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Abstract

The famous theorem of Savage is based on the richness of the states space, by

assuming a continuum nature for this set. In order to fill the gap, this article

considers Savage’s theorem with discrete state space. The article points out the

importance the existence of pair event in the existence of utility function and

the subjective probability. Under the discrete states space, this can be ensured

by the intuitive atom swarming condition. Applications for the establishment of

an inter-temporal evaluation à la Koopman [16], [17], and for the configuration

under unlikely atoms of Mackenzie [24] are provided.
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1 Introduction

"To solve problems, you don’t need to look at fancy new ideas, you can look at old

things with a new eye". Sir Michael Atiyah.

The mean expected utility maximization problem was first proposed by Bernoulli

(1738) when he worked on the Saint Petersburg’s paradox: although the expected

value of the lottery is infinite, people are willing only a limited amount of money

to pay. The hypothesis of Bernoulli is that people maximize their mean expected

utility instead of the expected monetary gain.

Furthermore, de Finetti [6] proposed conditions under which a rational agent max-

imizes expected utility with respect a subjective probability. On the contrary, von

Neumann - Morgenstein’s theorem [29] states that the comparison of probability

distributions on the set of outcomes is given by the use of an utility function.

Savage’s theorem in [26] reconciled the two approaches of de Finetti and von Neu-

mann - Morgenstein [29]. Under what later well-known as the "Savage’s axioms",

there exist a subjective probability and an utility function characterizing the be-

haviour of a rational agent. This surprising and powerful result does not need the

mathematical structures of de Finetti or of von Neumann - Morgenstein, which are

crucial for the use of separate theorem in convex analysis. The most complicated

structure of Savage’s world relies on the "technical axioms"1 ensuring a continuum

nature of the set of states.

Savage commences the proof by establishing a comparison order on the set of

events satisfying the existence of a quantitative probability (definition of de Finetti)

defined on this set. This probability plays the role of the subjective probability.

Each act is then equivalent to a distribution on the set of outcomes. By the von

Neumann - Morgenstein theorem, an utility function exists and acts are compared

using theirs expected utilities.

Naturally, there exists a current in the literature considering the problems encom-

1The P6− P7 axioms.
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passing the possibility of atoms, the events which can not be divided into smaller

non-null events. This consideration is not only an attempt to extend the result

of Savage, but also address a fundamental question in theoretical statistics on the

interpretation of probabilities. The question is, under which conditions, a com-

parison order according to an event is considered more probable than or at least as

likely thant another can be represented by a probability measure (finitely additive

or σ−additive)?

While this question has a satisfactory response for the case of atomless states

space, the problem become more complicated with the possibility that atoms ex-

ist. Because of the importance of the question (theoretically and practically),

numerous works have been done in this line of literature.

For the case of finite number of states, Kraft and al [21], and Scott [27] give

cancellation as necessary and sufficient conditions for the existence of a probability

measure. Kraft and al [21] also give a counterexample to prove that the additivity

is not strong enough to a positive answer when the number of states is bigger or

equal to 5.

For the case of infinite number of states, Chateauneuf and Jaffray [4] and Chate-

uneuf [3] consider the problem under the Archimedean property and proved that

this condition is sufficient of the establishment of a probability measure. The

curious readers can refer to the excellent reviews of Fisburn [8] and Mackenzie

[24].

Another approach consists in enriching the set of outcomes. Gul [14] considers

the finite state space, supposing that the outcomes set is connected, as Koopmans

[16]. Wakker [30] assumes that outcomes set is interval of dollars.

Ascombe and Aumann [1] suppose the agent has two types of probabilities: sub-

jective and objective ones. The arrived set of acts in the world of Ascombe &

Aumann [1] is hence the set of lotteries on outcomes. Their work opens a large

literature enjoying the linear structure of the set of acts, giving strong results for

the configurations where the Savage’s famous sure-thing principle is not satisfied:

for example questions about ambiguity of Gilboa & Schmeidler [11], [12], objective
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and subjective beliefs of Gilboa and al [13], and much more works.

This articles follows the approach supposing that the set of outcomes is connected

and separable, instead of the richness of the set of states.

The first part of the article considers a general space of states, which satisfies

the equal divisibility condition: there exists a subset H which is as likely as its

complement Hc. This set will play a crucial role in the establishment of a linear

structure and an order on the set of probability distributions which have at most

two values. Under this setup, this set satisfies the conditions imposed on von

Neumann - Morgenstein’s theorem and hence the existence of an utility function

is established.

The second part adds the independence conditionto the first part’s setup. This

conditions states that the ranking of two acts does not change if we mix them with

a third one. Under independence and equal divisibility condition, the comparison

criterion can be characterized by a subjective probability and an utility function.

The third part apply these results to the case of discrete space of states. This

part assumes that atom swarming condition is satisfied, i.e. every atom event is

less likely that the union of events which are less likely than it. This condition

implies the existence of a set H which is as likely as its complements, allowing us

to invoke the results from the first and second parts.

