it allows the satis-

faction of upper semi-continuity property, which is important for the existence of

solution.

Under conditions in A1, the value function is increasing and upper-semi continu-

ous. This continuity ensures the existence of solution for optimization problem.

Proposition 2.1. Assume A1. Then:

i) The value function v is strictly increasing and upper-semi continuous.

ii) Solution exists.

iii) The value function satisfies the Bellman equation:

v(x0) = max
x1∈Γ(x0)

[

V (x0, x1) + δv(x1)
]

.

iv) A sequence {xs}
∞
s=0 is a optimal if and only if for any s ≥ 0,

v(xs) = V (xs, xs+1) + δv(xs+1).
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From now on, for x0 ≥ 0, denote by φ the optimal policy correspondence:

φ(x0) = argmax
x1∈Γ(x0)

[

V (x0, x1) + δv(x1)
]

.

The Proposition 2.1 has a consequence that φ(x0) is a no-empty, compact value

correspondence4.

2.3 Super-modularity and monotonicity

In this section, we will study the monotonicity of optimal path and optimal policy

correspondence. It is intuitive to assume the super-modularity, a property stating

the complementarity of capital accumulations.

Assumption A2. The indirect utility function V is strictly super modular.5

Under the super-modularity property, the optimal policy correspondence is "in-

creasing", as stated in Proposition 2.1. This is an important result helping the

understanding of optimal paths’ behaviour. The super-modularity implies that

every optimal path is monotonic. The result and proof of Lemma 2.1 are similar

to the one-sector configuration studied in Dechert & Nishimura [8].

Lemma 2.1. Assume A1 and A2. Then

i) For all x0 < x′0, and x1 ∈ φ(x0), x
′
1 ∈ φ(x′0), we have x1 < x′1.

ii) Every optimal path is either monotonic or constant.

A direct consequence of Lemma 2.1 is that every optimal path either converges to

some real value, or to infinity. Moreover, Lemma 2.1 allows us to characterize a

4It is intesting to note that as in Dechert & Nishimura [8], for x1 ∈ φ(x0), the set φ(x1)
is single-valued. Moreover, the value function v is differentiable at x1. The correspondence φ

is hence single-valued almost every where. The same property for the differentiability of value
function is also verified. A generalization of this result in environment with uncertainty is given
in Nishimura & al [17].

5The (strict) super-modularity is defined as: for every (x, x′) and (y, y′) that belong to
Graph(Γ), V (x, y) + V (x′, y′)(>) ≥ V (x′, y) + V (x, y′) is verified whenever (x′, y′)(>) ≥ (x, y).
When V is twice differentiable, super modularity sums up to positive cross derivatives:
V12(x, y)(>) ≥ 0 for any x, y.
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general feature of optimal paths, stated in Proposition 2.2. If for some initial state

x0, the optimal path converges to infinity, then the same property is also satisfied

for any greater initial level of capital stock, thanks to the monotonicity of optimal

policy correspondence. If such initial state x0 does not exist, every optimal path

is bounded from above.

Proposition 2.2. Assume A1 and A2. Then one of the two following comple-

mentary statements is verified:

i) There exists x ≥ 0 such that for any x0 ≥ x, any optimal path beginning from

x0 is increasing and converges to infinity.

ii) For any x0 ≥ 0, every optimal path beginning from x0 is bounded from above.

3 The sustained growth condition

With A1, solution exists. With A2, the monotonicity is satisfied. Every optimal

path is hence either converges to a steady state, or converges to infinity. In this

section, we discuss condition ensuring the possibility of sustained growth i.e. the

convergence to infinity of the economy.

3.1 The condition

The main ideas runs as follows: for any capital accumulation level x, if between

the choice of staying in status quo and saving a little, the economy always prefer

the later one, then it can converges to infinity.

Assumption A3. There exists x′ ≥ 0 such that for any x > x′, x ∈ intΓ(x) and

V2(x, x) + δV1(x, x) > 0.

Denote by x∗ the smallest value satisfying this property6.

6Denote by S the set of x′ such that V2(x, x) + δV1(x, x) > 0 for any x > x′. Once S is
no-empty, there exists x∗ = inf S. It is easy to verify that x∗ ∈ S.
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The Proposition 3.1 states our first main results, for the case x∗ = 0. If the

indirect utility function V is bounded from below, every optimal path beginning

from a positive initial state converges to infinity. For the configuration where V

is unbounded from below, there exist feasible paths converging to zero. For this

case, we assume the technical assumption. The intuition of this condition is that

the depreciate rate of capital is not too high comparing to the discount rate.

Assumption T1. Technical condition Let the depreciate rate of capital stock be

0 < d < 1: for any x ≥ 0, minΓ(x) = (1− d)x. For any x > 0:

lim
T→∞

δTV
(

(1− d)Tx, (1− d)Tx
)

= 0.

