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Abstract

A Taylor-type monetary policy rule is estimated using a time-varying parameter vector autoregressive model

to assess changes in central banks’ behavior during and after the Great Recession. Based on US and euro

area data, the results show that both the Fed and the ECB have changed their behavior after the 2008 cri-

sis. Contemporaneous coefficients have increased with expansionary monetary policy at the ZLB. Although

they do not indicate clear evidence of significant changes in the systematic component of monetary policy,

estimated response coefficients suggest dramatic shifts in monetary policy shocks after the Global Financial

Crisis. These departures from rule-based behavior – i.e. monetary policy discretion – are increasingly larger

with the implementation of non-standard measures. Unconventional monetary policy shocks are shown to

strongly affect the US macroeconomy and to contribute to the variance of inflation and output even more

importantly when the Fed eased its monetary policy at the ZLB. This is not the case in the euro area, despite

increasing monetary policy shocks in unconventional times. A counterfactual analysis shows however that

the shift in the systematic component of monetary policy appears to be a key determinant of the level of

inflation and output at the ZLB, especially in the euro area that would have suffered a continuous period of

deflation from 2014:1 to 2018:1 without any change in ECB’s behavior after the 2008 crisis.
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1 Introduction

Central banks are in the spotlight since the 2008 financial crisis and the resulting ‘Great Recession’. The

global economic downturn spurred the main central banks to take drastic decisions, as cutting short-term interest

rates to zero and adopting unconventional measures by implementing new monetary policy tools. Hitting the

so-called zero lower bound (ZLB) on nominal interest rates, lots of central banks decided to use a large set of

non-standard policy tools, including negative interest rate policy (NIRP), quantitative easing (QE), long-term

refinancing operations (LTROs) or forward guidance (FG). Those operations have been conducted to foster

economic activity by going beyond the traditional use of nominal short-term interest rates as the main policy

instrument.

Figure 1: Policy rates and balance sheets

Note: Monthly data from Federal Reserve and European Central Bank. Left-hand side: policy rates in percentage. Right-hand side: central

banks’ total assets in billions of US dollars for the Federal Reserve and billions of euros for the Eurosystem.

Hence, as depicted in Figure 1, it seems that central banks were actually “not very constrained by the zero

lower bound on nominal interest rates” after the crisis, to quote Swanson (2018).1 Notwithstanding target

nominal interest rates near or at 0%, explosive balance sheets show how the Federal Reserve and the European

Central Bank (Fed and ECB hereafter, respectively) kept on acting strongly to lower long-term interest rates

during the ZLB, for the purpose of stimulating the real economy by setting negative policy rates, purchasing

1Eric T. Swanson focuses on the Federal Reserve in his paper. He echoes Debortoli et al. (2019) and supports the view

that macroeconomic performances were not affected by the binding ZLB constraint (known as the ZLB empirical ‘irrelevance

hypothesis’), through the effectiveness of Fed’s unconventional monetary policy and its ability to influence interest rates all along

the yield curve. Other recent papers suggest that the ZLB was not such a constraint on policy, such as Gaŕın et al. (2019),

Wieland (2019), Wu and Zhang (2019) and Lhuissier et al. (2020) for instance. This is consistent with earlier literature on

unconventional monetary policy as a relatively effective substitute for the federal funds rate at the ZLB, including Vissing Jorgensen

and Krishnamurthy (2011) for QE and Campbell et al. (2012) for FG, among many others. Recently, Kim et al. (2020) and Kortela

and Nelimarkka (2020) use a structural VAR and support this view in the US and in the euro area, respectively, while Sims and

Wu (2020) use a DSGE approach.
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a huge amount of assets, directly lending to financial institutions, or communicating about the future path of

short-term interest rates.2 Despite their exceptional nature, these policies have been launched, above all, in

order to pursue the standard objectives of stabilizing inflation or stimulating economic growth. However, the

implementation of US and euro area monetary policy may have evolved in the sense that the Fed and the ECB

could have adapted their response to changing macroeconomic conditions after the crisis. Has the conduct of

Fed and ECB monetary policy evolved in the aftermath of the Great Recession? And if so, how has it affected

macroeconomic performances in the US and in the euro area?

The present paper draws on the seminal work of Taylor (1993) and the well-known ‘Taylor rule’, according

to which the central bank sets the policy rate considering inflation and output fluctuations. Since then, a huge

literature has emerged to give further insights into central banks’ behavior.3 In the spirit of the standard Taylor

rule, central bank’s behavior may be defined by its emphasis on stabilizing inflation and output, but also by

its willingness to depart from the behavior prescribed by the policy rule. This paper investigates in which

extent changes in central banks’ behavior may explain monetary policy decisions since the Great Recession, and

how it may have influenced inflation and economic growth. Based on the methodology employed in Belongia

and Ireland (2016), I use a time-varying parameters vector autoregressive (TVP-VAR) model with stochastic

volatility to estimate a Taylor-type rule with drifting coefficients. I extend their work by focusing especially on

the post-2008 decade, including the Great Recession and the ZLB, and by comparing the Fed and the ECB.

To get rid of flat rates challenging monetary policy rule estimations in the ZLB era, I use the shadow rate

constructed by Krippner (2013, 2019) as a proxy for the short-term nominal interest rate that captures the

overall stance of monetary policy at the ZLB taking into account unconventional policy actions. Hence, a

shadow Taylor rule with time-varying parameters is estimated on the ZLB sample period.4

Estimation results show that the Fed and the ECB have changed their behavior in the aftermath the Great

Recession. Contemporaneous coefficients of the time-varying reaction function have increased with expansionary

monetary policy at the ZLB. In the US, they peaked when the Fed started tapering in end-2013 and went back

to pre-crisis levels around the time of the main policy rate lift-off. In the euro area, they went up around 2009

and are still large due to ongoing massive expansionary ECB’s monetary policy. However, these results do not

indicate clear evidence of significant changes in Fed’s and ECB’s responses to inflation and output. Importantly,

the evolution of estimated response coefficients suggests dramatic shifts in monetary policy shocks during and

after the Great Recession. The path of realized policy shocks volatility both in the US and in the euro area is

statistically different from the pre-recession period, and support striking evidence of a change in monetary policy

after the 2008 crisis. These departures from rule-like behavior during the ZLB are interpreted as more policy

2From 2008 to 2014, the Federal Reserve has implemented three successive QE programmes (Dec. 2008, Nov. 2010 and Sep.

2012). In late 2015, it began to normalize US monetary policy by raising the key policy rate, and by reducing its balance sheet

in late 2017. The European Central Bank decided to improve credit support and bank lending (Oct. 2008 and June 2009), and

launched its first asset purchase programme (APP) in July 2009. However, its balance sheet expanded a lot in 2012 due to very

long-term refinancing operations (VLTROs), and especially in 2015 when it implemented an APP including both sovereign bonds

and private-sector securities purchases. This point is also discussed in Section 4.
3Bernanke and Mishkin (1992) use the expression “central bank behavior” to mention the conduct and the performance of

monetary policy.
4See pioneering papers using the shadow rate in VAR models (Wu and Xia, 2016) or DSGE models (Wu and Zhang, 2019).

Based on the latter paper, the relevance of shadow Taylor rules is discussed in Appendix B (more references in Section 4).
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discretion, and hugely increase with the launch of non-standard policy measures. Unconventional monetary

policy shocks are shown to strongly affect the US macroeconomy and to contribute to the variance of inflation

and output even more importantly when the Fed eased its monetary policy at the ZLB. Nevertheless, increasing

monetary policy shocks at the ZLB do not transmit to the real economy as efficiently as in normal times in the

euro area, and do not explain a large part of the variance of inflation and output. A counterfactual analysis

shows in which extent changes in Fed’s and ECB’s behavior during and after the Great Recession have affected

macroeconomic performances both in the US and in the euro area. Despite evidence of a significant change in

the non-systematic component of monetary policy after the 2008 crisis, the shift in contemporaneous response

coefficients of the time-varying policy rule appears to be a key determinant of the level of inflation and output

at the ZLB, mainly in the euro area that would have suffered a large period of deflation from 2014:1 to 2018:1

without any change in ECB’s behavior after the 2008 crisis.

The rest of the paper is organized as follows. Section 2 is dedicated to the literature review. Section 3

describes the methodology used for the modelling framework. Section 4 presents the data. Section 5 is devoted

to the estimation results. Section 6 contains the counterfactual analysis based on the results. Finally, Section

7 is for the conclusion.

2 Related literature

The question of the conduct of monetary policy has been widely discussed in the literature. Since John

B. Taylor’s (1993) benchmark work, lots of papers have evaluated the conduct of monetary policy and have

proposed improvements in the analysis of Taylor-type rules (see Clarida et al., 1999 and Woodford, 2001, 2003,

among others). At the same time, a growing literature has emerged and found support to the use of Taylor

rules as a practical tool to capture shifts in central banks’ behavior across different monetary policy regimes.

Monetary policy rules have been used to identify changes in Fed’s behavior across different monetary policy

regimes in the US, by disentangling pre-Volcker (before Paul Volcker’s appointment as Fed Chairman in 1979)

and post-Volcker (including Paul Volcker’s tenure) periods. Clarida et al. (2000) advocate that a shift in the

systematic component of monetary policy has been the main source of macroeconomic stability during the

post-Volcker period. Lubik and Schorfheide (2004) conduct a test for indeterminacy in the pre-Volcker and

Volcker-Greenspan periods and confirm this result. Favero and Rovelli (2003), Ozlale (2003), Dennis (2006),

and Surico (2007a) provide additional support for these findings, with a specific attention on interest rate

smoothing in the reaction function.5 Similarly, Stock and Watson (2002), Gaĺı et al. (2003) and Ahmed et al.

(2004) support the view that better Fed’s performances has considerably reduced macroeconomic volatility

during the Great Moderation. Using Bayesian methods to estimate a basic New Keynesian model, Ilbas (2012)

also finds a break in the conduct of US monetary policy during the post-Volcker period. Interestingly, Coibion

(2012) attributes a leading role to monetary policy shocks measured from estimated Taylor rules in significantly

contributing to real economic fluctuations during the 1970s and early 1980s. Nikolsko-Rzhevskyy et al. (2014)

5Higher persistence of lagged interest rate in the conduct of monetary policy can be justified by misspecifications of the

macroeconomic dynamics, as highlighted by Rudebusch (2001), Castelnuovo and Surico (2004), Castelnuovo (2006) and Givens

(2012).
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identify monetary policy regimes according to rules-based or discretionary eras. They provide further evidence

of improving economic performance when central banks adhere to a monetary policy rule.

Since all of the papers cited above focus on Fed’s behavior, other studies focus on the ECB (Taylor, 1999,

Gerlach and Schnabel, 2000).6 Relying on estimates of reaction functions, Gerdesmeier and Roffia (2004),

Garcia-Iglesias (2007) and Surico (2007b) find a stronger interest rate response to inflation than to output

fluctuations. However, other studies find a relatively high contemporaneous coefficient on output stabilization in

a Taylor rule applied to the eurozone (see Fourçans and Vranceanu, 2007, Sauer and Sturm, 2007 for estimations

on ex-post data, and Castelnuovo, 2007 and Gorter et al., 2008 for forward-looking estimations of monetary

policy rules). Other papers do the same exercise including the ZLB and the financial crisis, as Gorter et al.

(2010), Gerlach (2011), and more recently Gerlach and Lewis (2014a,b). Hutchinson and Smets (2017) advocate

that the ECB has launched unconventional measures to respond to its communicated reaction function and fulfill

its mandate, that is a key point in the present analysis.

Also, a strand of the literature proposes a comparative analysis of the conduct of monetary policy between

the US and the euro area. Empirical estimates include Ullrich (2005) and Belke and Polleit (2007). In the latter,

the authors find that the standard Taylor rule is a better tool for modelling Fed’s monetary policy than ECB’s.

They also find a lower emphasis on inflation relative to the output gap in the euro area. However, higher interest

rate smoothing in the US displays more cautiousness in Fed’s behavior. Belke and Klose (2013) propose the

same exercise during the Great Recession. Based on dynamic stochastic general equilibrium (DSGE) models,

Christiano et al. (2008) and Sahuc and Smets (2008) show that differences in shocks largely explain the gap

between Fed’s and ECB’s interest rate setting.

In line with early empirical advances in monetary policy rule estimations, the use of vector autoregressive

(VAR) models has a long-lasting tradition of monetary analysis (Sims, 1980, 1992, Bernanke and Blinder, 1992,

Christiano et al., 1996, among many others). This approach has been widely used to measure the effects of

monetary policy shocks, relying on some critical identifying assumptions of monetary policy innovations in

structural frameworks. As highlighted by Christiano et al. (1999) and Ramey (2016), lots of identification

strategies have been developed since decades, and now allow a better understanding of the impact of monetary

policy shocks as the exogenous part of central banks behavior.7 However, and as stressed above, the conduct of

monetary policy has been shown to be regime-dependent, and both response coefficients of the reaction function

and monetary policy shocks are likely to change over time. Therefore, a large set of VAR specification has been

developed to capture the non-linear dynamics of the whole central banks’ behavior over a given sample period,

including vector autoregressions with time-varying parameters and stochastic volatility (TVP-VAR).

TVP-VAR models allow for smooth and gradual changes in the parameters of the estimated monetary policy

rule. In a seminal paper, Primiceri (2005) (see Del Negro and Primiceri, 2015 for a corrigendum) wonders

whether monetary policy in the US has been less active against inflationary pressure during the Martin-Burns

6More recently, Hartmann and Smets (2018) look at the evolution of ECB’s behavior during its first twenty years.
7Further analyses on the non-systematic component have been proposed to better understand changes in the conduct of monetary

policy. Following on from Boivin and Giannoni (2006), Justiniano and Primiceri (2008), Benati and Surico (2009), and using both

a structural VAR and a Bayesian estimation of DSGE models, recent papers investigate the impact of time-varying volatility of

monetary policy shocks on the economy (Fernández-Villaverde et al., 2011 and Mumtaz and Zanetti, 2013).
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period than during the Volcker-Greenspan era. He finds that the non-systematic part of US monetary policy

was higher in the 1960s and 1970s, although monetary policy was more systematic under Greenspan in the US.