Applying the result in the third part in the Koopman’s setup [17] for inter-temporal

sequences of consumptions in discrete time, the existence of an utility function and

unique discount rate δ ≥ 0.5 is established. This result echoes Montiel Olea &

Strzalecki [25] and Kochov [15].

Finally, I consider the unlikely atom condition in Mackenzie [24]. This condition

ensures the existence of an event which does not contain atoms and is at least as

likely as its complement. The richness of the outcome set allows us to relax the

third-order atom-swarming in this work.
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2 Fundamentals

2.1 Definitions

Let S be the set of states and an algebra A of events on S. The set S can be

discrete, atomless, or even a hybrid type which contains continuum subsets as well

as atoms.

Denote by F0 the set of finite-value acts from S to a set of outcome X, which is

endowed with a topology τ .

F0 = {f : S → X such that f is measusable and f(S) is finite} .

For any partition constituted by measurable subsets A1, A2, . . . , An of S, for any

x1, x2, . . . , xn ∈ X, denote by x1,A1
x2,A2

. . . xn,An
the act h : S → X such that

h(s) = xk for s ∈ Ak. For example, for some A ∈ A, xAyAc denotes that act which

takes value x if s ∈ A and value y otherwise. In the same spirit, for f, g ∈ A,

fAgAc denotes the act h such that h(s) = f(s) if s ∈ A and h(s) = g(s) if s ∈ Ac.

Let P0 be the set of finite support probability distributions on X. For p1, p2, . . . , pn ∈

[0, 1] such that
∑n

k=1 pk = 1 and x1, x2, . . . , xn ∈ X, let (p1 : x1, p2 : x2, . . . , pn : xn)

denote the random distribution on X which takes value xk with probability pk.

There is a binary relation, an order � defined on the set of finite value acts F0. To

simply the exposition, the outcome set X can be considered as the set of constant

acts, and hence be a subset of F0.

An event E ∈ A is called null-event if for any x, y ∈ X, any h ∈ F0, we have

xEhEc ∼ yEhEc .

Axiom F1. i) The order � is complete and transitive.

ii) Non-triviality2: there exist x, y ∈ X such that x ≻ y.

2In equivalence, the states space S is not a null-event.
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iii) Monotonicity For any x, y ∈ X, g ∈ F0, non-null event A ∈ A,

x � y if and only if xAgAc � yAgAc .

iv) Weak comparative probability For any A,B ∈ A and x ≻ y, x′ ≻ y′,

xAyAc � xByBc if and only if x′

Ay
′

Ac � x′

By
′

Bc .

v) Continuity For any x ∈ X, the sets {y ∈ X such that y � x} and {y ∈

X such that x � y} are closed in respect with τ−topology. Moreover, the

space (X, τ) is connected3 and separable4.

These conditions are the same axioms presented by Savage [26], note that for

instance the famous sure-thing principle is not imposed. The relaxation of this

condition gives rise to a large literature on ambiguity in decision theory. For a

detailed review, see Etner & al [7].

This article relaxes Savage’s technical axioms P6 − P7.5 Instead of the contin-

uum property of the states space, the condition (vi) ensures that the order � is

continuous with respect to the topology τ .

For a replacement of sure-thing principle, I consider a version of independence

property. In literature, independence property states that the comparison between

two acts does not change if we mix them with the third act. Under the set up

of Ascombe & Aumann [1], where the outcomes set constitutes of probabilistic

distributions, the linear structure of the set of acts allows an easy definition of

the mix between two different acts. In this article, since such a structure does not

exit, the definition of mixing acts must be given using pair-event, the event which

is equivalent to its complement.

First, observe that thanks to the Weak comparative probability property, we can

define an order on the set of events.

3We can not split X into two disjoint closed subsets.
4There exists a countable and dense subset of X.
5For a detailed comments about Savage’s axioms, see Gilboa [10], chapter 10.
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Definition 2.1. For any subsets A,B ⊂ S, define A �l B if and only if there

exist x ≻ y such that

xAyAc � xByBc .

This comparison does not depend on the choice of x and y, i.e. A �l B if and

only if for any x, y ∈ X, xAyAc � xByBc . For the interpretation and the proof of

the Proposition 2.1, see Savage [26] and Gilboa [10].

Proposition 2.1. Assume that the order � satisfies axiom F. Then

i) The order �l is total, transitive, and non-trivial: S ≻ ∅.

ii) For A,B ∈ A, A ⊂ B implies B � A.

iii) Cancellation For A,B,C ∈ A such that (A ∪B) ∩ C = ∅,

A �l B if and only if A ∪ C �l B ∪ C.

Without the continuum nature of the state space in Savage’s setup, conditions

in Proposition 2.1 do not suffice for an establishment of a quantitative probability

measure. See the counterexample provided by Kraft et al [21].

In the following subsection, under the equal divisibility condition and independence

axiom, an utility function exists and we can establish a total order on the set of

finite distributions in X.