The idea of the main results runs as follows: under A2 and A3, for any x∗ ≤ y ≤ x,

we have the following inequality7:

V (x, x)

1− δ
≥ V (x, y) +

δV (y, y)

1− δ
. (3.1)

Now suppose that for some x0 > x∗, there is an optimal path {xs}
∞
s=0 beginning

from x0 which is decreasing. For each T such that xT+1 ≥ x∗,

v(x0) ≥
∞
∑

s=0

δsV (x0, x0)

=
V (x0, x0)

1− δ

≥ V (x0, x1) +
δV (x1, x1)

1− δ

≥ V (x0, x1) + δV (x1, x2) +
δ2V (x2, x2)

1− δ

· · ·

≥

T
∑

s=0

δsV (xs, xs+1) +
δT+1V (xT+1, xT+1)

1− δ
.

Consider the case x∗ = 0. Let T converges to infinity, if V is bounded from

below, the right-hand-side of the inequality converges to v(x0), which leads us to

7The idea is inspired by similar consideration in Cao & Werming [4].
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a contradiction. The case V is unbounded from below is more complicated, because

we must avoid the possibility that the optimal path converges to zero with high

speed. Assuming the technical condition, we can obtain the same conclusion as

the case V is bounded from below.

The case x∗ > 0 challenges us in another way. If x∗ is a steady state of the

economy, we can use the same arguments as the case x∗ = 0 to prove that there

is no decreasing optimal path beginning from x0 > x∗. The reason is that such

optimal path must be bounded from below by x∗.

In the case where there is no argument assuring that x∗ is steady states, difficulties

arise, since from some date T , we may have xT+1 < x∗, and the fundamental

inequality (3.1) presented above can not be verified. In order to circumvent this

difficulty, we assume that not only V2(x, x) + δV1(x, x) > 0 for x big, but these

values are sufficiently high such that

∫ ∞

x∗

(

V2(x, x) + δV1(x, x)
)

dx = ∞.

Unde this condition, we obtain the similar results as the case x∗ = 0. We can even

relax the technical condition and do not need make distinction between bounded

and unbounded from below functions.

And, last but not least, the strict super-modularity in condition A2 is not for

technical convenient. If the utility function satisfies only the super-modularity

(but not strict), the behaviour of optimal paths can become complicated. In

Kamihigashi & Roy [11], where the instantaneous utility function is linear, the

optimal path reaches one steady state in a finite time and can jumps among

different steady states afterwards.

3.2 Super-modularity and sustained growth

In this subsection, we prove that if the condition V2(x, x)+δV1(x, x) > 0 is satisfied

for any x > 0, then the sustained growth is ensured.

9



Proposition 3.1. Assume A1, A2 and A3 with x∗ = 0.

i) Consider the case V is bounded from below. Then for any x0 > 0, any optimal

path beginning from x0 is increasing and converges to infinity.

ii) Consider the case V is unbounded from below. Under the technical condition,

any optimal path beginning from x0 is increasing and converges to infinity.

In many configurations, for example the convex-concave production function, the

condition in A3 is satisfied only for sufficiently large level of initial capital stock.

In these situations, x∗ > 0. With an additional condition, we can ensure the

sustained growth for the economies beginning from a sufficiently high value of

capital stock. Moreover, we can relax the technical condition for the case V is

unbounded from below.

Proposition 3.2. Assume A1, A2 and A3 for x∗ > 0. Suppose that

∫ ∞

x∗
(V2(x, x) + δV1(x, x)) dx = ∞.

Then there exists x such that for any x0 ≥ x, every optimal path beginning from

x0 is increasing and converges to infinity.

As opposition to the condition for sustained growth, we can also characterize one

under which the economy is always bounded.

Proposition 3.3. Assume A1 and A2. Suppose that there exists some x̃ such

that for any x > x̃, either x ≤ minΓ(x), or x ∈ intΓ(x) and

V2(x, x) + δV1(x, x) < 0.

Then for any x0, every optimal beginning from x0 is bounded.

3.3 Convexity and sustained growth

Under the strict concavity of indirect utility function, interestingly, we can obtain

the same results as Propositions 3.1 and 3.2 without the super-modularity and the
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condition stated in Proposition 3.2.

With the convexity structure, it is well known in the dynamic programming liter-

ature8 that the value function v is concave. The optimal policy correspondence φ

becomes function.

The critical level of capital stock x∗ is either equal to zero, or strictly positive and

in this case, satisfying the Ramsey-Euler equation and transversality condition,

becomes the biggest steady state of the economy. Moreover, since x∗ is the biggest

steady state, either φ(x) > x for any x > x∗, or φ(x) < x for any x > x∗. This

property has an important consequence is that for any initial state x0 > x∗, the

optimal path beginning from x0 is monotonic.

Using the same arguments in the proofs of Propositions 3.1 and 3.2, we obtain

Proposition 3.4.

Proposition 3.4. Suppose that V is strictly concave. Assume A1 and A3.

i) Consider the case V is bounded from below. For any x0 > x∗, the optimal

path beginning from x0 is increasing and converges to infinity.

ii) Consider the case V is unbounded from below and x∗ > 0. For any x0 > x∗,

the optimal path beginning from x0 is increasing and converges to infinity.

iii) Consider the case V is unbounded from below and x∗ = 0. Under technical

condition, for any x0 > 0, the optimal path beginning from x0 is increasing

and converges to infinity.