Other influential studies such as Cogley and Sargent (2005), Boivin (2006), Kim and Nelson (2006), Benati and

Mumtaz (2007) use a VAR with drifting coefficients and stochastic volatilities to analyze Fed’s behavior during

the post-World War II period in the US. All these papers agree on the improvement in the systematic component

of monetary policy after Volcker’s appointment. As a whole, time-varying parameters VAR methodology has

been widely employed in monetary policy analyses. Benati and Surico (2008), Canova and Gambetti (2009),

Cogley et al. (2010), Baxa et al. (2014) and Creel and Hubert (2015) use TVP-VARs to examine the evolution

of inflation persistence and predictability. Mumtaz and Surico (2009) and Baumeister and Benati (2013) include

the yield curve in their model. Koop et al. (2009), Canova and Pérez Forero (2015), Amir-Ahmadi et al. (2016)

investigate possible structural breaks in the economy, but also attribute large macroeconomic implications to

time-varying monetary policy shocks.

As an extension, the present paper replicates the same results as Belongia and Ireland (2016) on the common

sample period of estimation: the Fed decreased the weight it placed on stabilizing inflation from 2000 to 2007, and

deviated persistently from the estimated policy rule that had important implications for output and inflation.

However, one of the main contributions of the present paper is to bring new evidence on the evolution of

monetary policy in the US and in the euro area in the wake of the Global Financial Crisis.

3 Methodology

The model. The methodology used in this paper is similar to Belongia and Ireland (2016). Their empirical

procedure is reproduced in this section and detailed in Appendix A. Indeed, a vector autoregressive model with

time-varying parameters and stochastic volatility (TVP-VAR) is used to study the evolution of monetary policy

on the period of estimation.8 The main difference comes from the extension of the sample period of estimation,

that henceforth covers unconventional times. Also, as an extension, the vector autoregression with time-varying

coefficients and stochastic volatility is applied to euro area data. The model is based on Primiceri (2005) and

Cogley and Sargent (2005), and its baseline version can be written as follows:

yt =
[

Πt Gt Rs
t

]′

(1)

where Πt is the inflation rate, Gt is the output gap and Rs
t is the shadow rate at period t.9 The three

8Stability of the simple VAR model is checked in Appendix C. Aastveit et al. (2017) examine the stability of VARs in the period

since the Great Recession and provide evidence against stability of parameters.
9I am aware of Bognanni’s (2018) criticism of vector autoregressive time series models with time-varying parameters and

stochastic volatility developed by Primiceri (2005) and Cogley and Sargent (2005). According to him, this framework suffers from

a fundamental ordering problem that makes it ill-suited for the structural analysis conducted in this paper. As shown later in this

section, the methodology employed in the present paper is however slightly different from Primiceri (2005) and Cogley and Sargent

(2005). Following Benati (2011) and Belongia and Ireland (2016), the choice of the calibration of prior distribution of coefficients

and the identification strategy of structural disturbances are different from that of the baseline methodology. I am also conscious

of the fact that the analysis does not include some financial measures that were likely to have played an important role in the

transmission of monetary policy during and in the aftermath of the Great Recession, such as credit spreads (Caldara and Herbst,
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endogenous variables are collected in the 3 × 1 vector yt. The model is assumed to follow a second-order

time-varying parameters vector autoregressive model with time-varying coefficients in the reduced form:

yt = bt +B1,tyt−1 +B2,tyt−2 + ut (2)

where bt is a 3× 1 vector of time-varying intercepts, Bi,t for i = 1, 2 are 3× 3 matrices of time-varying autore-

gressive coefficients, and ut is a 3× 1 vector of heteroskedastic shocks with time-varying covariance matrix Ωt,

such that ❊{utu
′
t} = Ωt.

Both intercepts and autoregressive coefficients in the 21× 1 vectorized form are obtained from equation (2):

Bt = vec















b′
t

B′
1,t

B′
2,t















and decompose the covariance matrix Ωt by applying a Cholesky factorization as

Ωt = A−1
t ΣtΣ

′
t(A

′
t)

−1

where the 3× 3 matrix At is lower triangular with ones along its diagonal:

At =








1 0 0

αgπ,t 1 0

αrπ,t αrg,t 1








and the 3× 3 matrix Σt is diagonal:

Σt =








σπ,t 0 0

0 σg,t 0

0 0 σr,t








Hence, the reduced form of equation (2) can be rewritten in a matrix form as:

yt = X′
tBt +A−1

t Σtεt

where Xt = I3 ⊗
[

1 Πt−1 Gt−1 Rs
t−1 Πt−2 Gt−2 Rs

t−2

]

, and ❊{εtε′t} = I3, where I3 is a 3× 3 identity

matrix.

Let αt =
[

αgπ,t αrπ,t αrg,t

]′

be 3 × 1 vector containing the elements of At different from zero or one, and

2019). However, despite the possible misleading approach to characterize central banks’ behavior during the post-crisis period,

and as raised above, the estimated monetary policy rule of the original Taylor type only include inflation and output objectives.

Under these circumstances, I assume that the Fed and the ECB have launched unconventional measures purely in order to trigger

inflation and to boost economic growth, according to their respective mandate. Putnam and Azzarello (2012), Gavin et al. (2015)

and Debortoli et al. (2019) investigate the conduct and the effectiveness of US monetary policy through the lens of a dual mandate

monetary policy rule. Moreover, along with its objective of price stability, “the ECB typically should avoid generating excessive

fluctuations in output and employment if this is in line with the pursuit of its primary objective” (see ECB’s objective of monetary

policy).
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σt =
[

σπ,t σg,t σr,t

]′

be 3 × 1 vector collecting diagonal elements of Σt. The dynamics of the time-varying

parameters are governed by the following process:

Bt = Bt−1 + νt

αt = αt−1 + ζt

and

log σt = log σt−1 + ηt,

where all the uncorrelated innovations are assumed to be jointly normally distributed, with the following as-

sumptions on the variance covariance matrix:

V = ❱❛"





















εt

νt

ζt

ηt





















=











I3 0 0 0

0 Q 0 0

0 0 S 0

0 0 0 W











where 0 denotes matrices of zeros, Q is 21 × 21, S is 3 × 3 and block-diagonal, and W is 3 × 3 and diagonal

with elements wi,i for i = 1, 2, 3.

As a whole, Q has 231 distinct elements, S has four distinct non-zero elements, and W has three distinct

non-zero elements.

Estimation strategy. Bayesian methods are often used to estimate large numbers of parameters in classical

VAR models because of their strong explanatory and predictive powers. In this paper, I follow the same ap-

proach than in Primiceri (2005) and Cogley and Sargent (2005) to be able to deal with autoregressive models

with time-varying coefficients. The aim of the estimation strategy is to assess the posterior distribution of the

parameters, based on prior distributions calibrated with simple estimates on a training sample period consist-

ing of the first ten years of data (equivalent to the first forty quarters) to a time-invariant coefficients version

of the reduced form model presented above. The, posterior distributions of parameters can be simulated by

Markov Chain Monte Carlo (MCMC) algorithm, as detailed in Primiceri (2005), Cogley and Sargent (2005)

and in Appendix A. Following the same approach, prior distributions of parameters are obtained by running a

constant-parameter version of the model in the form:

yt = X′
tB+A−1Σεt

Applying ordinary least squares (OLS) to each equation in this system, an estimate B̂ of the parameter vector B

is obtained, and the same Cholesky decomposition as shown previously to the covariance matrix of least-squares

residuals is used to obtain estimates α̂ and σ̂ of the parameter vectors α and σ.

Then, normal priors for the initial values of the coefficients are given by:

B0 ∼ N (B̂, 4V̂B)

α0 ∼ N (α̂, 4V̂α)

and

log σ0 ∼ N (log σ̂, I)

7



based on those used by Primiceri (2005).

For the block elements of the variance-covariance matrix of innovations V, inverse Wishart priors are defined

as follows:

Q ∼ IW(22k2QV̂B, 22)

S1 ∼ IW(2k2SV̂α,1, 2)

S2 ∼ IW(3k2SV̂α,2, 3)

and

wi,i ∼ IW(2k2w, 2)

for i = 1, 2, 3, where V̂α,1 and V̂α,2 are diagonal blocks of V̂α. Also, the settings are given taken from Belongia and

Ireland (2016), where k2Q = 0.00035, k2S = 0.01 and k2W = 0.0001. Then, a Metropolis-within-Gibbs sampling

algorithm is used on the remaining sample period starting from the priors given previously to compute blocks of

parameters from their conditional posterior distribution. Again, the subsequent steps to obtain estimations for

each parameter are well-described in Belongia and Ireland (2016) and in Appendix A. Draws for the parameters

in Q, S and W are taken from their inverse Wishart conditional posterior distribution.

This procedure is repeated 10,000 times in a burn-in period. The model is estimated with 5,000 draws of each

parameter for the Gibbs sampling. To assess the convergence of the Markov Chain, draws’ inefficiency factors

are computed across the four blocks of parameters in the sequences BT , AT , ΣT , and in the elements from V.

For each individual parameter θ, the ineffciency stastistic is defined as the inverse of the measure of relative

numerical efficiency (Geweke, 1992):

IF (θ) = 2π
1

∫ π

−π
Sθ(ω)dω

Sθ(0)

where Sθ(ω) is the spectral density of θ at frequency ω. According to Primiceri (2005) and Benati (2011),

inefficiency factors are said acceptable at or below 20. The statistics for hyperparameters in V are slightly

higher than that upper bound, but those for the parameters and shock covariances and volatilities are largely

below it. Table D.1 and table D.2 containing the results are given in Appendix D.

Structural shocks identification. An approach based on sign restrictions on impulse responses is applied

to identify structural disturbances. The technique is based on Rubio-Ramirez et al. (2010), Arias et al. (2018)

and Arias et al. (2019), and has been applied to VAR models with time-varying coefficients in Benati (2011).

Sign restrictions on the impact of structural disturbances are directly given in Table 1. Sign restrictions are

imposed on the impulse response of variables to each structural shock: an aggregate supply shock, an aggregate

demand shock, and a monetary policy shock. Aggregate supply shock is assumed to be contractionary: inflation

increases but output decreases, and thus left the response of monetary policy unconstrained. Aggregate demand

shock is expansionary, and is associated to an increase in output, inflation and interest rate. Finally, monetary

policy (or interest rate) shock is assumed to be contractionary: it decreases inflation and output.
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Table 1: Sign restrictions on the impact effects of structural shocks

Impact effect on Structural shocks

Aggregate supply Aggregate demand Monetary policy

Inflation + + -

Output gap - + -

Shadow rate ? + +

Note: The symbol ? indicates that the response is left unconstrained.

As a result, the reduced form covariance matrix is factored as :

Ωt = C−1
t DtD

′
t(C

′
t)

−1

where the 3× 3 matrix is no more lower triangular, but still with ones along its diagonal

Ct =








1 −cπg,t −cπr,t

−cgπ,t 1 −cgr,t

−crπ,t −crg,t 1








and the 3× 3 matrix is still diagonal

Dt =








δπ,t 0 0

0 δg,t 0

0 0 δr,t








the three structural shocks now have an effect on inflation, output gap and the shadow rate.

Consequently, the structural model can be written is as:

Ctyt = γt + Γ1,tyt−1 + Γ2,tyt−2 +Dtξt

where γt = Ctbt, Γi,t = CtBi,t, for i = 1, 2, and ξt =
[

ξast ξadt ξ
mp
t

]′

is a 3 × 1 vector of structural

disturbances to aggregate supply, aggregate demand and monetary policy, with ❊{ξtξ′t} = I3, and I3 is a 3× 3

identity matrix.

Time-varying monetary policy rule. With estimation strategy and sign restrictions based on Belongia and

Ireland (2016), the third row of the above-mentioned structural model is presented as a Taylor-type monetary

policy rule:

Rs
t = γr,t + crπ,tΠt + γ1,rπ,tΠt−1 + γ2,rπ,tΠt−2

+ crg,tGt + γ1,rg,tGt−1 + γ2,rg,tGt−2 + γ1,rr,tR
s
t−1 + γ2,rg,tR

s
t−2 + δr,tξ

mp
t (3)

This Taylor-type rule prescribes a setting for the policy rate regarding to changes in current and lagged inflation

and output gap variables. It also includes lagged values of interest rate terms to capture central banks’ tendency

9



to smooth short-term interest rates movements over time. The time-varying estimation of the intercept γr,t

and of the coefficients from matrices Γ1,t and Γ2,t allows to assess changes to monetary policy that might have

occured on the sample period. ξmp
t represents identified monetary policy shocks that capture deviations in the

actual policy rate from the value dictated by the estimated monetary policy rule. Importantly, equation (3)

allows for time-variation in all of the response coefficients but also in the standard deviation δr,t of the mone-

tary policy shocks. Hence, this estimation permits disentangling changes in central bank’s responses to inflation

versus output gap stabilization and the extent to which the central bank departs from its rule-based behavior.

As a whole, the estimated monetary policy rule given in equation (3) may be decomposed into central banks’

response to macroeconomic conditions and smoothing behavior – i.e. the systematic component of monetary

policy – and monetary policy shocks – i.e. the non-systematic component of monetary policy. The model is

estimated with data described in the following section.

4 Data

Monetary policy rules in normal times. Using the TVP-VAR model, the present paper tracks the evolu-

tion of US and euro area monetary policies based on results derived from historical data. US data are extracted

from the Federal Reserve Economic Data (FRED) database, and run from 1960:1 to 2018:4. The nominal

interest rate is the federal funds rate. Core PCE price index is taken as a relevant measure of inflation in the

estimation10, and is given as a percentage annual change. The output gap is computed following the Congres-

sional Budget Office (CBO).11 Prior distribution of the coefficients is obtained from the training sample period

from 1960:1 to 1969:4. Then, the Taylor rule is estimated by the TVP-VAR model with stochastic volatility

from 1970:1 to 2018:4.