2.2 Equal divisibility condition

Instead of the technical axioms in Savage [26], based on the atomless property of

the set of states S, consider the following simplified one. For the case the states

is continuum, this condition is always satisfied.

Definition 2.2. Equal divisibility condition There exists an event H ∈ A such
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that for some x, y ∈ X satisfying x ≻ y,

xHyHc ∼ xHcyH .

Otherwise stated, S can be divided in two equivalent subsets:

H ∼l H
c.

The equal divisibility condition has important features. First, it is clear that if

measure of the set H should equal to 1
2
. Second, we can construct a subjective

probability, using the connectivity of the outcomes set. And, last but not least,

this condition ensures the unicity of this probability measure.

2.3 Mixing acts

In the world of Savage (with or without atoms), the possibility to construct the

"mixing acts" plays an important role, for example the construction of Ascombe &

Aumann [1], or the classical work in the ambiguity averse presentation of Gilboa

& Schmeidler [11]. Generally, we work under the conditions ensuring that the set

of acts is a convex subset included in a linear space. This linearity allows us to

define the utility function and the order in the set of distributions.

Since this article does not impose such linear structure on the set of acts, we must

follow another way in order to define the notion of "mixing act", which, in my

knowledge, appears first in the work of Gul [14].

Definition 2.3. For any acts f, g ∈ F0, any A ∈ A, define the mixing of f and

g through H any act f̃ satisfying: for any s ∈ S,

f̃(s) ∼ f(s)Hh(s)Hc .

By a slightly abuse of notation, denote by Hf + Hch a mixing act of f and g

through H.
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It is worth noting that one must avoid to confuse Hf + Hch with fHhHc . The

former one can be considered as a convex combination act of f and g with weighted

parameters defined using the event set H, while the later one is an act which is

equal to f on H and equal to h on Hc.

The following axiom assumes the independence property of mixing acts.

Axiom A1. Independence For any f, g, h ∈ F0,

f � g if and only if Hf +Hch � Hg +Hch.

The interpretation of this axiom is that, if we mix each element of f with an

element of h, using the pair-event, and do the same for g and h, the comparison

between f and g does not change after this mixing with h. The intuition is clear

once we suppose that a probability measure µ on A, the set of events, is established.

Obviously, this value is equal to 1
2
. The mixing act between f and g through H

is the act 1
2
f + 1

2
g. With the independence axiom, we get f � g if and only if

1
2
f + 1

2
h � 1

2
f + 1

2
h. This is exactly the same independence property usually used

in the literature following the set up of Ascombe - Aumann [1].

The relation between independence axiom and sure-thing principle is an important

question. In Gul [14], for the states space S is finite, if the number of states of S is

finite, independence implies sure-thing principle. The Proposition 2.2 states that

the same conclusion is true for the general case, with the richness of outcomes set.

Proposition 2.2. Suppose that the order � satisfies axiom F, and equal divisi-

bility condition. Then Independence implies the sure-thing principle.

2.4 Utility function

For x, y ∈ X, if we consider xHyHc as an equivalence of the distribution
(

1
2
: x, 1

2
: y

)

,

the independence axiom ensures the existence of an utility function which conserve

the comparison between these special distributions. The detailed proof can be

found in Gul [14], using Theorem 1, chapter 9 of Debreu [5].
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Proposition 2.3. Assume that the axioms F, Independence and the equal divis-

ibility condition are satisfied. There exists unique utility function (up to a strictly

increasing affine transformation) u such that for any x, y ∈ X,

xHyHc � x′

Hy
′

Hc if and only if
1

2

(

u(x) + u(y)
)

≥
1

2

(

u(x′) + u(y′)
)

.

Obviously, taking x = y and x′ = y′, the restraint of the order � on X is repre-

sented by function u: x � x′ if and only if u(x) � u(x′).

From now on, without any confusion, by a slightly abuse of notation, for any

A ∈ A, we define u(xAyAc) the utility value of z ∈ X such that z ∼ xAyAc :

u(xAyAc) = u(z).

By the continuity property of the outcome set X, such element z always exists.

2.5 Subjective probability

The idea for the construction of a probability distribution representing the order

�l runs as follows.

For any x, y ∈ X, the act xHyH
c can be considered equivalent to a distribution

which takes value x and y with equal probability:
(

1
2
: x, 1

2
: y

)

. Any z ∼ xHyHc

can be considered as certainty equivalent of this distribution. By taking xHzHc ,

we have an equivalent for the distribution
(

3
4
: x, 1

4
: y

)

, and zHyHc represents
(

1
4
: x, 3

4
: y

)

, and so on. Continuing with this line of reasoning, we can have the

equivalent representations of any distribution of the form
(

k
2n

: x, 2
n
−k
2n

: y
)

, for

0 ≤ k ≤ 2n. Taking the limits for n converges to infinity, we find the representation

of every distribution which takes at most two values:
(

p : x, (1 − p) : y
)

, with

x, y ∈ X and 0 ≤ p ≤ 16.