Similarly to the condition in Proposition 3.3, we have Proposition 3.5. The con-

cavity of V allows us to relax the super-modularity property.

Proposition 3.5. Suppose that V is strictly concave. Assume A1. Suppose that

there exists x̃ such that for any x > x̃, either x ≥ maxΓ(x), or x ∈ intΓ(x) and

V2(x, x) + δV1(x, x) < 0.

8See Stockey, Lucas (with Prescott) [19].
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Then for any x0, every optimal path beginning from x0 is bounded.

3.4 Statistical comparative

We establish conditions under which for sufficiently initial of capital stock, the

economy can growth and converges to infinity. In our analysis, the critical level x∗

plays an important role. Naturally raises the question: how this level depends on

small changes of fundamentals of the economy, for example the discount factor?

For each value δ, denote by x∗(δ) the critical threshold. Since V1(x, y) ≥ 0 for

any (x, y) ∈ Graph(Γ), for any δ′ ≥ δ, we have x∗(δ′) ≤ x∗(δ). The critical level

x∗ is hence a non increasing function in respect to the discount rate. By adding

the hypothesis that in a neighbourhood of x∗, the function V2(x, x) + δV1(x, x) is

injective, the level x∗(δ′) becomes a strictly decreasing function in respect to δ′

belonging to a neighbourhood of δ.

Proposition 3.6. Suppose that V is differentiable. Given the discount rate δ and

assume that x∗(δ) > 0. Suppose that in a neighbourhood of (x∗(δ)− ǫ, x∗(δ) + ǫ),

the function V2(x, x) + δV1(x, x) is injective. Then there exist a neighbourhood of

δ such that in this interval, x∗(δ′) is strictly decreasing.

3.5 Remarks

In this article, the most important condition is V2(x, x)+δV1(x, x) > 0. Naturally,

raises the question about what happens if the differentiability of V is not satisfied.

It is worth noting that the condition in A3 can be replaced by the followng one,

which is weaker and does not require ni differentiability nor continuity: for x∗ ≤

y ≤ x,

V (x, x)

1− δ
≥ V (x, y) +

δV (y, y)

1− δ
. (3.2)

We can hence extend the result in Proposition (3.2) with x∗ = 0 to the case

where V is not differentiable or continuous, for example the one-sector economy

12



case presented in Kamihigashi & Roy [12]. In their set up, the inequality (3.2) is

satisfied.

The case x∗ > 0 is more complicated, since in the proof we need the a technical

result that

V (x, y)− V (y, y) =

∫ x

y

V1(z, y)dz.

This condition can be assured for the case V is absolutely continuous on compact

set, a condition which is weaker than differentiability.

If by some reason (for example V is concave), the critical threshold x∗ is also

a steady state, we do not need ni the differentiability of V , nor the condition
∫∞

x∗

(

V2(x, x) + δV1(x, x)
)

dx = ∞. The argument is that for these cases, any

optimal path beginning from x0 > x∗ is bounded from below by x∗. Then we use

the proof of Proposition 3.1.

The technical condition can be replaced by any other conditions ensuring that for

any optimal path {xs}
∞
s=0 beginning from x0 > 0,

lim
T→∞

δTV (xT , xT ) = 0.

Obviously, this property is always satisfied for the bounded from below functions.

4 Conclusions

We established conditions ensuring sustained growth. The threshold beyond which

the economy converges to infinity is characterized. The conditions, in our subjec-

tive opinion, are simple and easy to verify. Moreover, we can apply them in a

large class of inter-temporal optimization problems.

The critical threshold, intuitively, is a non-increasing function in respect to the

discount rate, and in general, it is a decreasing function. This result echoes the one

in Akao & al [1], which studies the dependency in discount rate of the thresholds
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for the collapse or convergence to steady state of the economy.

5 Applications

5.1 One sector economy

Consider the one sector economy where for given x0, the agent solves:

max

[

∞
∑

s=0

δsu(cs)

]

,

s.c ct + xs+1 ≤ f(xs).

The utility function u is supposed to be strictly increasing and concave. The

production function satisfies f(x) > x for x sufficiently big.

The indirect utility function is V (x, y) = u
(

f(x)− y
)

.

We have

V2(x, x) + δV1(x, x) = −u (f(x)− x) + δu (f(x)− x) f ′(x)

= u′ (f(x)− x) (δf(x)− 1) .

The condition in A3 is then equivalent to f ′(x) > 1
δ
. This is the same condition

in Kamihigashi & Roy [12]. In order to simplify the exposition, assume that u is

bounded from below.

Proposition 5.1. Assume that u is concave, bounded from below, f is concave.

Assume that for any x > x∗, f ′(x) > 1
δ
. Then for any x0 > x∗, every optimal path

beginning from x0 is increasing and converges to infinity.

Now consider the case f is not concave.

Proposition 5.2. Assume that

i) lim infx→∞ f ′(x) > 1
δ
.
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ii) lim supx→∞ f ′(x) <∞.

iii) The utility function is unbounded from above.