Concerning euro area data, interest rate, inflation and output gap series are from two major sources. The

first one is the Area-Wide Model database (AWM, Fagan et al., 2005) that contains historical data from 1970:1

to 2017:4. Then, the data are updated to 2018:4 with Eurostat. The main policy rate is the Euribor 3-month.

Inflation is the Harmonized Index of Consumer Prices (HICP), and the real potential GDP is estimated with

the HP filter (Hodrick and Prescott, 1997) to compute the output gap following the basic formula mentioned

above.12 The period 1971:1 to 1980:4 is used as the training sample. The model is estimated from 1981:1 to

2018:4.

10John B. Taylor claims that the Fed has not followed the prescription of the Taylor rule by keeping the interest rate too low

from 2003 to 2005 and hence generated the housing bubble in the US. Ben S. Bernanke disagreed with that by justifying that

the Fed set the interest rate according to the Taylor rule by targeting core PCE inflation, and not GDP deflator as in Taylor’s

estimations. For more details, see Bernanke’s Brookings post of April 28, 2015 titled “The Taylor Rule: A benchmark for monetary

policy?”. See also Janet L. Yellen’s speech of March 27, 2015 on “Normalizing Monetary Policy: Prospects and Perspectives”, or

Tchatoka et al. (2017) for additional evidence for Taylor-type policy rule estimations including core PCE inflation.

11The output gap is constructed following the basic formula y
gap
t =

Yt−Y ∗

t

Y ∗

t
that can be approximated by y

gap
t = log(Yt)−log(Y ∗

t ),

where Yt is the real output and Y ∗

t is the real potential output at time t. In accordance with the original Taylor rule (Taylor,

1993), including the output gap rather than real GDP growth in the estimates may help the TVP-VAR control for the effects of

technology shocks affecting both real and potential GDP, as discussed in Giordani (2004).
12Following Hamilton’s (2018) recent criticism of the use of Hodrick-Prescott filter, real potential GDP in the euro area is

estimated with alternative filters to check the robustness of the results in Appendix F.
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Figure 2: Inflation, output gap and policy rate

1960 1970 1980 1990 2000 2010 2020

years

-10

-5

0

5

10

15

20

%

Core PCE inflation

Output gap

Federal funds rate

Shadow rate

(a) US

1970 1980 1990 2000 2010 2020

years

-10

-5

0

5

10

15

20

%

HICP inflation

Output gap

Euribor 3-month

Shadow rate

(b) Euro area

Figure 2 shows the evolution of inflation, output gap and policy rates since 1960:1 in the US and 1971:1 in

the euro area. Both interest rate and inflation have been lastingly decreasing over the sample period in the US

and in the euro area. From a two-digit rate level around the 1970s, US core PCE inflation rate has substantially

decreased to stabilize before the 2000s. The federal funds rate has been evolving along a similar path over the

sample period, before hitting the ZLB at the end of 2008. The interpretation of the data is quite the same for

the euro area, where both the HICP and Euribor 3-month have been trending down since the 1980s. However,

Figure 2 also shows that, unlike the US, the euro area has struggled to recover from the 2008 crisis, suffering

another recession induced by the sovereign debt crisis in 2011 and successive deflationary periods in 2015 and

2016.

Unconventional monetary policies and shadow rates. Since the data cover the period up to 2018:4,

the estimation results capture both conventional and unconventional aspects of monetary policy. Therefore,

a major concern is the constrained policy rate at the zero level during periods of unconventional measures.

Because of flat interest rates at the ZLB, and along with the launch of non-standard measures, traditional data

on policy rate do not entirely reflect central banks’ actions during unconventional times and may lead to biased

monetary policy rule estimation. Unconventional measures have been characterized by the use of ‘non-standard’

instruments – i.e. other than the policy rate – consisting mainly in LSAP or FG, to fulfill the main objectives

stated in central banks’ mandate. Consequently, and to be able to estimate the Taylor-type rule up to 2018:4,

the policy rate instrument is proxied by the shadow short rate from Krippner (2013, 2019)13, constructed as

an extrapolation of the yield curve in the negative territory, and hence taking into account unconventional

measures that are likely to have affected interest rates at different maturities.

Table 2 gives the outlines of US and euro area monetary policies since the 2008 crisis. It shows periods when

the Fed and the ECB have launched their main non-standard measures, and periods during which they decided

to reduce the magnitude of these measures. The Fed has reacted quickly to the financial crisis by implementing

its first assets purchases programme (QE1, for ‘Quantitative easing 1’) of $600 billion. In the euro area, the ECB

13Shadow short rates data are available on Leo Krippner’s webpage.
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Table 2: Outlines of monetary policy since the Great Recession

United States Euro area

First LSAP after the financial crisis Nov. 2008 July 2009

Tapering Dec. 2013 Dec. 2016

Period of ZLB Dec. 2008 - Dec. 2015 July 2012 - —

Source: The symbol — means that the euro area is still stuck at the ZLB in 2018:4. Source: Federal Reserve,

European Central Bank, Chen et al. (2017).

has enhanced credit support in October 2008 and lengthened the maturity of its LTROs in June 2009. However,

the ECB has only implemented its first assets purchases programme in July 2009 (CBPP1, for ‘Covered-bond

purchase programme 1’). As of 2012, the ECB has gradually lowered interest rates to their lowest level, while

the Fed was about to start tapering at this time. Indeed, the Fed announced slowing down assets purchases

in December 2013, before raising its policy rate in December 2015. On the other hand, the ECB announced

tapering in end-2016. In late 2018, monetary policy in the euro area was still at the ZLB.

Figure 3: Policy and shadow rates
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The shadow short rate (SSR) from Krippner (2013, 2019) is used as a proxy for unconventional measures

of monetary policy in the TVP-VAR specification (Figure 2 and Figure 3).14 Nominal interest rates used as

policy rates in the model are replaced by shadow rates at the ZLB to get a consistent measure of the stance of

monetary policy over the full sample period. In the US, the federal funds rate is replaced by the shadow rate

from November 2008 to November 2015. In the euro area, the Euribor 3-month is replaced by the shadow rate

14Several papers highlight the plausibility to use the shadow rate in a VAR model as a measure of the stance of monetary policy

under the ZLB. For instance, Wu and Xia (2016), Lombardi and Zhu (2018), Krippner (2019) and Francis et al. (2020) show how

estimated monetary policy shocks provide a realistic picture of the post-crisis macroeconomic situation. Basu and Bundick (2017)

and Caggiano et al. (2017) investigate the macroeconomic effect of uncertainty at the ZLB. Forbes et al. (2018), Rogers et al. (2018)

and Pasricha et al. (2018) find empirical evidence of monetary policy effects at the international level. Georgiadis (2016), Horvath

and Voslarova (2016), Potjagailo (2017) focus on global spillovers of unconventional monetary policies in the US and in the euro

area. Plante et al. (2017), Caraiani and Călin (2018) and Crespo Cuaresma et al. (2019) incorporate shadow rates in a TVP-VAR

model. Similarly, shadow rates can also be used in estimated DSGE models, as in Mouabbi and Sahuc (2019).
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in July 2009. These dates closely correspond to information reported in Table 2. To fit the frequency of the

rest of the data, quarterly rates are constructed as a three-month average.

As discussed in Christensen and Rudebusch (2015), Halberstadt and Krippner (2016), Bauer and Rudebusch

(2016) and Krippner (2019), shadow rate estimations are very sensitive to several factors, such as the calibration

of the lower bound or the range of rates included in the dataset. The robustness of estimates using Wu and

Xia’s (2016) shadow rate is checked in Appendix F.

5 Results

Response coefficients of the time-varying reaction function. The baseline model is estimated with

the data mentioned previously. Figure 4 compares the evolution of contemporaneous responses of the policy

rate to macroeconomic fluctuations in the United States and the euro area. Figure 4a shows the evolution

of contemporaneous coefficients on inflation from 1995:1 to 2018:4. The estimated coefficient in the US has

peaked during the ZLB period. The median coefficient on inflation rose from 0.81 in 2009:1 to 1.33 in 2013:1,

before falling to 0.40 in 2017:1. In the euro area, the contemporaneous coefficient on inflation has been stable

since 1995:1 and has slightly increased once the euro area was stuck at the ZLB. Indeed, the short-run response

coefficient on inflation increased from 0.58 in 2009:1 to 0.72 in 2013:1 before reaching 0.92 in 2017:1. However,

68% credible intervals show no significant changes in the short-run coefficient on inflation within and between

the US and the euro area.

Figure 4b tracks changes in the contemporaneous response to output gap over time. The interpretation of

the path of the median coefficient is the same as that of the evolution of response coefficients on inflation: a

peak in the middle of the ZLB era in the US (0.50 in 2009:1, 0.78 in 2013:1 and 0.30 in 2017:1) and a continuous

and sharp increase in the euro area at the ZLB (0.51 in 2009:1, 0.88 in 2013:1, and 1.50 in 2017:1). Depicted

68% credible intervals show however significant difference between contemporaneous coefficients on output gap

in the US and in the euro area at the end of the sample period. Nevertheless, there is no evidence of significant

shifts in the contemporaneous response coefficient on output gap within the US and the euro area.

On the basis of these results, coefficients on inflation and output gap appear to be correlated both in the US

and in the euro area. But the path of short-run coefficients in the US tends to be more volatile than in the euro

area: the Fed seems to react more aggressively to inflation and output gap fluctuations than the ECB, or at

least behaves with more discretion.15 Also, lagged unconventional monetary policy implementation in the euro

area compared to the US may have led to a gap between the timing of ECB’s and Fed’s response coefficients.

Contemporaneous coefficients from the ECB monetary policy rule reached an all-time high at the end of the

period of estimation, whereas they came back to a pre-crisis level in the US. This result may be interpreted as

the difference in the timing of policy normalization in the US and in the euro area: the Fed began normalizing

the stance of monetary policy at a time when the ECB had not yet reached the ZLB.

15This may be interpreted as the ‘constrained discretion’ raised by Bernanke (2003): the Fed has adopted a flexible behavior

such as the inflation targeting objective may be de-emphasized in an output stabilization purpose under some circumstances. As

Bernanke mentioned in his speech, “under constrained discretion, the central bank is free to do its best to stabilize output and

employment in the face of short-run disturbances, with the appropriate caution born of our imperfect knowledge of the economy

and of the effects of policy”.
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Figure 4: Contemporaneous coefficients from the estimated monetary policy rule

(a) Contemporaneous coefficient on inflation (b) Contemporaneous coefficient on output gap

Note: Contemporaneous coefficients on inflation and output gap are respectively given by crπ,t and crg,t in equation (3). Median (solid

lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure 5 plots the time-varying standard deviations of structural monetary policy disturbances in the US

and in the euro area. Monetary policy shock volatility follows a path similar to short-run coefficients. In the

US, it has peaked during the ZLB. In the euro area, it has increased continuously since ECB’s early reaction

to the 2008 crisis. But interestingly, 68% Bayesian credible sets associated to δr,t coefficients highlight strong

significant changes in the volatility of monetary policy shocks over the sample period.

Figure 5: Monetary policy shock volatility from the estimated monetary policy rule

Note: The volatility of monetary policy shocks is captured by δr,t in equation (3). Median (solid lines) and 68% credible interval (shaded

areas) of the posterior distribution of coefficients are plotted for the indicated variable.
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The evolution of monetary policy shocks volatility shows that unconventional monetary policy decisions at

the ZLB have been characterized by large departures of the Fed and the ECB from the policy rate prescribed

by the Taylor rule. QE has largely contributed to lower expected future short-term rates through the signaling

channel, that can be interpreted as an additional monetary policy discretion, whereas FG is commonly defined

as the commitment to deviate from the monetary policy rule in the future, resulting in more policy discretion.16

Based on these results and on the whole influential related literature, Fed’s and ECB’s unconventional monetary

policy tools such as QE and FG may have undoubtedly led to statistically different and persistent deviations

from the baseline Taylor-type policy rule at the ZLB in the US and in the euro area. By definition, these

departures from rule-like behavior are interpreted as more policy discretion at the ZLB.17

Non-systematic monetary policy. Figure 6 shows the evolution of realized monetary policy shocks since

1995. It reveals that the Fed and the ECB have departed a lot from the behavior prescribed by their estimated

policy rule at the ZLB, and that these monetary policy shocks have been considerably negative when the 2008

crisis occurred. A negative monetary policy shock means that the central bank sets interest rate at a level

below the rate prescribed by the estimated monetary policy rule. In that case, monetary policy is perceived

as expansionary. However, it can be graphically deduced that US and euro area monetary policies have been

mostly expansionary after the 2008 crisis, describing potentially important deviations from estimated policy

rules that also occurred with the launch of unconventional measures at the ZLB.

Figure 6: Realized monetary policy shocks

(a) US (b) Euro area

Note: Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of the realized monetary policy shock are

plotted. A negative monetary policy shock is equivalent to an interest rate setting below the rate prescribed by the estimated monetary

policy rule (i.e. expansionary monetary policy).

Then, the purpose is to investigate changes in the macroeconomic impact of monetary policy shocks. Figure

7 and Figure 8 plot impulse responses of inflation and output gap to monetary policy shocks over a 40 quarter

16See Vissing Jorgensen and Krishnamurthy (2011) and Bauer and Rudebusch (2014) for evidence of the signaling role of QE,

and Campbell et al. (2012) and Woodford et al. (2012) for the effects of FG.
17Further measures of inflation and real economic activity are employed in the model to check the robustness of the results.

Dynamic response coefficients of these alternative specifications are shown in Appendix F.
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horizon at different dates between 2007:4 and 2015:1. The responses are computed based on draws from the

posterior distributions of the parameters estimated for each indicated period. They show how the economy

responded to a monetary policy shock at a given point in time. Overall, the signs of the impulse response

functions of the TVP-VAR variables to a monetary policy shock do not change at the ZLB. In the US, inflation

has significantly reacted to monetary policy shocks as long as the Fed was easing monetary policy at the ZLB.