In details, consider a construction of the following sequence
{

zk,2
n}

, with n ≥ 0

6It is well known that for any 0 ≤ p ≤ 1, there exists a sequence (kn, 2
n) such that 0 ≤ kn ≤ 2n

for any n and limn→∞

kn

2n
= p.
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and 0 ≤ k ≤ 2n.

For n = 1, fix the elements of outcome set z0,2, z1,2 and z2,2 as:

z0,2 = y,

z1,2 ∼ xHyHc ,

z2,2 = x.

For n ≥ 1, 0 ≤ k ≤ 2n+1, fix the elements zk,2
n+1

∈ X as:

zk,2
n+1

= zk
′,2n if k = 2k′, with 0 ≤ k′ ≤ 2n,

zk,2
n+1

∼ z
2k′,2n

H z
2k′+1,2n

Hc if k = 2k′ + 1, with 0 ≤ k′ ≤ 2n − 1.

The following Lemma is intuitive and can be proven by induction. Without loss

of generality, assume that x � y.

Lemma 2.1. Assume that x ≥ y.

i) For any k, n, we have

x � z2
n
−1,2n � · · · � zk+1,2n � zk,2

n

� · · · � z1,2
n

� y.

ii) For any 0 ≤ k ≤ 2n,

u
(

zk,2
n)

=
k

2n
u(x) +

(

1−
k

2n

)

u(y).

iii) If x ≻ y, then for set A ∈ A, for any n, there exists unique kn such that:

zkn+1,2n ≻ xAyAc � zkn,2
n

.

Fix a set A ∈ A, fix x ≻ y, consider the sequence {(kn, 2
n)}∞n=0 such that for any
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n,

zkn+1,2n ≻ xAyAc � zkn,2
n

.

We may define the subjective probability measure of A as

µ(A) = lim
n→∞

kn

2n
.

However, the sequence {(kn, 2
n)}∞n=0 and the limit can depend on the choice of x

and y. Under the satisfaction of Independence axiom, we can discard this possi-

bility and prove that the value of µ(A) is independent with respect to the choice

of x and y. Moreover, we obtain a simple version of Savage’s theorem, applied for

the set of acts which take at most two values.

Proposition 2.4. Suppose that the order � satisfies the axioms F, Independence,

and the equal divisibility condition.

i) The measure µ is unique and independent with the choice of x and y.

ii) For any A,B ∈ A,

A �l B if and only if µ(A) ≥ µ(B).

iii) For any A,B ∈ A, any x, y, x′, y′ ∈ X, xAyAc � x′

By
′

Bc if and only if

µ(A)u(x) +
(

1− µ(A)
)

u(y) ≥ µ(B)u(x′) +
(

1− µ(B)
)

u(y′).

2.6 Mean expected utility

Once the utility function and subjective probability have been established, we

have the satisfaction of Savages’s theorem without the continuity nature of the set

of states.
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Theorem 2.1. Suppose that the order � satisfies axioms F, Independence and

the equal divisibility condition. There exists unique finitely additive probability

measure µ and unique utility function u (up to a strictly increasing affine trans-

formation) such that for any f, g ∈ F0:

f � g if and only if

∫

S

u (f(s))µ(ds) ≥

∫

S

u (g(s))µ(ds).

The extension for the comparison on the set of finite acts F0 to the set of measur-

able acts F requires some additional properties. The events family A is supposed

to be a σ−algebra. Arrow [2] proves that the Monotone Continuity, initiated by

Villegas [28], ensured countably additive of the subjective probability.

Axiom A2. Monotone continuity For any event A and sequence of events {An}
∞

n=1

such that

A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ . . . ,

and for any n, A �l An, we have

A �l

∞
⋃

n=1

An.

Denote by F the set of acts which is bounded:

F= {f : S → X measureable and ∃ x, y ∈ X such that x � f(s) � y ∀s ∈ S} .

Theorem 2.2. Assume that A is σ−algebra. Suppose that the order � is de-

fined on F, and satisfies axioms F, equal divisibilityIndependence and monotone

continuity. There exists unique finitely additive probability measure µ and unique

utility function u (up to a strictly increasing affine transformation) such that for

any f, g ∈ F:

f � g if and only if

∫

S

u (f(s))µ(ds) ≥

∫

S

u (g(s))µ(ds).
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3 Discrete states set

For this section, I consider the case that the states space S is discrete and has

an infinite number of elements. Without loss of generality, suppose that S =

{0, 1, 2, . . . } and for any s, {s} is non-null. The algebra A contains every subsets

of S: A = 2S. Moreover, always without loss of any generality, we can assume

that

{0} �l {1} �l {2} �l · · · �l {s} �l {s+ 1} �l . . . .

Axiom A3. Atom swarming For any s ≥ 0, we have

{s+ 1, s+ 2, . . . } �l {s}.

Let us discuss the atom swarming property. This axiom says that, every state is

less likely than the set of states which are less likely than it 7.