Then there exists x ≥ 0 such that for any x0 ≥ x, every optimal path beginning

from x0 is increasing and converges to infinity.

The Proposition 5.2 is direct consequence of Proposition 3.2. It adds a comple-

mentary feature to the result of Kamihigashi & Roy [12], which requires that

limc→∞ u′(c)c < ∞ and hence rules out the constant elasticity and constant elas-

ticity of marginal utility functions.

5.2 A two-sectors economy

Consider the two-sectors economy in Dana and Le Van [7]. One sector produces

consumption good, and the other one produces capital good.

At date s, the agent consumes cs, produced by f(x1s), the consumption production

function. The capital good x1s is produced by the sector 2. The capital used in the

next date xs+1 is produced by the sector 2, which uses x2s to produce a quantity

g(x2s) of capital good.

The social planner solves the problem for given x0:

max

[

∞
∑

s=0

δsu(cs)

]

,

s. c 0 ≤ cs ≤ f(xcs),

0 ≤ xs+1 ≤ g(x2s).

We assume that the functions u and f and g are strictly increasing and concave,

satisfying Inada condition. The capital production function g satisfies

lim
x→∞

g′(x) = 1 + λ,

with λ is a strictly positive constant.
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Define ζ(x) = g−1(x), the inverse function of g. The function ζ is strictly increas-

ing, differentiable and

lim
x→∞

ζ ′(x) =
1

1 + λ
.

For each capital stock level x, the set of possible capital investment for the next

day if Γ(x) = [(1 − d)x, g(x)]. For each chosen level of capital stock of next day

0 ≤ y ≤ g(x), a level equal to y for capital sector of tomorrow, we must invest

ζ(y) for the capital production sector.

The consumption level is c = f(x− ζ(y)). The indirect utility function is hence:

V (x, y) = u
[

f
(

x− ζ(y)
)]

.

We have

V2(x, x) + δV1(x, x) = −u′
[

f
(

x− ζ(x)
)]

f ′
(

x− ζ(x)
)

ζ ′(x) + δu′
[

f
(

x− ζ(x)
)]

f ′
(

x− ζ(y)
)

= u′
[

f
(

x− ζ(x)
)]

f ′
(

x− ζ(x)
)

(−ζ ′(x) + δ) .

The condition V2(x, x) + δV1(x, x) > 0 is equivalent to ζ ′(x) < δ. This can be

satisfied if δ(1 + λ) > 1. This calculus allows the statement of Proposition 5.3,

which is a consequence of Proposition 3.2.

Proposition 5.3. Assume that δ(1 + λ) > 1. Then for any x0 > 0, the optimal

path beginning from x0 is increasing and converges to infinity.

5.3 The economy with wealth effects

Consider the model of economic growth with wealth effects, presented in Kamihi-

gashi [10] and Roy [20]. In this set up, the utility function depends on consumption

level and capital stock level.
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The maximization problem for some given x0 is

max

[

∞
∑

s=0

δsu(cs, xs)

]

,

s.c. cs + xs+1 ≤ f(xs),

where u is utility function and f is production function, being both concave,

increasing and differentiable. Comme Roy [20], the function u is bounded from

below.

Denote by uc and ux the corresponding partial derivatives of u in respect corre-

spondingly to the first argument and the second one.

The indirect function is V (x, y) = u (f(x)− y, x). It is easy to verify that under

the concavity of utility function u and production function f , V is concave.

We have

V2(x, x) + δV1(x, x) = −uc (f(x)− x, x) + δ (uc (f(x)− x, x) f ′(x) + ux (f(x)− x, x)) .

The condition V2(x, x) + δV1(x, x) > 0 is equivalent to

f ′(x) +
ux (f(x)− x, x)

uc (f(x)− x, x)
>

1

δ
.

This is the same condition as Roy [20]. Define S the set of steady states, the set

of solutions to

f ′(x) +
ux (f(x)− x, x)

uc (f(x)− x, x)
=

1

δ
,

and x∗ = supS.

By Proposition 3.4, we obtain the same result in Roy [20], without using his condi-

tion U4 which assumes that consumption and capital are weakly complementary:

ucx(c, x) ≥ 0.

Proposition 5.4. Denote by x∗ the biggest steady state (if steady state does not
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exist, let x∗ = 0). Suppose that for any x > x∗ we have

f ′(x) +
ux (f(x)− x, x)

uc (f(x)− x, x)
>

1

δ
.

Then any optimal path beginning from x0 > x∗ is increasing and converges to

infinity.

5.4 Human capital accumulation

In this section, we consider a model in which investing in human capital may

yield a sustainable economic growth. For the sake of simplicity, we suppose that

there is no physical capital. The production is realised using the effective labor

(human capital) through a production function which is supposed to be strictly

increasing and strictly concave. The agent, or the social planer divides the pro-

duction in consumption and investment in human capital, in order to maximize

the intertemporal sum of utilites for each given human capital level h0:

max

[

∞
∑

t=0

δtu(ct)

]

,

s.c ct + st+1 ≤ f(ht),

ht+1

ht
= ϕ(st+1).