The response of output gap to policy shocks is however not as strong and significant as the median response

of inflation. Meanwhile in the euro area, the response of both inflation and output gap to monetary policy

shocks have been strong and significant at the ZLB. Furthermore, compared to the US, impulse responses are

less persistent in the euro area. Also, and importantly, the evolution of impulse responses in the US shows that

the impact of monetary policy shocks on inflation and output gap has been getting larger up to 2011:1. Since

then, those responses have simultaneously and continuously decreased with the magnitude of US monetary

policy shocks. In the euro area, impulse responses of inflation and output gap to monetary policy shocks have

only increased up to 2009:1, whereas the magnitude of policy shocks has been growing throughout the entire

post-crisis period.

Figure 7: Impulse responses to monetary policy shocks in the US
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Note: Impulse response of the indicated variable to a contractionary monetary policy shock at the indicated date. Blue lines represent the

median and grey shaded areas represent 68% credible intervals of the posterior distribution of each impulse response.

Table 3 reports the percentage share of forecast error variances in inflation and output gap attributable to

monetary policy shocks for horizons up to 40 quarters. Variance decompositions are based on draws of the

model’s parameters from their posterior distributions for 2007:4, 2011:1 and 2015:1. As with impulse response

functions, the dates are chosen such that the analysis covers both pre-crisis and ZLB periods. The model

estimated using US data attributes large fractions of inflation and output gap volatility to monetary policy

shocks. This fraction is sizeable in 2011:1, and then decreases in 2015:1. Hence, monetary policy shocks

contribute to the variance of inflation and output more importantly during the ZLB period, and particularly in

the easing phase of US monetary policy when short-term interest rates were constrained by the lower bound. In
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Figure 8: Impulse responses to monetary policy shocks in the euro area
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Note: Impulse response of the indicated variable to a contractionary monetary policy shock at the indicated date. Blue lines represent the

median and grey shaded areas represent 68% credible intervals of the posterior distribution of each impulse response.

the euro area, monetary policy shocks explain a smaller part of macroeconomic volatility than in the US. Also,

and as shown with impulse responses, the effects of monetary policy shocks are less persistent in the euro area.

Paying attention to shorter horizons, the contribution of monetary policy shocks to the variance of inflation and

output in the euro area is nearly stable when the economy moves from normal times to the ZLB. But 16th and

84th percentiles based on draws from the posterior distributions for each date bring little evidence of significant

changes in forecast error variances due to monetary policy shocks. Only median coefficients are reported here.

As a whole, the results presented above show that the Fed and the ECB shifted their behavior during

the post-2008 decade, when their respective policy rate hit the effective lower bound and when a novel set of

unconventional measure was launched. Response coefficients of the time-varying reaction function have increased

with expansionary monetary policy at the ZLB. In the US, they peaked when the Fed started tapering in end-

2013 and went back to pre-crisis levels around the time of the federal funds rate lift-off. In the euro area, they

went up around 2009 and are still large due to ongoing massive expansionary ECB’s monetary policy. These

dynamics are interpreted as the reflection of the implementation of respective unconventional measures at the

ZLB.

Although they do not indicate clear evidence of significant changes in emphasis between the two objectives

in the standard Taylor rule, estimated response coefficients suggest dramatic shifts in monetary policy shocks

during and after the Great Recession. Larger and more volatile realized policy shocks both in the US and in

the euro area imply statistical difference from pre-recession periods, and support striking evidence of a change

in monetary policy after the 2008 crisis. Impulse response functions and variance decompositions highlight the

increasing macroeconomic impact of unconventional monetary policy shocks in the easing phase of US monetary

policy at the ZLB. However, rising euro area monetary policy shocks at the ZLB do not transmit to the real

economy as efficiently as in normal times, and do not explain a larger part of the variance of inflation and
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Table 3: Variance decompositions

Horizon % of forecast error variance due to monetary policy shocks

US Euro area

2007:4 2011:1 2015:1 2007:4 2011:1 2015:1

Inflation

4 8.71 6.81 5.86 15.36 14.85 12.83

8 15.09 13.06 6.82 14.92 14.59 13.76

12 20.93 20.53 8.30 14.28 14.18 15.13

16 25.12 26.12 10.00 13.98 14.25 15.95

20 27.54 30.30 11.47 13.78 14.47 16.43

40 29.34 35.73 14.67 13.37 14.41 17.18

Output gap

4 5.94 8.81 6.29 9.66 10.13 9.96

8 7.61 13.18 7.42 10.42 11.80 16.85

12 8.82 16.29 9.81 10.76 12.33 19.67

16 9.91 18.29 11.72 10.79 12.48 20.16

20 10.69 19.89 12.68 10.79 12.56 20.28

40 13.07 22.97 14.01 10.93 12.70 20.32

Note: Horizon is the number of quarters ahead. Variance decompositions are based on draws of the

median coefficients from their posterior distributions for 2007:4, 2011:1 and 2015:1.

output when short-term movements are constrained by the effective lower bound.

6 Counterfactual analysis

The estimated VAR model with time-varying coefficients is used to propose different counterfactual scenarios.

The aim is to investigate how changes in the conduct of monetary policy may have affected macroeconomic

performances. This experiment gives the path that would have followed inflation, output gap and the policy

rate in the US and in the euro area under some circumstances. Counterfactuals for the US are presented in

Figure 9 and in Figure 10 for the euro area.

The first scenario consists in drawing the coefficients of the policy rule from the posterior distribution from

2007:4. Focusing on inflation rate, there is no significant difference in the path according to the different scenarios

in the US. Core PCE inflation would have been slightly lower than that has been observed after the crisis if

the Fed would have kept monetary policy rule unchanged since 2007:4. Although they are not statistically

significant, the results are more striking in the euro area. Changes in ECB’s monetary policy had a huge impact

on HICP, especially during the Great Recession: unconventional monetary policy has strongly reduced the

deflationary risk in the euro area. Concerning the output gap, aggressive monetary policies implemented at the

ZLB by the Fed and the ECB have led to positive output gap at the end of the period of estimation, whereas

the euro area would have suffered negative output gap if the ECB would have kept the 2007:4 monetary policy
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rule unchanged.

In the second scenario, the Taylor rule parameters are also drawn from their 2007:4 posterior distribution,

and monetary policy shocks are assumed to be muted from 2007:4 forward. In that case, counterfactuals

also induced a shift in the non-systematic component of monetary policy. The interpretation of the results

is similar to that has been observed in the first scenario. However, changes in ECB’s systematic and non-

systematic components of monetary policy led to a significant gap between actual and counterfactual inflation

path: without any change in ECB’s behavior at the ZLB, the euro area would have suffered a prolonged period

of deflation from 2014:1 to 2018:1. In the US, this gap widened from 2007:4 onward, more than that observed

in the first scenario. But the results still do not suggest significant evidence of the efficiency of Fed’s policy

shifts on economic performances in the US.

The third counterfactual scenario reports results when monetary policy shocks are turned off from 2007:4 on-

ward. There is no noticeable difference between the actual and counterfactual paths. However, and importantly,

it appears that monetary policy shocks matter as much as changes in the systematic component of monetary

policy in the US. But the latter is substantial in the euro area compared to the role of monetary policy shocks

in explaining macroeconomic performances.

Figure 9: Counterfactual simulations (US)

Note: Median counterfactual path (red dashed lines) and 68% credible interval (red shaded areas) are plotted for each indicated variable.

Other counterfactuals are shown on Figure E.4 and Figure E.5 (see Appendix E), and gives further insights

on the macroeconomic implications of changes in the non-systematic component of monetary policy. The focus

is now on the volatility of monetary policy shocks. Three different counterfactual scenarios are proposed.

The first scenario has been previously described and consists in drawing the coefficients of the policy rule

from the posterior distribution from 2007:4. In the second, however, all the coefficients are drawn from the

2007:4 posterior distribution, including the volatility of monetary policy shocks. The third scenario gives

counterfactuals only in the case where the volatility coefficient is drawn from its 2007:4 posterior distribution,

allowing the rest of policy rule parameters to be time-varying from 2007:4 forward. The results do not suggest
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Figure 10: Counterfactual simulations (Euro area)

Note: Median counterfactual path (red dashed lines) and 68% credible interval (red shaded areas) are plotted for each indicated variable.

any role for monetary policy shocks volatility in macroeconomic performances in the US and in the euro area.

7 Conclusion

The question of changes in central banks behavior can be explored by assuming that central banks follow a

standard Taylor-type rule to guide monetary policy decisions. According to this framework, the central bank

focuses attention on the evolution of macroeconomic fundamentals, such as inflation and output, to determine

its target value for the interest rate. The time-varying parameters vector autoregressive model used in this

paper gives some empirical assessments of time-variations in the simple Taylor rule in the US and in the euro

area during the post-2008 decade. It allows a better understanding of monetary policy implementations by

assessing changes in Fed’s and ECB’s behavior over the post-crisis period. Using a shadow rate to capture the

stance of monetary policy at the ZLB, the empirical analysis shows that both the Fed and the ECB changed

their behavior in the aftermath of the Great Recession. Furthermore, the results indicate that the Fed has

behaved differently than the ECB since the Great Recession. Although the Fed announced starting tapering

in end-2013, the ECB had not even reached the ZLB at this time. This shift in the timing of monetary policy

normalization between the US and the euro area led to a different path in the contemporaneous coefficients

of the monetary policy rules: since the level of Fed’s response coefficients went back to their pre-crisis level,

the ECB is still in high-coefficients phase due to a massive expansionary monetary policy. These results do

not indicate clear evidence of significant changes in Fed’s and ECB’s responses to inflation and output, but

they suggest strong and significant shifts in monetary policy shocks after the Global Financial Crisis. The

path of realized policy shocks volatility both in the US and in the euro area is statistically different from the

pre-recession period, and support striking evidence of a change in monetary policy after the 2008 crisis. These

large and significant departures from rule-based behavior are perceived as additional monetary policy discretion
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and evolve in line with the implementation of unconventional measures. Monetary policy shocks are shown

to strongly affect the US macroeconomy and to contribute to the variance of inflation and output even more

importantly when the Fed launched unconventional measures at the ZLB. This is however not the case in the

euro area, despite increasing monetary policy shocks at the ZLB, that do not explain a large part of the variance

of inflation and output. A counterfactual analysis shows how macroeconomic performances have benefited from

changes in Fed’s and ECB’s behavior during and after the Great Recession in the US, and especially in the euro

area.

Estimation results concerning changes in Fed’s and ECB’s behavior since the Great Recession raise some

potential policy implications. Among them, it challenges the idea of a monetary policy coordination (Cœuré,

2014). A cooperation between Fed and ECB monetary policies should rely on strong assumptions, such as

similar objectives, common aspects in the transmission mechanisms or synchronized business cycles. All these

points could explain estimation results presented in this paper, and could also be considered as a possible ex-

planation for the gap in the timing of monetary policy decisions between the Fed and the ECB. From this point

of view, a two-country structural model allowing for international spillovers would be welcomed to investigate

the relationship between Fed’s and ECB’s behavior and macroeconomic fluctuations at the ZLB, and to suggest

a theoretical framework consistent with the empirical findings. Such implications for the conduct of monetary

policy are left for future research.
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Appendix

A TVP-VAR methodology

A.1 The model

The model is from Primiceri (2005), with the MCMC algorithm corrected as described by Del Negro and

Primiceri (2015). This section is a step-by-step guide to use the TVP-VAR methodology, as described in details

by Belongia and Ireland (2016). The present section is mostly based on Primiceri’s (2005) and Belongia and

Ireland’s (2016) corresponding appendices.

The baseline model is applied to quarterly data on the inflation rate (measured using the core PCE inflation

rate in the US, and the HICP in the euro area), Πt, output gap (estimated using CBO formula in the US, and

HP filter in the euro area), Gt, and the short-term shadow rate (federal funds rate in the US, 3-month Euribor

in the euro area in normal times, shadow short rates at the ZLB), Rs
t . US data run from 1960:1 to 2018:4, and

euro area data run from 1971:1 to 2018:4.

These observable endogenous series are combined into the 3× 1 vector

yt =
[

Πt Gt Rs
t

]′

, (A.1)

which is assumed to follow a second-order vector autoregression with time-varying coefficients and a time-varying

covariance matrix for the innovations. Thus, the model’s reduced form is

yt = bt +B1,tyt−1 +B2,tyt−2 + ut (A.2)

where

bt =
[

bπ,t bg,t br,t

]′

is a 3× 1 vector of time-varying constant terms,

Bi,t =








bi,ππ,t bi,πg,t bi,πr,t

bi,gπ,t bi,gg,t bi,gr,t

bi,rπ,t bi,rg,t bi,rr,t







,

with i = 1, 2, are 3× 3 matrices of time-varying coefficients, and

ut =
[

uπ,t ug,t ur,t

]′

is a 3× 1 vector of heteroskedastic shocks with covariance matrix Ωt, such that ❊{utu
′
t} = Ωt.

Without loss of generality, Ωt can be decomposed as

Ωt = A−1
t ΣtΣ

′
t(A

′
t)

−1 (A.3)

where At is the lower triangular matrix

At =








1 0 0

αgπ,t 1 0

αrπ,t αrg,t 1








(A.4)
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and Σt is the diagonal matrix

Σt =








σπ,t 0 0

0 σg,t 0

0 0 σr,t







. (A.5)

The reduced form (A.2) can therefore be represented equivalently as

yt = bt +B1,tyt−1 +B2,tyt−2 +A−1
t Σtεt, (A.6)

where E{εtε′t} = I3. Stacking all the coefficients into the 21× 1 vector

Bt = vec















b′
t

B′
1,t

B′
2,t















,

(A.6) can be rewritten as

yt = X′
tBt +A−1

t Σtεt, (A.7)

where

Xt = I3 ⊗
[

1 Πt−1 Gt−1 Rs
t−1 Πt−2 Gt−2 Rs

t−2

]

Let

αt =
[

αgπ,t αrπ,t αrg,t

]′

be the vector of non-zero and non-one elements of At and

σt =
[

σπ,t σg,t σr,t

]′

be the vector of diagonal elements of Σt. The dynamics of the time-varying parameters are specified as

Bt = Bt−1 + νt, (A.8)

αt = αt−1 + ζt, (A.9)

and

log σt = log σt−1 + ηt. (A.10)

In (A.7)-(A.10), all of the innovations are assumed to be jointly normally distributed with

V = ❱❛"





















εt

νt

ζt

ηt





















= ❊





















εt

νt

ζt

ηt











[

εt νt ζt ηt

]











=











I3 03,21 03,3 03,3

021,3 Q 021,3 021,3

03,3 03,21 S 03,3

03,3 03,21 03,3 W











, (A.11)

where Q is 21 × 21, S is 3 × 3, and W is 3 × 3 and diagonal, so that the standard deviations in σt evolve as

independent geometric random walks. Following Primiceri (2005), it will be assumed that S is block-diagonal,

with one non-zero element in the first column of the first row and three distinct non-zero elements in the second

and third columns of the second and third rows. Hence, Q has 231 distinct elements, S has 4 distinct elements

and is block-diagonal in the following form:
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S =








s1,1 0 0

0 s2,2 s2,3

0 s3,2 s3,3








where si,j are non-zero elements on line-i and row-j of matrix S. Hence, the two diagonal blocks are given

by the following matrices:

S1 = s1,1 and S2 =




s2,2 s2,3

s3,2 s3,3



, where s2,3 = s3,2

Moreover, W is diagonal with elements wi,i for i = 1, 2, 3, and has three distinct elements.