The meaning of the atom swarming condition is better illustrated in the context

of time discounting. For example, consider the setup in Koopmans [16], [17],

where instead of the states, we work with discrete time. Generally, a criterion on

inter-temporal consumption imposes the impatience property :

{0} �l {1} �l {2} �l · · · �l {s} ≥ . . . .

The atom swarming condition requires that the criterion is not too-impatient, i.e.

there is no day which is more important than the union of all other days in the

future8:

{s+ 1, s+ 2, . . . } �l {s}, for any s.

7This is a weaker version of the third-order atom-swarming presented in Mackenzie [24], which
requires that for each atom, there is a countable pairwise-disjoint collection of less-likely events
that can be partitioned into three groups, each with union at least as likely as the given atom.

8The same idea about not too-inpatient property is also presented in the works of Montiel
Oléa & Strzalecki [25], axiom 8 and Kochov [15], property P.
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Since from now on we work with σ−algebra subsets of S, we need the monotone

continuity property, which is the same as Villegas [28], to ensure that the subjective

probability measure is σ−additive.

Under this axiom, the equal divisibility condition is satisfied.

Proposition 3.1. Assume that the order � satisfies axioms F, Independence,

atom swarming, monotone continuity. Then the equal divisibility property is sat-

isfied. There exist a unique utility function u (up to a strictly increasing affine

transformation) and a unique probability measure ω = (ω0, ω1, . . . ) such that:

i) For any subsets A,B ⊂ S,

A �l B if and only if
∑

s∈A

ωs ≥
∑

s∈B

ωs.

ii) For any f, g ∈ F0, f � g if and only if

∞
∑

s=0

ωsu (f(s)) ≥
∞
∑

s=0

ωsu (g(s)) .

4 Applications

4.1 When Savage meets Koopman

Axiom A4. Time consistency Suppose that for any, x ≻ y and subsets A,B ⊂ S:

xAyAc � xByBc if and only if xA+1x(A+1)c � xB+1y(B+1)c .

This axiom, which is equivalent to the time-consistency axiom of Koopmans [17],

ensures that the comparison between two sets A and B does not change under a

translation to the future:

A �l B if and only if A+ s �l B + s for any s ≥ 0.
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Theorem 4.1. Assume that the order � satisfies axioms F, Independence, atom

swarming, monotone continuity and stability. There exist unique discount rate

0.5 ≤ δ < 1, and unique (up to a strictly increasing affine transformation) utility

function u such that for any f, g ∈ F,

f � g if and only if
∞
∑

s=0

δsu (f(s)) ≥
∞
∑

s=0

δsu (g(s)) .

4.2 Atom unlikely condition

This section consider the case when the atom unlikely condition presented in

Mackenzie [24] is satisfied. This condition establishes the existence of a set which

contains no atom, and is at least as likely as its complement. In this section, I

assume that A is a σ−algebra of events in S.

By σ−additivity, and the same arguments as in the proof of Savage’s theorem,

there exists a subset H ∈ A such that H contains no atoms and H ∼l Hc.

Pushing further this line of arguments, we can construct a sequence of sub-events

in H:
{

Ak,2n
}

with 0 ≤ k ≤ n, such that for any x � y ∈ X, for the corresponding

sequence
{

zk,2
n}

, we have

xAk,2ny(Ak,2n)
c ∼ zk,2

n

.

By induction, and the sure-thing principle, the sets
{

Ak,2n
}

do not depend on the

choice of x and y. For any B ∈ A such that Bc �l B, we can define the sequence

{(kn, 2
n)}∞n=0 such that

Akn+1,2n ≻l B � Akn,2n .

The measure of B can be defined as

µ(B) = lim
n→∞

kn

2n
.
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For B ∈ A such that B � Bc, define the {(kn, 2
n)}∞n=0 such that

Hc ∪ Akn+1,2n ≻l B � Hc ∪ Akn,2n .

The measure of B can be defined as:

µ(B) =
1

2
+ lim

n→∞

kn

2n
.

Theorem 4.2. Assume that the order � satisfies axioms F, Independence, atom

swarming, monotone continuity and atom unlikely property. Then there exists

a unique subjective probability and a unique (up to a strictly increasing affine

transformation) utility function such that: for any f, g ∈ F0, f � g if and only if

∫

S

u
(

f(s)
)

µ(ds) �

∫

S

u
(

g(s)
)

µ(ds).

APPENDIX

A Proof of Proposition 2.2

Consider a non-null event A ∈ F. Assume that for f, g, h ∈ F0, we have fAhAc �

gAhAc . We must prove that for any h̃ ∈ F0, fAh̃Ac � gAh̃Ac .

First, we prove that, if there is some ĥ ∈ F0 such that for any s ∈ S,

h(s)H ĥ(s)Hc ∼ h̃(s),

then for fAhAc � gAhAc if and only if fAh̃Ac � gAh̃Ac .

Indeed, by the Independence axiom, fAhAc � gAhAc if and only if

H (fAhAc) +Hc
(

fAĥAc

)

� H (gAhAc) +Hc
(

fAĥAc

)

,
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which is equivalent to

fAh̃Ac � (Hg +Hcf)A h̃Ac .