The quantities ct, st are respectively the consumption and the saving at period t

and ht is the human capital at the same period.

The output is obtained by using only the effective labor through a production

function f which is concave, increasing, continuous. The utility function is strictly

increasing, strictly concave. For the sake of simplicity, let u(0) = 0.

The rate of growth of the human capital depends on the investment st+1 is defined

similar to the spirit of Lucas [14].

ht+1 = htϕ(st+1),
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where ϕ is strictly increasing, differentiable, satisfying

lim
h→∞

ϕ(h) = 1 + λ,

with some λ > 0, representing the upper bound of the formation.

Define ψ(s) = ϕ−1(s), the inverse function of φ. This function is increasing,

satisfying ψ(1 + λ) = +∞.

At the optimum, ct = f(ht)−ψ
(

ht+1

ht

)

. We can re-write the optimization problem

as:

v(h0) = max
∞
∑

t=0

δtu

(

f(ht)− ψ

(

ht+1

ht

))

,

0 ≤ ht+1 ≤ htϕ(f(ht)).

We have Γ(x) = {(x, y) ∈ R
2
+ : (1 − d)x ≤ y ≤ xϕ(x)}. The indirect utility

function is defined as

V (x, y) = u
(

f(x)− ψ
(y

x

))

.

Calculus give

V2(x, y) = −u′
(

f(x)− ψ
(y

x

))

ψ′
(y

x

)

×
1

x
,

V1(x, y) = u′
(

f(x)− ψ
(y

x

))(

f ′(x) + ψ′
(y

x

)

×
y

x2

)

.

Fixing y, if x increases,

i) u′
(

f(x)− ψ
(

y

x

))

ψ′
(

y

x

)

× 1
x

decreases, since f(x)− ψ
(

y

x

)

increases,

ii) Since ϕ is concave, the inverse function ψ is convex, and ψ′
(

y

x

)

decreases,

iii) Obviously, 1
x

decreases.

This implies if we increase x, the value of −u′
(

f(x)− ψ
(

y

x

))

ψ′
(

y

x

)

× 1
x

increases.

Hence V12(x, y) > 0 and the super-modularity condition is satisfied.
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The condition in A3 is equivalent to

V2(x, x) + δV1(x, x) = u′ (f(x)− ψ(1))

(

δf ′(x)− (1− δ)
ψ′(1)

x

)

> 0.

Proposition 5.5. i) Suppose that f ′(x) > 1−δ
δ

ψ′(1)
x

, for any x > 0. For any

initial level of human capital, the economy converges to infinity.

ii) Suppose that the utility function u is unbounded from above. If

lim inf
x→∞

f ′(x) > 0,

then there exists h ≥ 0 such that for any h0 > h, every optimal path beginning

from h0 is increasing and converges to infinity.

Though lim infx→∞ f ′(x) > 0 is sufficient for sustained growth in Proposition 5.5,

this condition is not necessary.

Consider for example the production function f(x) = Axα, utility function u(x) =

xβ with 0 < α, β < 1. For x sufficiently big we have δf ′(x) > (1 − δ)ψ
′(1)
x

. More

over,

δf ′(x)− (1− δ)
ψ′(1)

x
= O

(

1

x1−α

)

,

u′ (f(x)− ψ(1)) = O

(

1

xα(1−β)

)

.

Hence

u′ (f(x)− ψ(1))

(

δf ′(x)− (1− δ)
ψ′(1)

x

)

= O

(

1

x1−αβ

)

,

which implies for any h,

∫ ∞

h

(V2(x, x) + δV1(x, x)) dx = ∞.

Applying Proposition 3.2, for initial human capital h0 big enough, every optimal

path beginning from h0 is increasing and converges to infinity.
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5.5 Optimal growth model with investment enhancing

labor

We consider the optimization problem presented by Crettez & al [6]. They consider

an economy with investment enhancing labor. The labor force (normalized to 1) is

divided in two parts: part 1− z is devoted to the production sector, transforming

saving to capital for the next period, the other part z is used investment enhancing

labor, for example the labor allocated for financial sector.

At date t, giving saving level st and investment enhancing labor zt, the capital

for the next day is xt+1 = φ(zt)st, where φ represents the efficiently of financial

sector. The economy solves

max
∞
∑

t=0

δtu(ct)

s.c xt+1 = φ(zt) (f(xt, 1− zt)− ct) ,

0 ≤ zt ≤ 1.

Under standard conditions9 for functions u, f and φ (concave, strictly increasing,

satisfying Inada conditions), this problem has solution and can be re-written as

max
∞
∑

t=0

δtV (xt, xt+1)

0 ≤ xt+1 ≤ max
0≤zt≤1

φ(zt)f(xt, 1− zt).

The indirect utility function is defined as

V (x, y) = max u (F (x, y)) ,

where

F (x, y) = max
0≤z≤1

(

f(x, 1− z)−
y

φ(z)

)

.

9For details, see Crettez & al [6].
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The problem defining F is concave in respect to z, so for each (x, y), there exists

unique z maximizing the problem

F (x, y) = f
(

x, 1− z(x, y)
)

−
y

φ
(

z(x, y)
) .