In all that follows, let

ωτ =
[

ω′
1 . . . ω′

τ

]′

denote the history of a generic vector of variables ωt up to a generic time τ . And for a generic matrix of variables

and constant terms Mt, let

Mτ =
[

m′
1 . . . m′

τ

]′

where mt is a column vector constructed from the time varying elements of Mt.

A.2 Prior Distributions

Following Cogley and Sargent (2005) and Primiceri (2005), classical estimates of the parameters obtained by

applying a training sample consisting of the first ten years of data to a constant-parameter version of the model

are used to calibrate the prior means and standard deviations for the time-varying parameters when estimated

with the rest of the sample. The constant-parameter version of the reduced form (A.2) is written as

yt = b+B1yt−1 +B2yt−2 + ut,

Hamilton (1994) and Lütkepohl (2005) show that estimates of the constant and slope coefficients in b, B1, and

B2 can be obtained by applying OLS separately to each equation. Stacking these estimated coefficients into

the 21× 1 vector

B̂ = vec















b̂′

B̂′
1

B̂′
2















,

and defining

xt =
[

1 Πt−1 Gt−1 Rs
t−1 Πt−2 Gt−2 Rs

t−2

]

,
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standard errors can be computed using the formulas from Hamilton’s (1994) proposition on maximum likelihood

estimation of vector autoregressions:

❱❛"(B̂) = Ω̂⊗
(

T∑

t=1

xtx
′
t

)−1

,

where

Ω̂ =
1

T

T∑

t=1

ûtû
′
t

is the estimated covariance matrix for the least squares residuals

ût = yt − b̂− B̂1yt−1 − B̂2yt−2

The initial states for the coefficients, covariances, and log volatilities as well as the hyperparameters in V

are assumed to be all independent of each other. The priors for B0, α0, and log σ0 are assumed to be normal

and the priors for Q, W, and the blocks of S are assumed to be distributed as independent inverse-Wishart.

These assumptions together with (A.6)-(A.8) imply normal priors on the entire sequences BT , αT , and ΣT .

Estimates Â and Σ̂ of A and Σ can then be obtained by decomposing Ω̂ as in (A.3):

Ω̂ = Â−1Σ̂Σ̂′(Â′)−1.

Standard errors for the non-zero, non-one elements α̂ and σ̂ of Â and Σ̂ can be computed using the formulas in

Lütkepohl’s (2005) proposition on the properties of the structural VAR maximum likelihood estimators. Start

by rewriting

vec(A) = RAα+ rA

and

vec(Σ) = RΣσ

with RA and RΣ are 9× 3 suitable fixed matrices of zeros and ones, where

RA =








0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0








′

and

RΣ =








1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1








′

and rA is a 9× 1 vector of fixed parameters allowing for the normalization of diagonal elements of matrix A.

rA =
[

1 0 0 0 1 0 0 0 1
]′

Next, let K9,9 be the commutation matrix that, for any 3× 3 matrix D, is such that

vec(D) = K9,9vec(D
′).

25



Then, in particular, K9,9 is a 9× 9 matrix of zeros and ones such that

K9,9 =


























1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1


























Following Lütkepohl’s (2005) proposition

√
T








α̂

σ̂



−




α

σ







→ N




0, Ia








α

σ









−1





and hence

❱❛"








α̂

σ̂







 =
1

T



Ia








α

σ













−1

where Ia(.) is the is the asymptotic information matrix that has the form

Ia








α

σ







 =




R′

A 03,9

03,9 R′
Σ



 Ia








vec(A)

vec(Σ)












RA 09,3

09,3 RΣ



 ,

and

Ia








vec(A)

vec(Σ)







 =




A−1Σ⊗Σ′−1

−(I3 ⊗Σ′−1)



 (I9 +K9,9)
[

[Σ′A′−1
]⊗Σ−1 −(I3 ⊗Σ−1)

]

,

Priors can now be selected along the same lines proposed by Cogley and Sargent (2005), Primiceri (2005)

and Benati (2011). Specifically, for B0, α0, and log σ0, it is assumed that

B0 ∼ N (B̂, k2BVB),

α0 ∼ N (α̂, k2αVα),

and

log σ0 ∼ N (log σ̂, k2σI3),

where choices for the hyperparameters are tabulated below.

Training Sample Prior Hyperparameters

k2B VB kα Vα k2σ

Cogley and Sargent (2005) 1 ❱❛"(B̂) 10000 I3 10

Primiceri (2005) 4 ❱❛"(B̂) 4 ❱❛"(Â) 1

Benati (2011) 4 ❱❛"(B̂)
√
10 diag(α̂) 10
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Training sample prior hyperparameters used in the TVP-VAR are calibrated according to Primiceri (2005).

Note that (A.8)-(A.10) imply that

Bt|Bt−1,Q ∼ N (Bt−1,Q),

αt|αt−1,S ∼ N (αt−1,S),

and

log σt|σt−1,W ∼ N (log σt−1,W).

Hence, priors for the entire sequences BT , αT , and ΣT are

p(BT |B0,Q) =

T∏

t=1

p(Bt|Bt−1,Q),

p(αT |α0,S) =

T∏

t=1

p(αt|αt−1,S),

and

p(ΣT |Σ0,W) =

T∏

t=1

p(log σt| log σt−1,W).

For Q and the two blocks of S, the inverse Wishart priors are calibrated as

Q ∼ IW(dQk2QVQ, dQ),

S1 ∼ IW(dS1k
2
SVS1, dS1),

and

S2 ∼ IW(dS2k
2
SVS2, dS2).

Finally, for each diagonal element wi,i, i = 1, 2, 3, of W, the inverse Gamma prior used by Cogley and Sargent

(2005) and Benati (2011) can also be expressed as an inverse Wishart:

wi,i ∼ IG
(
dW

2
,
dWk2W

2

)

= IW(dWk2W, dW).

Choices for the hyperparameters are tabulated below. Cogley and Sargent (2005) do not allow for time-variation

in the elements of A.

Time-Varying Parameter Prior Hyperparameters

k2Q VQ dQ k2S VS1 dS1 VS2 dS2 k2W dW

Cogley and Sargent (2005) 0.00035 ❱❛"(B̂) 22 − − − − − 0.0001 1

Primiceri (2005) 0.0001 ❱❛"(B̂) 40 0.01 V 1,1
α 2 V 2:3,2:3

α 3 0.0001 2

Benati (2011) 0.00035 ❱❛"(B̂) 22 0.001 α̂1 2 diag(α̂2:3) 3 0.0001 1

where V 1,1
α is the element from the first row and first column of Vα, V

2:3,2:3
α is the matrix formed from the

last two rows and columns of Vα, and α̂1 and α̂2:3 correspond to the first and the second through third elements

of the vector α̂. Time-varying parameter model’s prior hyperparameters are calibrated according to Cogley

and Sargent (2005) and Benati (2011) for matrix Q. Cogley and Sargent (2005) suggest to set out the degree

of freedom of inverse Wishart as dQ = dim(Bt) + 1. Otherwise, model’s prior hyperparameters are calibrated

according to Primiceri (2005).

27



A.3 The Markov Chain Monte Carlo Algorithm

The algorithm gets initialized by choosing initial draws for αT , σT , and V from the prior distributions

described above. The Gibbs sampling algorithm then loops through the following steps.

A.3.1 Drawing the Coefficient States

Conditional on (αT , σT ,V), the observation equation (A.5) in linear and has Gaussian innovations with

known variance. As shown in Carter and Kohn (1994) and Frühwirth-Schnatter (1994), the density can be

factored as

p(BT |yT , αT , σT ,V) = p(BT |yT , αT , σT ,V)

T−1∏

t=1

p(Bt|Bt+1,y
t, αT , σT ,V),

where

Bt|Bt+1,y
t, αT , σT ,V ∼ N (Bt|t+1,Pt|t+1),

Bt|t+1 = ❊(Bt|Bt+1,y
t, αT , σT ,V),

and

Pt|t+1 = ❱❛#(Bt|Bt+1,y
t, αT , σT ,V).

The vector of Bs can be drawn easily because Bt|t+1 and Pt|t+1 can be computed using forward and backward

recursions on the Kalman filter as follows.

The measurement equation for this step is (A.7), rewritten as

yt = X′
tBt + ut (A.12)

where ut = A−1
t Σtεt, ❊{utu

′
t} = Ωt and Ωt = A−1

t ΣtΣ
′
t(A

−1
t )′, and the state transition equation is given by

(A.8) as

Bt = Bt−1 + νt

where ❊{νtν′t} = Q. Let

Bt|s = ❊(Bt|ys,Xs,Ωs,Q)

and

Pt|s = ❱❛#(Bt|ys,Xs,Ωs,Q).

Then, given B0|0 = B̂ and P0|0 = k2BVB, the Kalman filter implies

Bt|t−1 = Bt−1|t−1,

Pt|t−1 = Pt−1|t−1 +Q,

Kt = Pt|t−1Xt(X
′
tPt|t−1Xt +Ωt)

−1,

Bt|t = Bt|t−1 +Kt(yt −X′
tBt|t−1),

and

Pt|t = Pt|t−1 −KtX
′
tPt|t−1.
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The last elements from these recursions are BT |T and PT |T , which are the mean and variance of the normal

distribution used to make a draw for Bt. The draw for Bt and the output of the filter can now be used for the

first step of the backward recursions

Bt|t+1 = Bt|t +Pt|tP
−1
t+1|t(Bt+1 −Bt|t) = Bt|t +Pt|t(Pt|t +Q)−1(Bt+1 −Bt|t)

and

Pt|t+1 = Pt|t −Pt|tP
−1
t+1|tPt|t = Pt|t −Pt|t(Pt|t +Q)−1Pt|t,

which are the means and variances used to make the draws for Bt, t = T − 1, T − 2, . . . , 1.

A.3.2 Drawing Covariance States

The system of equations in (A.7) can be rewritten as

At(yt −X′
tBt) = Atut = Σtεt, (A.13)

where, taking BT as given, ut is observable from (A.12). Since At is a lower triangular matrix with ones on

the main diagonal, (A.13) can be rewritten as

ut = Ztαt +Σtεt, (A.14)

where αt is defined in (A.9) and Zt is the following 3× 3 matrix:

Zt =








0 0 0

−uπ,t 0 0

0 −uπ,t −ug,t








The model given by (A.14) and (A.9) has a Gaussian but nonlinear state space representation. The problem

is that the dependent variable of the observation equation, ut, also appears on the right-hand side in Zt.

Therefore, the vector
[

ut αt

]

is not jointly normal and, as a consequence, the conditional distributions cannot

be computed using the standard Kalman filter recursions. However, under the additional maintained assumption

that S is block diagonal, this problem can be solved by applying the Kalman filter and the backward recursion

equation by equation.

Thus, consider the second equation from (A.14), which can be written

ug,t = Z1tαgπ,t + σg,tεg,t, (A.15)

where Z1t = −uπ,t and εg,t ∼ iidN (0, 1). Taking BT and σT as given, ugt and Z1t are observable and σg,t is

given as well. Equation (A.15) can serve as the observation equation and the first equation from (A.9),

αgπ,t = αgπ,t−1 + ζ1,t (A.16)

as the state transition equation, where ξ1,t ∼ N (0,S1), with S1 given as well.

Thus, given αgπ,0|0 = α̂gπ and P0|0 = k2αV
1,1
α , the Kalman filter implies

αgπ,t|t−1 = αgπ,t−1|t−1,
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Pt|t−1 = Pt−1|t−1 + S1,

Kt = Pt|t−1Z
′
1t(Z1tPt|t−1Z

′
1t + σ2

g,t)
−1,

αgπ,t|t = αgπ,t|t−1 +Kt(ug,t − Z1tαgπ,t|t−1),

and

Pt|t = Pt|t−1 −KtZ1tPt|t−1.

The last elements from these recursions are αgπ,T |T and Pt|t, which are the mean and variance of the normal

distribution used to make a draw for αgπ,T . The draw for αgπ,T and the output of the filter can now be used

for the first step of the backward recursions

αgπ,t|t+1 = αgπ,t|t +Pt|tP
−1
t+1|t(αgπ,t+1 − αgπ,t|t) = αgπ,t|t +Pt|t(Pt|t + S1)

−1(αgπ,t+1 − αgπ,t|t)

and

Pt|t+1 = Pt|t −Pt|tP
−1
t+1|tPt|t +Pt|t −Pt|t(Pt|t + S1)

−1Pt|t,

which are the means and variances used to make the draws for αuπ,t, t = T − 1, T − 2, . . . , 1.

Now consider the third equation from (A.14), which can be written

ur,t = Z2tα2,t + σr,tεr,t, (A.17)

where Z2t =
[

−uπ,t −ug,t

]

, α2,t =
[

αrπ,t αrg,t

]′

, and εr,t ∼ iidN (0, 1). Taking BT and σT as given, urt and

Z2t are observable and σr,t is given as well. Equation (A.17) can serve as the observation equation and last two

equations from (A.9),

α2,t = α2,t−1 + ξ2,t (A.18)

as the state transition equation, where ξ2,t ∼ N (0,S2), with S2 given as well.