Using once more the Independence axiom, we have fAh̃Ac ≥ gAh̃Ac if and only if

H
(

fAh̃Ac

)

+Hc
(

fAh̃Ac

)

≥ H
(

gAh̃Ac

)

+Hc
(

fAh̃Ac

)

,

which is equivalent to

fAh̃Ac � (Hg +Hcf)A h̃Ac .

Hence fAhAc � gAhAc if and only if fAh̃Ac � gAh̃Ac .

Now take three elements in X such that x ≻ x ≻ x. We will prove that

fAhAc � gAhAc if and only if fAxAc � gAxAc .

Indeed, let h0, h1, . . . , hn, · · · ∈ F0 defined as

h0 = h,

h1 = Hh0 +Hcx,

h2 = Hh1 +Hcx,

. . . ,

hn+1 = Hhn +Hcx for any n ≥ 0.

Using the same arguments as the case h̃ = Hh +Hcĥ, we have fAhAc � gAhAc is

equivalent to fAh
1
Ac � gAh

1
Ac , which is equivalent to fAh

2
Ac � gAh

2
Ac etc.

By induction, for any n, fAhAc � gAhAc is equivalent to fAh
n
Ac � gAh

n
Ac . By the

construction, the sequence of acts {hn}∞n=0 converges to the constant act x, in the

18



sense that for any y ≻ x ≻ z, there exists N such that for n ≥ N , for any s ∈ S,

y ≻ hn(s) ≻ z.

This implies for n sufficiently big, there exists h∗ ∈ F0 such that x ≻ h∗(s) ≻ x

for any s ∈ S and

hn(s)Hh
∗(s)Hc ∼ x,

for any s ∈ S. This is equivalent to Hhn + Hch∗ ∼ x. Hence fAh
n
Ac � gAh

n
Ac is

equivalent to fAxAc � gAxAc . The claim is proved.

Applying the same arguments for h̃, we get fAh̃Ac ≥ gAh̃Ac if and only if fAxAc ≥

gAxAc .

The satisfaction of sure-thing principle is proved.

B Proof of Proposition 2.4

For the sake of simplicity, for f, h ∈ F0, and some non-null event A, the mixing

act f̃ can be written as

f̃ ∼ Af + Ach.

The axiom Independence axiom states that f � g if and only if Af + Ach �

Ag + Acg.

i) The proof that determination of µ is independent with the choice of x, y

consists of three parts:

a) First, consider x, y, x′, y′, z, z′ such that

z ∼ xAyAc ,

z′ ∼ x′

Ay
′

Ac .
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Fix w, v, t ∈ X which satisfy:

w ∼ xHx
′

Hc ,

v ∼ yHy
′

Hc ,

t ∼ wAvAc .

We will prove that t ∼ zHz
′

Hc .

Indeed, let f = xAyAc and g = x′

Ay
′

Ac . Since f ∼ z and g ∼ z′, by

Independence axiom, the mixture between f and g using H is equivalent

to the mixture between z and z′ using H. We have

t ∼ wAvAc

∼ Hf +Hcg

∼ Hz +Hcz′

∼ zHz
′

Hc .

b) Now we prove the independence of µx,y(A) with respect to the choice of

x, y.

Fix any x∗, y∗ ∈ X such that x∗ ≻ y∗. Fix any A ∈ A. Let p = µx∗,y∗(A).

We must prove that for any x, y such that x∗ � x � y � y∗, with t ∼ xAyAc ,

u(t) = pu(x) + (1− p)u(y),

where u is the utility function in Proposition 2.3.

Consider the same construction of the sequence
{

zk,2
n}∞

k,n=1
corresponding

to x∗ and y∗.

For any event A ∈ A, since x∗ � x∗

Ay
∗

Ac � y∗, for any n, there exists unique

kn such that

zkn+1,2n ≻ x∗

Ay
∗

Ac � zkn,2
n

.
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We can define the measure of A, under the choice x, y as

µx∗,y∗(A) = lim
n→∞

kn

2n
.

We will prove that under any other choice of x = zk,2
n

and y = zk
′,2n , the

measure of A is the same:

µx,y(A) = µx∗,y∗(A).

The proof will be given by induction. Consider first the case n = 1.

Take for example z1,2 and z0,2. To simplify the presentation, let x′ = z1,2,

and y′ = z0,2 = y∗. Let p = µx∗,y∗(A) and p′ = µx′,y′(A).

Recall that by Lemma 2.1,

u(z) = pu(x∗) + (1− p)u(y∗),

u(z′) = p′u(x′) + (1− p′)u(y′)

=
p′

2

(

u(x) + u(y)
)

+ (1− p′)u(y′)

=
p′

2
u(x∗) +

(

1−
p′

2

)

u(y∗).

Let z = xAyAc and z′ = x′

Ay
′

Ac . Since y′ = y∗, using the property proved

in the part (i), we get

z′ ∼ zHy
∗

Hc .