The Inada conditions ensure that z(x, y) belong to the open interval (0, 1). The

value z(x, y) is solution to

−f2(x, 1− z) +
yφ′(z)
(

φ(z)
)2 = 0.

Under the assumption H810 in Crettez & al [6], the super-modularity of V is

satisfied. By the envelope theorem,

V1(x, y) = u′
(

F (x, y)
)

F1(x, y)

= u′ (F (x, y)) f1
(

x, 1− z(x, x)
)

,

V2(x, y) = u′
(

F (x, y)
)

F2(x, y)

= −
u′
(

F (x, y)
)

φ
(

z(x, y)
) .

Under the condition H911 in Crettez & al [6], there exists unique steady state,

defined as solution to

φ (z(x, x)) f1
(

x, 1− z(x, x)
)

=
1

δ
.

The condition in A3, V2(x, x) + δV1(x, x) > 0 is equivalent to

φ (z(x, x)) f1(x, 1− z(x, x)
)

>
1

δ
.

The following proposition is a consequence of Propositions 3.1, 3.2.

10This condition has a long and complicated statement, but can verified easily in the case of
logarithmic utility function and Cobb-Douglass production function.

11Which is satisfied for the case of C.E.S production function.
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Proposition 5.6. i) Assume that for any x > 0,

φ
(

z(x, x)
)

f1
(

x, 1− z(x, x)
)

>
1

δ
.

Then for any x0 > 0, every optimal path beginning from x0 is increasing and

converges to infinity.

ii) If the steady state x∗ is unique, and the condition in part (i) is satisfied for

any x > x∗, then for any x0 > x∗, every optimal path beginning from x0 is

increasing and converges to infinity.

iii) Assume that u is unbounded from above and

lim inf
x→∞

(

−
1

φ
(

z(x, x)
) + δf1(x, 1− z(x, x)

)

)

> 0.

Then for x large enough, every optimal path beginning from x is increasing

and converges to infinity.

If the financial sector is sufficiently efficient, sustained growth may occur even

when the marginal productivity is less than the discount rate.

A Proof of Lemma 2.1

This proof goes in the same line of the one in Dechert and Nishimura [8].

Suppose that there exist x0 < x′0, x1 ∈ φ(x0), x
′
1 ∈ φ(x′1) and x1 ≥ x′1. Hence

x′1 ∈ Γ(x0) and in the same definition as Amir [2]:

(x′0, x1) = (x0, x1) ∨ (x′0, x
′
1),

(x0, x
′
1) = (x0, x1) ∧ (x′0, x

′
1).
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We have

V (x0, x1) + δv(x1) ≥ V (x0, x
′
1) + δv(x′1),

V (x′0, x
′
1) + δv(x′1) ≥ V (x′0, x1) + δv(x1).

Combining these two equations we obtain

V (x0, x1) + V (x′0, x
′
1) ≥ V (x0, x

′
1) + V (x′0, x1),

which is contradictory to the super-modularity assumption A2.

The monotonicity of optimal paths is direct consequence of the monotonicity of

the optimal policy correspondence.

B Proof of Proposition 2.2

Assume that for some x, there exists an optimal path {xs}
∞
s=0 beginning from x

converges to infinity. Then by induction, using Lemma 2.1, for any x0 > x, any

optimal path {xs}
∞
s=0 beginning from x0 satisfies xs > xs for any s ≥ 0. Hence the

sequence {xs}
∞
s=0 is increasing and lims→∞ xs = ∞.

C Proof of Proposition 3.1

We begin the proof by Lemma C.1.

Lemma C.1. Assume A1, A2. Assume also that for any x > 0 and:

V (x, x)

1− δ
≥ V (x, y) +

δ

1− δ
V (y, y),

for any 0 ≤ y ≤ x with the strict inequality for y < x.

Then for any x0 > 0, any optimal path {xs}
∞
s=0 ∈ Π(x0) beginning from x0 is

increasing.
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Proof. Consider x0 > 0 and an optimal path {xs}
∞
s=0 beginning from x0. By the

Proposition 2.1, the sequence {xs}
∞
s=0 is either increasing or decreasing.

Suppose that this sequence is strictly decreasing: xs > xs+1 for any t ≥ 0. Since

the constant sequence (x0, x0, . . . ) belongs to Π(x0), we have:

v(x0) ≥
V (x0, x0)

1− δ

> V (x0, x1) +
δ

1− δ
V (x1, x1)

≥ V (x0, x1) + δV (x1, x2) +
δ2

1− δ
V (x2, x2)

· · ·

>

T
∑

s=0

δsV (xs, xs+1) +
δT+1

1− δ
V (xT+1, xT+1).

Since either V is bounded from below, or V is unbounded from below and technical

condition is satisfied, by letting T converges to infinity, the right-hand-side of the

inequality converges to v(x0): a contradiction.