Thus, given α2,0|0 =
[

α̂rπ α̂rg,t

]′

and P0|0 = k2αV
2:3,2:3
α , the Kalman filter implies

α2,t|t−1 = α2,t−1|t−1,

Pt|t−1 = Pt−1|t−1 + S2,

Kt = Pt|t−1Z
′
2t(Z2tPt|t−1Z

′
2t + σ2

r,t)
−1,

α2,t|t = α2,t|t−1 +Kt(ur,t − Z2tα2,t|t−1),

and

Pt|t = Pt|t−1 −KtZ2tPt|t−1.

The last elements from these recursions are α2,T |T and Pt|t, which are the mean and variance of the normal

distribution used to make draws for αrπ,T and αrg,T . The draw for α2,T and the output of the filter can now

be used for the first step of the backward recursions

α2,t|t+1 = α2,t|t +Pt|tP
−1
t+1|t(α2,t+1 − α2,t|t) = α2,t|t +Pt|t(Pt|t + S2)

−1(α2,t+1 − α2,t|t)

and

Pt|t+1 = Pt|t −Pt|tP
−1
t+1|tPt|t = Pt|t −Pt|t(Pt|t + S2)

−1Pt|t,

which are the means and variances used to make the draws for αuπ,t, t = T − 1, T − 2, . . . , 1.
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A.3.3 Drawing Volatility States

Consider next the system of equations

At(yt −X′
tBt) = y∗

t = Σtεt, (A.19)

where, taking BT and αT as given, y∗
t is observable. This is a system of nonlinear measurement equations, but

can be converted into a linear one by squaring and taking logs of every element of (A.19). Due to the fact that

y2
i,t can be very small, an offset constant can be used to make the estimation procedure more robust. This leads

to the following approximating state space form:

y∗∗
t = 2ht + et (A.20)

and

ht = ht−1 + ηt, (A.21)

where y∗∗
i,t = log[(y∗

i,t)
2 + c̄], c̄ is the offset constant, set equal to 0.001, ei,t = log(ε2i,t), and hi,t = log σi,t.

Observe e and η are not correlated, since ε and η are independant.

This system has a linear, but non-Gaussian, state space form because the innovations in the measurement

equations are distributed as logχ2(1). In order to further transform the system into a Gaussian one, a mixture

of normal approximations of the logχ2 distribution is used, as described by Kim et al. (1998). This involves

selecting a mixture of seven normal densities with component probabilities qj , means mj −1.2704 and variances

v2j , where the constants are chosen to match a number of moments of the logχ2(1) distribution as reported in

Kim et al.’s (1998) paper:

Selection of the mixing distribution to be logχ2(1)

ω qj = Pr(ω = j) mj v2j

1 0.00730 -10.12999 5.79596

2 0.10556 -3.97281 2.61369

3 0.00002 -8.56686 5.17950

4 0.04395 2.77786 0.16735

5 0.34001 0.61942 0.64009

6 0.24566 1.79518 0.34023

7 0.25750 -1.08819 1.26261

Define sT =
[

s1 . . . sT

]′

, the matrix of indicator variables selecting at every point in time which member

of the mixture of the normal approximation will be used for each element of e. Given (y∗∗)T and hT , each si,t

is sampled from the discrete density defined by

Pr(si,t = j|y∗∗
i,t, hi,t) ∝ qjfN (y∗∗

i,t|2hi,t +mj − 1.2704, v2j ), i = 1, 2, ..., n j = 1, 2, ..., 7.

j = 1, 2, . . . , 7, where fN (·|µ, v2) denotes the probability density function for a normal random variable with

mean µ and variance v2. Conditional on BT , AT , V and sT , the system has an approximate linear and Gaussian

state space form, where each element ei,t of et in (A.18) can now be viewed as being distributed as normal with

mean mj − 1.2704 and variance v2j if si,t = j.
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For each t = 1, 2, . . . , T , let mt denote the 3× 1 vector consisting of the means mj − 1.2704 of each element

of et as determined above and let Vt denote the 3 × 3 matrix with the corresponding variances v2j along its

diagonal. Finally, define Xt = y∗∗
t −mt + 1.2704. Now (A.20) can be rewritten as the observation equation

Xt = 2ht + et, (A.22)

where et ∼ N (0,Vt) and

ht = ht−1 + ηt

remains as the state transition equation given in (A.21), with ηt ∼ N (0,W).

Given h0|0 = log σ̂ and P0|0 = k2σI3, the Kalman filter implies

ht|t−1 = ht−1|t−1,

Pt|t−1 = Pt−1|t−1 +W,

Kt = 2Pt|t−1(4Pt|t−1 +Vt)
−1,

ht|t = ht|t−1 +Kt(Xt − 2ht|t−1),

and

Pt|t = Pt|t−1 − 2KtPt|t−1.

The last elements from these recursions are hT |T and PT |T , which are the mean and variance of the normal

distribution used to make a draw for hT . The draw for hT and the output of the filter can now be used for the

first step of the backward recursions

ht|t+1 = ht|t +Pt|tP
−1
t+1|t(ht+1 − ht|t) = ht|t +Pt|t(Pt|t +W)−1(ht+1 − ht|t)

and

Pt|t+1 = Pt|t −Pt|tP
−1
t+1|tPt|t = Pt|t −Pt|t(Pt|t +W)−1Pt|t,

which are the means and variances used to make the draws for ht, t = T − 1, T − 2, . . . , 1.

Del Negro and Primiceri (2015) note that, strictly speaking, because the mixture of normal distributions

used in the Kim-Shephard-Chib algorithm is only an approximation to the true distribution of the innovations

in the measurement equation (A.20), each draw selected using this algorithm should be used as a proposal in

a Metropolis-Hastings step, following the general analysis in Stroud et al. (2003). With y∗
t and y∗∗

i,t defined as

above, let Σ̃t and Σold
t be the latest and previous draws for the volatility state for period t = 1, 2, . . . , T , and

let σ̃i,t and σold
i,t be the ith diagonal elements of Σ̃t and Σold

t . Del Negro and Primiceri (2015) show that in the

Metropolis step, the new draw should be accepted with probability α, where

α =

[
∏T

t=1 FN (y∗
t |03,1, Σ̃tΣ̃

′
t)
] [
∏T

t=1

∏3
i=1

∏7
j=1 qjfN (y∗∗

i,t|2σold
i,t +mj − 1.2704, v2j )

]

[
∏T

t=1 FN (y∗
t |03,1,Σ

old
t (Σold

t )′)
] [
∏T

t=1

∏3
i=1

∏7
j=1 qjfN (y∗∗

i,t|2σ̃i,t +mj − 1.2704, v2j )
] ,

and FN (·|µ,V) is the probability density function for the multivariate normal distribution with mean µ and

covariance matrix V.
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A.3.4 Drawing Hyperparameters

The hyperparameters are the diagonal blocks of V, each of which has an inverse-Wishart posterior distri-

bution. Conditional on BT , αT , σT , and yT , it is easy to draw from these posteriors because the innovations

are observable. Use (A.8) to compute

νt = Bt −Bt−1,

use (A.16) to compute

ζ1,t = αuπ,t − αuπ,t−1,

use (A.18) to compute

ζ2,t = α2,t − α2,t−1,

and use (A.10) to compute

ηt = log σt − log σt−1.

Then a new draw for Q can be taken from the inverse-Wishart posterior distribution with scale matrix

dQk2QVQ +
T∑

t=1

νtν
′
t,

and degrees of freedom dQ+T , a new draw for S1 can be taken from the inverse-Wishart posterior distribution

with scale matrix

dS1k
2
SVS1 +

T∑

t=1

ζ1,tζ
′
1,t,

and degrees of freedom dS1+T , a new draw for S2 can be taken from the inverse-Wishart posterior distribution

with scale matrix

dS2k
2
SVS2 +

T∑

t=1

ζ2,tζ
′
2,t,

and degrees of freedom dS2 + T , and new draws for each diagonal element of W can be taken from the inverse-

Wishart posterior distributions with scale matrix

dWk2W +

T∑

t=1

ηtη
′
t,

which in this case is a scalar, and degrees of freedom dW + T .

A.3.5 Assessing Convergence

To assess the convergence of the MCMC algorithm, Primiceri (2005) recommends initializing the chain from

different, randomly selected starting points, to verify that none of the results is affected. A related but slightly

more formal approach is suggested by Geweke (1992). For any model statistic θ, which may be an element

of BT , AT , ΣT , V, or any function of these parameters, calculate the means θ̄A and θ̄B from two disjoint

subsamples of the Gibbs sampling output: Geweke (1992) suggests letting subsample A be formed from the

first 10 percent of the draws and subsample B from the last 50 percent of the draws. The numerical standard

errors of the means θ̄A and θ̄B are given by

(
1

NA

)

[2πSθ,A(0)] and

(
1

NB

)

[2πSθ,B(0)],
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where Sθ,A(0) and Sθ,B(0) denote the spectral densities of θ̂A and θ̂B at frequency zero, which can be estimated

using Newey and West’s (1987) Bartlett weighting scheme as

Sθ,A(0) =
1

2π



υθ,A,0 + 2

m∑

j=1

(

1− j

m+ 1

)

υθ,A,j





and

Sθ,B(0) =
1

2π



υθ,B,0 + 2
m∑

j=1

(

1− j

m+ 1

)

υθ,B,j



 ,

where υθ,A,j and υθ,B,j are the j-th autocovariances of the draws for θ in subsamples A and B. Geweke’s (1992)

convergence diagnostic

CD(θ) =
θ̄A − θ̄B

{N−1
A [2πSθ,A(0)] +N−1

B [2πSθ,B(0)]}1/2
→ N (0, 1),

which, as shown, has the standard normal distribution as NA → ∞ and NB → ∞.

To gauge the extent to which the chain mixes, Primiceri (2005) and Benati (2011) compute inefficiency

factors. The inefficiency factor for any individual statistic θ, which may again be an element of BT , AT , ΣT ,

V, or any function of these parameters, is defined as the inverse of Geweke’s (1992) measure of relative numerical

efficiency:

IF (θ) =
2πSθ(0)

❱❛"(θ)
=

2πSθ(0)
∫ π

−π
Sθ(ω)dω

,

where Sθ(ω) is the spectral density of θ at frequency ω so that, in particular, Sθ(0) is the spectral density of θ

at frequency zero. Primiceri (2005) notes that

IF (θ) = 1 + 2
∞∑

j=1

ρθ,j ,

where ρθ,j is the j-th autocorrelations of the draws for θ. Hence, IF (θ) will generally be larger than one, and

lower values of IF (θ) reflect less autocorrelation in the draws. In computing IF (θ), Newey and West (1987)

estimator

Sθ(0) =
1

2π



υθ,0 + 2
m∑

j=1

(

1− j

m+ 1

)

υθ,j





can be used for the numerator, while the denominator is simply the variance υθ,0 across all draws for θ.

A.4 Identification of Monetary Policy Shocks

A.4.1 The Identification Problem

Two approaches can be taken to identify monetary policy shocks from the estimated reduced form. The

first uses assumptions about the timing with which monetary policy disturbances affect inflation and the gap

variable to re-interpret the triangular factorization of the reduced-form covariance matrix shown in (A.3) as a

mapping between the reduced-form and structural models – an approach that dates back to Sims (1980). The

second uses sign restrictions to identify monetary policy shocks based on their implied impulse responses. Faust

(1998), Canova and De Nicolo (2002), and Uhlig (2005) propose and develop the idea that sign restrictions can

serve a source of identifying assumptions in VARs, and Benati (2011) implements the particular scheme used

here in a similar VAR framework with time-varying parameters.
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Details on each of the two identification strategies follows, but each works to factor the reduced-form co-

variance matrix as

Ωt = C−1
t DtD

′
t(C

′
t)

−1, (A.23)

where Ct and Dt are 3× 3 matrices of the form

Ct =








1 −cπg,t −cπr,t

−cgπ,t 1 −cgr,t

−crπ,t −crg,t 1








(A.24)

and

Dt =








δπ,t 0 0

0 δg,t 0

0 0 δr,t








(A.25)

Equations (A.23)-(A.25) provide the general mapping between the reduced-form equation (A.2) and the struc-

tural model, which can now be written as

Ctyt = γt + Γ1,tyt−1 + Γ2,tyt−2 +Dtξt, (A.26)

where γt = CtBt, Γi,t = CtBi,t for i = 1, 2, and ξt is a 3 × 1 vector of structural disturbances, normally

distributed with zero mean and ❊{ξtξ′t} = I3. The third row from (A.26) takes the form of a monetary policy

rule

Rs
t = γr,t + crπ,tΠt + γ1,rπ,tΠt−1 + γ2,rπ,tΠt−2

+ crg,tGt + γ1,rg,tGt−1 + γ2,rg,tGt−2 + γ1,rr,tR
s
t−1 + γ2,rg,tR

s
t−2 + δr,tξ

mp
t

(A.27)

The Taylor-type monetary policy rule prescribes a setting for the policy rate regarding to changes in current

and lagged inflation and output gap variables. It also includes lagged values of interest rate terms to capture

central banks’ tendency to smooth short-term interest rates movements over time. The time-varying estimation

of the intercept γr,t and of the coefficients from matrices Γ1,t and Γ2,t allows to assess changes to monetary

policy that might have occured on the sample period. ξ
mp
t represents identified monetary policy shocks that

capture deviations in the actual policy rate from the value dictated by the estimated monetary policy rule.