This implies

u(z′) =
1

2
(u(z) + u(y∗))

=
1

2

(

pu(x∗) + (1− p)u(y∗)
)

+
1

2
u(y∗)

=
p

2
u(x∗) +

(

1−
p

2

)

u(y∗).

Hence p = p′, or µx′,y′(A) = µx,y(A).
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For the case of the choice x and z1,2, we use the same arguments. For

x = x∗, y = y∗, the conclusion is immediate.

Now assume that the assertion is true for any number n. We will prove

that it is also true for n + 1. Consider any 0 ≤ k′ ≤ k ≤ 2n+1. By the

construction of the sequence {zk,2
n

}∞n=0, there exist x, x′, y, y′ ∈
{

zk,2
n}2n

k=0

such that x � y, x′ � y′ and

zk,2
n+1

= xHx
′

Hc

zk
′,2n+1

= yHy
′

Hc .

Define t = z
k,2n+1

A z
k′,2n+1

Ac , w = xAyAc , w = x′

Ay
′

Ac . By the part (i), the

equivalence t ∼ wHvHc is satisfied. Hence

u(t) =
1

2

(

u(w) + u(v)
)

=
1

2
(pu(x) + (1− p)u(y) + pu(x′) + (1− p)u(y′))

= p

(

1

2

(

u(x) + u(x′)
)

)

+ (1− p)

(

1

2

(

u(y) + u(y′)
)

)

= pu
(

zk,2
n+1

)

+ (1− p)u
(

zk
′,2n+1

)

.

This implies

µzk,2
n+1

,zk
′,2n+1

(A) = µx,y(A) = µx∗,y∗(A).

Consider now any x, y such that x∗ � x � y � y∗. Let
{

zkn,2
n}∞

n=0
and

{

zk
′

n,2
n}∞

n=0
be sequences such that

lim
n→∞

u
(

zkn,2
n)

= u(x),

lim
n→∞

u
(

zk
′

n,2
n
)

= u(y).
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By continuity property,

u (xAyAc) = lim
n→∞

u
(

z
kn,2n

A z
k′n,2

n

Ac

)

= pu(x) + (1− p)u(y),

which is equivalent to

µx,y(A) = µx∗,y∗(A).

For any x � y and x′ � y′, fix x∗ � x, x′ and y∗ � y′, we have

µx,y(A) = µx∗,y∗(A) = µx′,y′(A).

Hence the choice of value µ(A) does not depend on the choice of x, y.

c) µ is a probability measure.

In order to complete the proof, we must prove that for A,B ∈ A such that

A ∩ B = ∅,

µ
(

A ∪B
)

= µ(A) + µ(B).

Define C =
(

A∪B
)c

. Since xAxB∪C = x � xA∪Byc � xAyB∪C , there exists

w ∈ X such that

xAxByC = xA∪ByC ∼ xAwB∪C .

Applying the sure-thing principe by replacing x by y on the event A, we

get

xByA∪C = yAxByC ∼ yAwB∪C .
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From xA∪ByC ∼ xAwB∪C and xByA∪C ∼ yAwB∪C we get

µ
(

A ∪B
)

u(x) +
(

1− µ
(

A ∪ B
))

u(y) = µ(A)u(x) + (1− µ(A)) u(w),

µ(B)u(x) + (1− µ(B)) u(y) = µ(A)u(y) + (1− µ(A)) u(w).

Subtracting the second equation by the first equation, we obtain

(

u(x)− u(y)
)

µ
(

A ∪B
)

=
(

u(x)− u(y)
)(

µ(A) + µ(B)
)

,

which implies

µ
(

A ∪B
)

= µ(A) + µ(B).

The proof is completed.

C Proof of Theorem 2.2

By Proposition 2.4, there exists unique probability measure µ and a utility function

(up to a strictly increasing affine transformation) such that for any events A,B ∈

A, outcomes x, y, x′, y′ ∈ X, the act xAyAc � x′

By
′

Bc if and only if:

µ(A)u(x) + µ(Ac)u(y) ≥ µ(B)u(x′) + µ(Bc)u(y′).

Suppose that the assertion of the theorem is true for the acts which take almost

n− 1 different values. We will prove that it is verified for n different values.

Let f = x1,A1
x2,A2

· · · xn,An
, with {Ak}

n
k=1 a partition of S. Fix any constant

v ∈ X. For 1 ≤ k ≤ n, define pk = µ(Ak).

We will prove that

f � v if and only if
n

∑

k=1

pku(xk) ≥ u(v).
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Fix w ∈ X such that

x1,A1
x2,A2

x3,A3
· · · xn,An

∼ x1,A1
w∪

n
k=2

Ak
.

By the sure-thing principle property, this implies

x2,A1
x2,A2

· · · xn,An
∼ x2,A2

w∪
n
k=2

Ak
,

which is equivalent to

p1u(x2)+p2u(x2)+p3u(x3)+ · · ·+pnu(xn) = p1u(x2)+(p2+p3+ · · ·+pn)u(w).