Hence the sequence {xt}
∞
t=0 is increasing. Suppose that this sequence does not

converge to infinity, then lims→∞ xs = x̃. By the upper semi-continuity of the

value function v, we have x̃ ∈ φ(x̃): the limit value x̃ is a steady state. By Euler

equation, we have

V2(x̃, x̃) + δV1(x̃, x̃) = 0,

a contradiction. The proof of Lemma C.1 is completed.

QED

First, we prove that for any x > 0, the function with variable y

h(y) = V (x, y) +
δ

1− δ
V (y, y)
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is strictly increasing in [0, x]. Indeed,

h′(y) = V2(x, y) +
δ

1− δ

(

V1(y, y) + V2(y, y)
)

≥ V2(y, y) +
δ

1− δ

(

V1(y, y) + V2(y, y)
)

=
1

1− δ

(

V2(y, y) + δV1(y, y)
)

≥ 0.

Using the same arguments as in the proof of Lemma C.1, the optimal sequence

{xt}
∞
t=0 is increasing and converse to infinity. The proof of Proposition 3.1 is

completed.

D Proof of Proposition 3.2

Assume that for any x0 > 0, every optimal path beginning from x0 is strictly

decreasing.

First, consider the case that for some x0 > x∗, there is an optimal path {xs}
∞
s=0

beginning from x0 satisfying xs ≥ x∗ for any s. Using the same argument as in

the proof of Lemma C.1, we have

v(x0) ≥
V (x0, x0)

1− δ

≥
T

∑

s=0

δsV (xs, xs+1) +
δT+1v(xT+1, xT+1)

1− δ
,

which converges to v(x0) when T converges to infinity: a contradiction.

Now consider the case for any x0 > 0, every optimal path {xs}
∞
s=0 beginning from

x0, there exists T such that xT+s < x∗ for any s ≥ 1.

We will prove the following claim: for any x ≥ x∗,

v(x)− v(x∗) ≤

∫ x

x∗
V1(y, y)dy.
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Indeed, take any optimal path {xs}
∞
s=0 beginning from x. There exists T such that

xT > x∗ ≥ xT+1.

For any 0 ≤ s ≤ T − 1 we have

v(xs)− v(xs+1) = V (xs, xs+1) + δv(xs+1)− v(xs+1)

≤ V (xs, xs+1) + δv(xs+1)− V (xs+1, xs+1)− δv(xs+1)

= V (xs, xs+1)− V (xs+1, xs+1)

=

∫ xs

xs+1

V1(y, xs+1)dy

≤

∫ xs

xs+1

V1(y, y)dy.

The last inequality comes from the super-modularity: V12(x, y) ≥ 0 for any y ∈

Γ(x) and hence V1(y, y) ≥ V1(y, xs+1) for y ≥ xs+1.

For s = T , observe that by the ascending property and the continuity of Γ,

xT+1 ∈ Γ(x∗). We then have

v(xT )− v(x∗) ≤ V (xT , xT+1) + δv(xT+1)− V (x∗, xT+1)− δv(xT+1)

= V (xT , xT+1)− V (x∗, xT+1)

=

∫ xT

x∗
V1(y, xT+1)dy

≤

∫ xT

x∗
V1(y, y)dy.

This implies

v(x)− v(x∗) =
T−1
∑

s=0

(v(xs)− v(xs+1)) + (v(xT )− v(x∗))

≤

T−1
∑

s=0

∫ xs

xs+1

V1(y, y)dy +

∫ xT

x∗
V1(y, y)dy

=

∫ x

x∗
V1(y, y)dy.
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Hence

v(x)− v(x∗) ≤

∫ x

x∗
V1(y, y)dy.

Fix ǫ = v(x∗)− V (x∗,x∗)
1−δ

.

Take x ≥ x∗ such that for any x ≥ x:

∫ x

x∗
(V2(y, y) + δV1(y, y)) dy > ǫ.

Since x ∈ Γ(x), the sequence (x, x, x, . . . ) belongs to Π(x). Hence

v(x) ≥
∞
∑

s=0

δsV (x, x)

=
V (x, x)

1− δ
.

We have

V (x, x)− V (x∗, x∗) ≤ (1− δ)v(x)− (1− δ)

(

v(x∗)−
ǫ

1− δ

)

≤ (1− δ)
(

v(x)− v(x∗)
)

+ ǫ

≤ (1− δ)

∫ x

x∗
V1(y, y)dy + ǫ.

This implies

∫ x

x∗
(V1(y, y) + V2(y, y)) dy ≤ (1− δ)

∫ x

x∗
V1(y, y)dy + ǫ,

which is equivalent to

∫ x

x∗
(V2(y, y) + δV1(y, y)) dy ≤ ǫ,

a contradiction.

Hence for any x0 ≥ x, every optimal path beginning from x0 is increasing and
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converges to infinity.

E Proof of Proposition 3.3

For any y ≥ x > 0,

h(y) = V (x, y) +
δV (y, y)

1− δ
.

We have

h′(y) = V2(x, y) +
δ(V1(y, y) + V2(y, y))

1− δ

≤ V2(y, y) +
δ(V1(y, y) + V2(y, y))

1− δ

=
V2(y, y) + δV1(y, y)

1− δ

≤ 0.