Importantly, equation (A.27) allows for time-variation in all of the response coefficients but also in the standard

deviation δr,t of the monetary policy shocks. Hence, this estimation permits disentangling changes in central

bank’s responses to inflation versus output gap stabilization and the extent to which the central bank departs

from its rule-based behavior. As a whole, the estimated monetary policy rule given in equation (A.27) may

be decomposed into central banks’ response to macroeconomic conditions and smoothing behavior – i.e. the

systematic component of monetary policy – and monetary policy shocks – i.e. the non-systematic component

of monetary policy.
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Equation (A.27) can then be decomposed and interpreted as follows

Rs
t = γr,t +

systematic

crπ,tΠt + γ1,rπ,tΠt−1 + γ2,rπ,tΠt−2
︸ ︷︷ ︸

response to inflation

component of monetary policy

+ crg,tGt + γ1,rg,tGt−1 + γ2,rg,tGt−2
︸ ︷︷ ︸

response to output gap

+ γ1,rr,tR
s
t−1 + γ2,rg,tR

s
t−2

︸ ︷︷ ︸

interest rate smoothing

+

non-systematic comp.
of monetary policy

δr,t ξ
mp
t
︸︷︷︸

MP
shocks

Comparing (A.4) and (A.5) to (A.24) and (A.25) highlights the identification problem: together, the matrices

At and Σt of reduced-form parameters contain 6 elements not equal to zero or one, whereas the matrices Ct

and Dt of structural parameters have 9 such elements. Each of the two identification schemes described next

imposes more structure on the matrix Ct to solve this problem.

A.4.2 Triangular Identification Based on Timing Assumptions

The factorization of the symmetric, positive definite reduced-form covariance matrix Ωt shown in (A.3)-

(A.5) always exists and is unique; hence, the model can be written in this form without any loss of generality.

However, under the additional assumptions – made throughout much of the literature on VARs that builds on

Sims (1980) – that inflation and the output gap respond to monetary policy shocks only after a one-period lag,

the reduced-form parameters from the third rows of (A.3)-(A.5) are linked to structural parameters from the

third rows on (A.23)-(A.25) via

crπ,t = −αrπ,t,

crg,t = −αrg,t,

and

δr,t = σr,t

and the structural monetary policy shock ξ
mp
t from (A.26) and (A.27) is identified as the third element of the

vector εt from (A.6).

A.4.3 Sign Restrictions for the Variables that Respond to Monetary Policy

An alternative approach to identification builds on work by Faust (1998), Canova and De Nicolo (2002), and

Uhlig (2005) by associating monetary policy shocks with the effects they have on observable variables. Following

Benati (2011), suppose that the first element of ξt corresponds to a supply shock that moves inflation and the

output gap in opposite directions or inflation and the unemployment rate in the same direction. Suppose that

the second element of ξt is a non-monetary demand shock, that moves the short-term interest rate and inflation

in the same direction and the interest rate and the output gap in the same direction or the interest rate and

the unemployment rate in opposite directions. Finally, suppose that the third element of ξt corresponds to

a monetary policy shock that moves the short-term interest rate and inflation in opposite directions and the

interest rate and the output gap in opposite directions or the interest rate and the unemployment rate in the

same direction. Rubio-Ramirez et al. (2010) and Arias et al. (2018) emphasize that sign restrictions of this

36



form do not suffice to identify structural disturbances in the classical sense, but develop a Bayesian algorithm

for characterizing the set of parameter values implying impulse responses that satisfy these restrictions.

Let the index i = 1, 2, . . . , N keep track of the number of desired draws. For i = 1, 2, . . . , N , the algorithm

loops through the following steps.

1. Draw (AT ,ΣT ) from their posterior distribution during the Gibbs sampling stage.

2. For each t = 1, 2, . . . , T , construct At and Σt based on the draw for (AT ,ΣT ). Then let Lt = A−1
t Σt, so

that the reduced-form error covariance matrix is given by Ωt = LtL
′
t.

3. Draw X̃, a 3× 3 random matrix with each element having an independent standard normal distribution.

Then factor X̃ = QXRX, where QX is an orthogonal matrix and RX is upper triangular with positive

diagonal elements.

4. Let L̃t = LtQ
′
X, and note that

L̃tL̃
′
t = LtQ

′
XQXL′

t = LtL
′
t = Ωt,

by virtue of the fact that QX is orthogonal. This highlights that multiplying the structural model (A.26)

through by D−1
t and then QX results in an observationally-equivalent rotation of the model’s three

equations. Suppressing for convenience explicit reference to the constant and lagged terms in (A.26), the

candidate structural model based on the specific draw for QX can be written as

yt = L̃tξt,

since

❊[(L̃tξt)(L̃tξt)
′] = ❊(L̃tξtξ

′
tL̃

′
t) = L̃t❊(ξtξ

′
t)L̃

′
t = L̃tL̃

′
t = Ωt.

Thus, the matrix L̃t contains impact coefficients linking the structural shocks in ξt to the observable

variables in yt. The sign restriction used to identify the supply, demand, and monetary policy shocks as

the first, second, and third elements of ξt require the elements of L̃t to have the sign patterns

L̃t =








(+) (+) (−)

(−) (+) (−)

(?) (+) (+)








if the gap variable is measured by the output gap or the real GDP growth and

L̃t =








(+) (−) (−)

(+) (+) (+)

(?) (−) (+)








if the gap variable is measured by the unemployment gap or unemployment rate. If these restrictions

are not satisfied for any t = 1, 2, . . . , T , the draws for (AT ,ΣT ) and X̃ are discarded and the algorithm

returns to step one. If the restrictions are satisfied, then L̃t is renormalized as L̃t = C−1
t Dt, where Ct and

Dt have the forms shown in (A.24) and (A.25), these draws are saved, and the Gibbs sampling algorithm

moves on.
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A.5 Impulse Response and Forecast Error Variances Decomposition

Once draws are obtained for the structural parameters using one of three identification schemes, impulse

responses can be generated from (A.26) after multiplying through byC−1
t . These computations can be simplified

by writing the system in companion form as

Yt − µ̄t = B12,t(Yt−1 − µ̄t) + Ftξt, (A.28)

where

Yt =




yt

yt−1



 ,

B12,t =




B1,t B2,t

I3 03,3



 , (A.29)

µ̄t = (I6 −B12,t)
−1




Bt

03,1



 , (A.30)

and

Ft =




C−1

t Dt

03,3



 . (A.31)

Since (A.28) implies

Yt+k − ❊tYt+k = Ftξt+k +B12,tFtξt+k−1 + . . .+Bk−1
12,tFtξt+1,

the k-step ahead forecast error variances for the elements of Yt are

❊[(Yt+k − ❊tYt+k)(Yt+k − ❊tYt+k)
′] = FtF

′
t +B12,tFtF

′
tB

′
12,t + . . .+Bk−1

12,tFtF
′
t(B

k−1
12,t )

′. (A.32)

Forecast error variances decompositions can be found by using (A.29), (A.31), and (A.32) to compute the total

variances and then by using these same equations with the first two diagonal elements of Dt set equal to zero

to find the variances attributable to monetary policy shocks alone.

A.6 Counterfactual Monetary Policy Rules

The estimated VAR model with time-varying coefficients is used to propose different counterfactual scenarios.

The aim is to investigate how changes in the conduct of monetary policy may have affected macroeconomic

performances. Section 6 gives some counterfactuals based on empirical results. Counterfactual monetary policy

rules R̃s
t are constructed according to different assumptions on parameters or policy shocks listed below, from

2007:4 onward. Otherwise, they follow the path of the estimated monetary policy rule given in equation (A.27).

Running the TVP-VAR over the full sample period gives the path that would have followed inflation, output

gap and the policy rate under these assumptions.

2007:4 policy rule. The first scenario consists in drawing the coefficients of the policy rule from the posterior

distribution from 2007:4. Hence, both the time-varying intercept and policy parameters of the systematic
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component of monetary policy are kept fixed from 2007:4 onward.

R̃s
t =







γ̄r,2007:4 + c̄rπ,2007:4Πt + γ̄1,rπ,2007:4Πt−1 + γ̄2,rπ,2007:4Πt−2

+c̄rg,2007:4Gt + γ̄1,rg,2007:4Gt−1 + γ̄2,rg,2007:4Gt−2

+ γ̄1,rr,2007:4Rt−1 + γ̄2,rg,2007:4Rt−2 + δr,tξ
mp
t

if t ≥ 2007 : 4

Rs
t from equation (A.27) otherwise

2007:4 policy rule and no policy shocks. In the second scenario, the Taylor rule parameters are also

drawn from their 2007:4 posterior distribution, and monetary policy shocks are assumed to be muted from

2007:4 forward. Hence, compared to the previous scenario, it is assumed that ξmp
t = 0.

R̃s
t =







γ̄r,2007:4 + c̄rπ,2007:4Πt + γ̄1,rπ,2007:4Πt−1 + γ̄2,rπ,2007:4Πt−2

+c̄rg,2007:4Gt + γ̄1,rg,2007:4Gt−1 + γ̄2,rg,2007:4Gt−2

+ γ̄1,rr,2007:4Rt−1 + γ̄2,rg,2007:4Rt−2

if t ≥ 2007 : 4

Rs
t from equation (A.27) otherwise

No policy shocks. The third counterfactual scenario reports results when monetary policy shocks are turned

off from 2007:4 onward. Parameters are not kept fixed from 2007:4 in this case. However, policy shocks ξmp
t are

still set to 0.

R̃s
t =







γr,t+ crπ,tΠt+ γ1,rπ,tΠt−1+ γ2,rπ,tΠt−2

+crg,tGt+ γ1,rg,tGt−1+ γ2,rg,tGt−2

+ γ1,rr,tR
s
t−1+ γ2,rr,tR

s
t−2

if t ≥ 2007 : 4

Rs
t from equation (A.27) otherwise

2007:4 policy rule and volatility. In a scenario presented in Appendix E, all the coefficients are drawn

from the 2007:4 posterior distribution, including the volatility of monetary policy shocks δr,t.

R̃s
t =







γ̄r,2007:4 + c̄rπ,2007:4Πt + γ̄1,rπ,2007:4Πt−1 + γ̄2,rπ,2007:4Πt−2

+c̄rg,2007:4Gt + γ̄1,rg,2007:4Gt−1 + γ̄2,rg,2007:4Gt−2

+ γ̄1,rr,2007:4Rt−1 + γ̄2,rg,2007:4Rt−2 + δ̄r,2007:4ξ
mp
t

if t ≥ 2007 : 4

Rs
t from equation (A.27) otherwise

2007:4 volatility. Another counterfactual scenario shown in Appendix E gives counterfactuals only in the

case where the volatility coefficient δr,t is drawn from its 2007:4 posterior distribution, allowing the rest of policy

rule parameters to be time-varying from 2007:4 forward.

R̃s
t =







γr,t+ crπ,tΠt+ γ1,rπ,tΠt−1+ γ2,rπ,tΠt−2

+crg,tGt+ γ1,rg,tGt−1+ γ2,rg,tGt−2

+ γ1,rr,tR
s
t−1+ γ2,rr,tR

s
t−2+ δ̄r,2007:4ξ

mp
t

if t ≥ 2007 : 4

Rs
t from equation (A.27) otherwise
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B Shadow Taylor rules

Wu and Zhang (2019) argue that the shadow rate is a good proxy for monetary policy at the ZLB. For this

purpose, they estimate a simple ‘shadow Taylor rule’ for the US using Wu and Xia’s shadow rate (Wu and Xia,

2016).

This simple monetary policy rule takes the following form:

Rs
t = α+ ρRs

t−1 + βΠΠt + βGGt + εt (B.1)

where Πt is the inflation rate, Gt is the output gap and Rs
t is the shadow rate at period t, following the notation

used in the TVP-VAR model. εt is the error term, and can be interpreted as monetary policy shocks. α is

an intercept. Also, and importantly, fixed parameters βΠ and βG are the response coefficients on inflation and

output gap, respectively. ρ is the partial adjustment parameter that captures interest rate smoothing in central

bank’s behavior.

OLS estimation of equation (B.1) is used to construct shadow Taylor rates shown below.

Figure B.1: Shadow Taylor rules (Wu and Xia’s shadow rate)

(a) US (b) Euro area

Note: Based on “Wu, J. C., & Zhang, J. (2019). A shadow rate New Keynesian model. Journal of Economic Dynamics and Control,

107, 103728”. US quarterly data from 1954:3 to 2018:4: Wu and Xia’s shadow rate, GDP deflator, CBO output gap. Euro area quarterly

data from 1971:1 to 2018:4 are Wu and Xia’s shadow rate, HICP, estimated output gap.

As advocated by the authors, “the Taylor rule seems to be a good description of what actually happens,

including the ZLB period”. Using Wu and Xia’s shadow rate (Figure B.1), the coefficient on inflation is 1.24

and the coefficient on output gap is 0.24 over the full US sample, consistent with the Taylor principle. For the

euro area, the coefficient on inflation is 1.08 and the coefficient on output gap is 0.27.
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Figure B.2: Shadow Taylor rules (Krippner’s shadow rate)

(a) US (b) Euro area

Note: Based on “Wu, J. C., & Zhang, J. (2019). A shadow rate New Keynesian model. Journal of Economic Dynamics and Control,

107, 103728”. US quarterly data from 1954:3 to 2018:4 are Krippner’s shadow rate, GDP deflator, CBO output gap. Euro area quarterly

data from 1971:1 to 2018:4 are Krippner’s shadow rate, HICP, estimated output gap.

Using Krippner’s shadow rate (Figure fig:shadowTR2), the coefficient on inflation is 1.27 and the coefficient

on output gap is 0.31 over the full US sample. For the euro area, the coefficient on inflation is 1.10 and the

coefficient on output gap is 0.30.

These results show that (i) the simple Taylor is a good description of the shadow rate dynamics, and that (ii)

the response coefficients of the simple rule estimation seem to be robust to the choice of the shadow rate, as

raised later in Appendix F.
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C Stability check for simple VAR analysis

C.1 VAR stability

Times series models are usually assumed to be stable over time. Here, the stability of the simple VAR model

is checked. First, let us consider a simple VAR(2) model in the form:

yt = b+B1yt−1 +B2yt−2 + ut (C.1)

where yt = [Πt Gt Rs
t ]

′. Then, the companion form of the model can be given as:

Ỹt = B12Ỹt−1 + νt (C.2)

where

Ỹt =




ỹt

ỹt−1



 (C.3)

with ỹt the mean corrected element of yt,

B12 =




B1 B2

I3 03,3



 (C.4)

is the companion matrix, and

νt =




ut

03,3



 . (C.5)

The determinant defining the characteristic equation is defined as
∣
∣
∣B12 − λI

∣
∣
∣ =

∣
∣
∣λ2I− λB1 −B2

∣
∣
∣ = 0.