Hence

u(w) =
1

∑n

k=2 pk

n
∑

k=2

pku(xk).

This allows us to deduce the value of f :

u
(

x1,A1
w∪

n
k=2

Ak

)

= p1u(x1) +

(

n
∑

k=2

pk

)

u(w)

=
n

∑

k=1

pku(xk).

We have f � v if and only if x1,A1
w∪

n
k=2

Ak
� v, which is equivalent to

n
∑

k=1

pku(xk) ≥ u(v).

For any f = x1,A1
x2,A2

· · · xn,An
and g = y1,B1

y2,B2
· · · ym,Bm

, by considering v such

that v ∼ g, one has

f � g if and only if
n

∑

k=1

pAk
u(xk) ≥

m
∑

k=1

pBk
u(yk).

The proof is completed.

25



D Proof of Proposition 3.1

First, we prove that under axioms F1 and A2, A3, the equal divisibility property

is satisfied: there exists an event H ⊂ S such that H ∼l Hc.

Withou loss of generality, consider a permutation of elements of S: {s0, s1, s2 . . . , }

such that

{s0} �l {s1} �l {s2} �l · · · �l {sk} � . . . .

Define

A0 = {s0},

B0 = ∅.

For any k, if Ak �l Bk then

Ak+1 = Ak,

Bk+1 = Bk ∪ {sk+1},

Otherwise, if Bk ≻l Ak, then

Ak+1 = Ak ∪ {sk+1},

Bk+1 = Bk.

Define

A =
∞
⋃

k=0

Ak.

Observe that

B =
∞
⋃

k=0

Bk.
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We will prove that A ∼l B.

First, consider the case there exists k∗ such that Ak∗ �l Bk∗ and Bk ≻ Ak for any

k ≥ k∗ + 1.

This implies

B = Bk∗+1 = Bk∗ ∪ {sk∗+1} ≻l Ak∗+1 = Ak∗ �l Bk∗ .

Since for any k ≥ k∗ + 1, Bk ≻l Ak, we have

Ak = Ak∗ ∪ {sk∗+2, sk∗+3, . . . , sk}.

This implies

A =
∞
⋃

k=0

Ak

= Ak∗ ∪ {sk∗+2, sk∗+3, . . . }

�l Ak∗ ∪ {sk∗+1}

�l Bk∗ ∪ {sk∗+1}

= B.

For the case where there exist an infinite number of k such that Ak �l Bk, by the

axiom A2, we have A �l B.

Now we prove that B �l A.

If {s0} ∼l {s1, s2, . . . }, then A = {s0} ∼l B = {s1, s2, . . . , sk, . . . }.

If {s1, s2, . . . } ≻ {s0}, then there exists k such that Bk ≻ Ak. Using the same

arguments as the first part, we get B �l A.

Hence A ∼l B. Obviously, A ∪ B = S. Let H = A and Hc = B, the equal

divisibility condition is satisfied. By the Proposition 2.4, there exists a probability

measure defined on the σ−algebra of all subsets of S and an utility function u
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such that for any f, g ∈ F0, f � g if and only if

∞
∑

s=0

ωsu
(

f(s)
)

≥
∞
∑

s=0

ωsu
(

f(s)
)

.

By the monotone continuity condition, the measure ω is σ−additive. Take ωs =

µ ({s}), we get
∑

∞

s=0 ωs = 1 and µ(A) =
∑

s∈A ωs for any A ⊂ S.

E Proof of Theorem 4.1

Using Theorem 2.2, there exists a probability ω = (ω0, ω1, . . . ) and an utility

function such that for any f, g ∈ F0, f � g if and only if

∞
∑

s=0

ωsu
(

f(s)
)

≥
∞
∑

s=0

ωsu
(

g(s)
)

.

For T ≥ 0, define ωT as

ωT
s =

ωT+s
∑

∞

s′=0 ωT+s′
, ∀ s ≥ 0.

By the stability property, ω = ωT , and hence:

ωs =
ωT+s

∑

∞

s′=0 ωT+s′
and ωs+1 =

ωT+s+1
∑

∞

s′=0 ωT+s′
.

This implies

ωs+1

ωs

=
ωT+s+1

ωT+s

,

for every T, s.

But this is equivalent to

ωs+1

ωs

= δ,

for some δ > 0 and for every s ≥ 0, or ωs = δsω0 for every s ≥ 0.
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Since
∑

∞

s=0 ωs = 1, one has 0 < δ < 1 and ω∗

s = (1− δ∗)δs for s ≥ 0.

For f, g ∈ F, f � g is equivalent to

(1− δ)
∞
∑

s=0

δsu (f(s)) ≥ (1− δ)
∞
∑

s=0

δsu (g(s)) .

The common term 1− δ can be relaxed, for the sake of simplicity.

The condition atom swarming is equivalent to

1− δ ≤
∞
∑

s=1

(1− δ)δs = δ,

which is equivalent to δ ≥ 0.5.
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