The function h is then decreasing in [x,∞). This implies

V (x, x)

1− δ
≥ V (x, y) +

δV (y, y)

1− δ
,

for x∗ ≤ x ≤ y.

Assume that the statement in Proposition 3.3 is not true. For some x0 > x̃, the

optimal sequence beginning from {xs}
∞
s=0 is increasing and converges to infinity.

Using the same argument as in the proof of Proposition 3.1,

v(x0) ≥
V (x0, x0)

1− δ

> V (x0, x1) +
δV (x1, x1)

1− δ

· · ·

>

T
∑

s=0

δsV (xs, xs+1) +
δT+1V (xT+1, xT+1)

1− δ
,
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which converges to v(x0): a contradiction.

F Proof of Proposition 3.4

Consider the case x∗ > 0, then by the definition of x∗,

V2(x
∗, x∗) + δV1(x

∗, x∗) = 0.

By the convexity structure, x∗ is the biggest steady state. Hence by the continuity

op the optima policy function, either for any x > x∗, we have φ(x) > x, or for any

x > x∗, we have φ(x) < x.

We will prove the claim: for any x∗ ≤ y ≤ x,

V (x, x)

1− δ
≥ V (x, y) +

δV (y, y)

1− δ
.

Indeed, observe that since V (y, y) is a concave function in respect to y, the function

V1(y, y) + V2(y, y) is decreasing.

Let h(y) = V (x, y) + δV (y,y)
1−δ

. Observe that V2(x, y) ≥ V2(x, x), hence

h′(y) = V2(x, y) +
δ
(

V1(y, y) + V2(y, y)
)

1− δ

≥ V2(x, x) +
δ
(

V1(x, x) + V2(x, x)
)

1− δ

=
V2(x, x) + δV1(x, x)

1− δ

> 0.

This implies for any x∗ ≤ y ≤ x, we have

V (x, x)

1− δ
≥ V (x, y) +

δV (y, y)

1− δ
.

The claim is proved. For the case x∗ = 0, follows the same arguments. Using the

same arguments as in the proof of Proposition 3.1, the Proposition 3.4 is proved.
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G Proof of Proposition 3.5

Let φ be the optimal policy function. Remark that either φ(x) > x for any x > x̃,

or φ(x) < x for any x > x̃. This property implies that for any x0 > x̃, either the

optimal sequence beginning from x0 is increasing and converges to infinity, or it

is bounded. Then we use the same arguments as in the proof of Proposition 3.3.

H Proof of Proposition 5.1

The Proposition 5.1 is direct consequence of Proposition 3.2.

I Proof of Proposition 5.2

Indeed, for x high enough, f ′(x) > 1+ǫ
δ

for some ǫ > 0. The condition (i) in ?? is

hence satisfied.

For the condition (ii), first fix 1 + a > lim supx→∞ f ′(x). We have

∫ ∞

x′

(

V2(y, y) + δV1(y, y)
)

=

∫ ∞

x′
u′ (f(y)− y) (δf ′(y)− 1) dy

≥ ǫ

∫ ∞

x′
u′ (ay) dy

=
ǫδ

a
lim
x→∞

(u (ax)− u (ax′))

= ∞.

J Proof of Proposition 5.3

Since g is concave, the inverse function ζ is convex, and hence the indirect utility

function V is concave.

The condition δ(1 + λ) > 1 implies that for any x > 0, ζ ′(x) < δ. The assump-

tion A3 is satisfied with x∗ = 0. Proposition 5.3 is then direct consequence of
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Proposition 3.4.

K Proof of Proposition 5.4

This is a consequence of Proposition 3.4.

L Proof of Proposition 5.5

The result in part (i) is consequence of Proposition 3.1.

Now consider the part (ii). Since lim infx→∞ f ′(x) > 0, for x big enough we have

δf ′(x)− (1−δ)ψ′(1)
x

> ǫ, for some ǫ > 0. We then have

V2(x, x) + δV1(x, x) = u′ (f(x)− ψ(1))

(

δf ′(x)−
(1− δ)ψ′(1)

x

)

≥ ǫu′ (f(x)− ψ(1)) .

Since f is concave, there exists some a > 0 such that f(x) < ax for x sufficiently

big. Hence for any h sufficiently large,

∫ ∞

h

(V2(x, x) + δV1(x, x)) ≥ ǫ

∫ ∞

h

u′ (f(x)− ψ(1)) dx

≥ ǫ

∫ ∞

h

u′ (ax− ψ(1)) dx

= ∞.

Applying Proposition 3.2, the proof is completed.

M Proof of Proposition 5.6

The part (i) is direct consequence of Proposition 3.1.

The proof of the second part is similar to the one of Proposition 3.4.

Consider the third part. For x sufficiently large, we have V2(x, x) + δV1(x, x) > 0.
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Moreover, there exists ǫ > 0 such that

−
1

φ
(

z(x, x)
) + δf1(x, 1− z(x, x)

)

> ǫ,

with x sufficiently big. The next of the proof follows the same arguments as in

the proofs of Propositions 5.2 and 5.5.
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