Hence, the required condition for the stability of the system is that the roots of the previous equation must lie

inside the unit circle. The figures showing the results are given below. The six roots lie inside the unit circle

insuring the stability of the VAR.

Figure C.1: Roots of VAR(2) models

(a) US data (b) Euro area data
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C.2 Rolling-window analysis for stability of parameters

A common assumption in time series analysis is that the coefficients are constant with respect to time.

Checking for instability allows to assess whether the coefficients are time-invariant. A rolling-window analysis

is used to check the stability of the VAR(2) model described above.

First, the size of the rolling window – the number of consecutive observations per rolling window – is set

to m = 40, that is consistent with the size of the training sample used in the TVP-VAR (40 quarters, i.e. 10

years). Then, the number of increments between successive rolling windows is set to one quarter, in a way that

the entire sample is divided into N = T −m+ 1 subsamples, where T is the sample size such that t = 1, ..., T .

Figure C.2 gives some insights on the path of coefficients running the VAR(2) with rolling-windows. The

coefficients are subject to a high instability.

The use of the VAR model with time-varying parameters is justified by the instability of the coefficients

from the VAR with rolling windows (i.e. fixed windows). More precisely, the first difference of each coefficient

follows a random walk, validating the assumptions of the process that governs the dynamics of the time-varying

coefficients in the TVP-VAR model. Moreover, it seems to be tricky to disentangle regime switches regarding

the path of these coefficients on the estimation period. Hence, TVP-VAR estimation is an appropriate tool to

investigate changes in the conduct of monetary policy over time. Note that the coefficients are also unstable

when the monetary policy rule is estimated with OLS with rolling windows and sequential VAR estimation with

recursive windows (i.e. increasing windows). The results are not reported here and are available upon request.

C.3 Statistical tests for stability of parameters

Cogley and Sargent (2005) consider classical tests for variation in the parameters of their model. The

purpose of this section is to apply some of those tests to US and euro area data used previously to give further

insights on the stability of parameters.

Hence, one of the most prominent tests that can easily be implemented after fitting a VAR is the Wald test.

It allows to compute the Wald lag-exclusion statistics to test the hypothesis that the endogenous variables at

a given lag are jointly zero for each equation and for all equations jointly. Testing stability on an equation-by-

equation basis, the hypothesis that all three endogenous variables have zero coefficients at the first lag can be

rejected at the 1% level for the three equations. Similarly, we strongly reject the hypothesis that the coefficients

on the first and second lags of the endogenous variables are zero in all three equations jointly. The results are

not reported here and are available upon request.
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Figure C.2: VAR(2) coefficients with rolling-windows

(a) US

(b) Euro area
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D Tables

D.1 Inefficiency factors

Table D.1: Inefficiency factors (US)

Median Mean Min. Max. 10th percentile 90th percentile

3150 Coefficients BT 5.00 5.36 1.92 6.75 2.81 6.20

450 Covariances AT 2.74 2.83 1.81 3.26 2.17 3.07

450 Volatilities ΣT 6.70 7.25 4.31 7.98 5.55 7.56

238 Hyperparameters V 21.58 21.49 17.79 22.61 20.67 22.18

Table D.2: Inefficiency factors (Euro area)

Median Mean Min. Max. 10th percentile 90th percentile

3150 Coefficients BT 5.16 5.46 1.68 12.89 2.92 8.51

450 Covariances AT 2.64 2.91 1.81 6.70 2.08 4.05

450 Volatilities ΣT 7.08 7.64 4.83 16.18 5.68 9.88

238 Hyperparameters V 20.51 20.45 17.84 22.48 19.45 21.42
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D.2 Descriptive statistics of the time-varying coefficients

Table D.3: Monetary policy rule parameters in the US (median coefficients)

2009:1 2013:1 2017:1

Impact coefficient on inflation 0.81 1.33 0.40

Impact coefficient on the output gap 0.50 0.78 0.3

Interest rate smoothing 0.92 0.94 0.96

Long-run coefficient on inflation 1.86 2.52 2.05

Long-run coefficient on output gap 1.29 1.70 1.94

Monetary policy shock volatility 0.74 0.97 0.20

Table D.4: Monetary policy rule parameters in the US (mean of median coefficients)

1970:1 - 2018:4 1995:1 - 2018:4

Full sample < 2008:1 Full sample < 2008:1 ≥ 2008:1

Impact coefficient on inflation 0.95 0.97 0.80 0.73 0.88

Impact coefficient on the output gap 0.50 0.47 0.45 0.35 0.58

Interest rate smoothing 0.95 0.95 0.93 0.93 0.94

Long-run coefficient on inflation 1.87 1.78 1.95 1.74 2.19

Long-run coefficient on output gap 1.28 1.16 1.40 1.18 1.66

Monetary policy shock volatility 0.73 0.75 0.45 0.29 0.64
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Table D.5: Monetary policy rule parameters in the euro area (median coefficients)

2009:1 2013:1 2017:1

Impact coefficient on inflation 0.58 0.72 0.92

Impact coefficient on the output gap 0.51 0.88 1.50

Interest rate smoothing 0.91 0.92 0.94

Long-run coefficient on inflation 1.65 2.11 2.52

Long-run coefficient on output gap 0.98 1.35 1.84

Monetary policy shock volatility 0.43 0.57 0.82

Table D.6: Monetary policy rule parameters in the euro area (mean of median coefficients)

1981:1 - 2018:4 1995:1 - 2018:4

Full sample < 2008:1 Full sample < 2008:1 ≥ 2008:1

Impact coefficient on inflation 0.70 0.67 0.62 0.50 0.75

Impact coefficient on the output gap 0.68 0.54 0.77 0.56 1.02

Interest rate smoothing 0.90 0.89 0.91 0.90 0.92

Long-run coefficient on inflation 1.38 1.08 1.68 1.31 2.12

Long-run coefficient on output gap 1.56 1.60 1.37 1.30 1.46

Monetary policy shock volatility 0.47 0.41 0.45 0.30 0.62
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E Figures

E.1 Long-run coefficients and full sample (baseline estimation)

Figure E.1: Interest rate smoothing and long-run coefficients from the estimated monetary policy rule

(a) Interest rate smoothing (b) Long-run coefficient on inflation (c) Long-run coefficient on output gap

Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and long-run coefficients on inflation and output gap are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1− γ1,rr,t− γ2,rr,t) and

(crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated

variable.
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Figure E.2: Contemporaneous coefficients from the estimated monetary policy rule and monetary policy shock volatility (full sample)

(a) Contemporaneous coefficient on inflation (b) Contemporaneous coefficient on output gap (c) Monetary policy shock volatility

Note: Contemporaneous coefficients on inflation and output gap are respectively given by crπ,t and crg,t, and the volatility of monetary policy shocks is captured by δr,t in equation (3). Median (solid

lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure E.3: Interest rate smoothing and long-run coefficients from the estimated monetary policy rule (full sample)

(a) Interest rate smoothing (b) Long-run coefficient on inflation (c) Long-run coefficient on output gap

Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and long-run coefficients on inflation and output gap are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1− γ1,rr,t− γ2,rr,t) and

(crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated

variable.
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E.2 Counterfactual analysis (baseline estimation)

Figure E.4: Counterfactual simulations (US)

Note: Median counterfactual path (red dashed lines) and 68% credible interval (red shaded areas) are plotted for each indicated variable.
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Figure E.5: Counterfactual simulations (Euro area)

Note: Median counterfactual path (red dashed lines) and 68% credible interval (red shaded areas) are plotted for each indicated variable.
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F Robustness checks

F.1 Shadow rate (Wu and Xia, 2016)

The model is re-estimated with the shadow rate extracted fromWu and Xia (2016).18 As discussed previously

in this paper, this shadow rate follows a different path than Krippner; Krippner’s (2013; 2019) shadow short

rate (Figure F.1)

Figure F.1: Shadow rates
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(a) US
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(b) Euro area

Short and long-run coefficients are given by the following figures (Figure F.2 and Figure F.3). Although the

tables containing median coefficients are not reported here, it can be graphically deduced that the path of the

coefficients from the model estimated with Wu and Xia’s shadow rate are quite the same than the model esti-

mated with Krippner’s shadow rate, except concerning the peak after the 2008 crisis. Whereas the estimation

with Krippner’s shadow short rate gives contemporaneous coefficients at a level similar to the one observed in

the early 1980s, the estimation with Wu and Xia’s shadow rate gives post-crisis short-run coefficients without

any obvious significant change during this period. However, the results seem to be robust to the shadow rate

specification when considering the volatility of monetary policy shocks, interest rate smoothing and long-term

coefficients on inflation and output.

18The US shadow rate data are available on Jing Cynthia Wu’s webpage. I am very grateful to her for providing euro area

shadow rate data.
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Figure F.2: Contemporaneous coefficients from the estimated monetary policy rule and monetary policy shock volatility (Wu and Xia’s shadow rate)

(a) Contemporaneous coefficient on inflation (b) Contemporaneous coefficient on output gap (c) Monetary policy shock volatility

Note: Contemporaneous coefficients on inflation and output gap are respectively given by crπ,t and crg,t, and the volatility of monetary policy shocks is captured by δr,t in equation (3). Median (solid

lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure F.3: Interest rate smoothing and long-run coefficients from the estimated monetary policy rule (Wu and Xia’s shadow rate)

(a) Interest rate smoothing (b) Long-run coefficient on inflation (c) Long-run coefficient on output gap

Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and long-run coefficients on inflation and output gap are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1− γ1,rr,t− γ2,rr,t) and

(crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated

variable.

53



F.2 Alternative measures of inflation and business cycle proxies

Alternative specification of the estimated monetary policy rule are run over the sample. The robustness of

the results are tested with different series of ex-post inflation (including GDP deflator for the US and for the

euro area, CPI and headline PCE price index only for the US) and ex-post proxies for real activity (including

real GDP growth and unemployment rate for the US and for the euro area, unemployment gap for the US and

estimated output gap using Christiano and Fitzgerald (2003) bandpass filter for the euro area). The path of

estimated response coefficients are robust to other inflation series and real activity proxies, especially for the

volatility of monetary policy shocks.

As made clear by Orphanides (2001, 2003, 2004), real-time and forecast data should also be used in the

estimates. Such data are available for the US over a long timespan.19 However, estimates for the euro area with

real-time and forecast data are hardly possible because of the lack of observation due to the need for at least 10

years of training sample to calibrate the prior distribution of the time-varying coefficients. This is incompatible

with the relatively short period of time covered by those datasets.20 Hence, to make the comparison between

Fed and ECB monetary policy possible, only historical ex-post data are used in the TVP-VAR specification

presented in this paper. Croushore and Evans (2006) show that the use of revised data is not a serious limitation

for the analysis of monetary policy shocks in recursively identified VARs. However, note that Amir-Ahmadi

et al. (2017) employ a TVP-VAR and show that impulse reponses to monetary policy shocks is stronger using

final data instead of real-time data.

Following Okun’s law (Okun, 1962), output gap or real GDP growth are replaced by unemployment gap21 or

simply unemployment rate in the estimate. As a consequence, the strategy based on sign restriction on impulse

responses used to identify structural shocks has to be slightly modified as follows:

Table F.1: Sign restrictions on the impact effects of structural shocks

Impact effect on Structural shocks

Aggregate supply Aggregate demand Monetary policy

Inflation + + -

Unemployment rate/gap + - +

Shadow rate ? + +

Note: The symbol ? indicates that the response is left unconstrained.

Proxied by unemployment rate or gap, real activity is assumed to react positively to aggregate supply shocks,

negatively to aggregate demand shocks and positively to monetary policy shocks. Note also that sign restrictions

on impulse responses are the same than those presented in Table 1 when considering real GDP growth instead

of output gap in the empirical procedure.

19Real-time data in the US are reported by the Federal Reserve Bank of Philadelphia in the Real-Time Data Set for Macroe-

conomists, and forecast data are reported in the Survey of Professional Forecasters.
20The ECB real-time database (RTD) begins in 1995:1, and the ECB Survey of Professional Forecasters (SPF) only begins in

1999:1.
21Unemployment gap is constructed following the formula u

gap
t = ut − ūt , where ut is the unemployment rate and ūt is the

estimated non-accelerating inflation rate of unemployment (NAIRU) at time t.
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Figure F.4: Contemporaneous coefficients from the estimated monetary policy rule and monetary policy shock volatility (GDP deflator and real GDP growth)

(a) Contemporaneous coefficient on inflation (GDP deflator) (b) Contemporaneous coefficient on real GDP growth (c) Monetary policy shock volatility

Note: Contemporaneous coefficients on inflation and real GDP growth are respectively given by crπ,t and crg,t, and the volatility of monetary policy shocks is captured by δr,t in equation (3). Median

(solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure F.5: Interest rate smoothing and long-run coefficients from the estimated monetary policy rule (GDP deflator and real GDP growth)

(a) Interest rate smoothing (b) Long-run coefficient on inflation (GDP deflator) (c) Long-run coefficient on real GDP growth

Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and long-run coefficients on inflation and real GDP growth are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1− γ1,rr,t− γ2,rr,t)

and (crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated

variable.
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Figure F.6: Contemporaneous coefficients from the estimated monetary policy rule and monetary policy shock volatility (CPI/HICP and unemployment rate)

(a) Contemporaneous coefficient on inflation (b) Contemporaneous coefficient on unemployment rate (c) Monetary policy shock volatility

Note: Contemporaneous coefficients on inflation and unemployment rate are respectively given by crπ,t and crg,t, and the volatility of monetary policy shocks is captured by δr,t in equation (3). Median

(solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure F.7: Interest rate smoothing and long-run coefficients from the estimated monetary policy rule (CPI/HICP and unemployment rate)

(a) Interest rate smoothing (b) Long-run coefficient on inflation (c) Long-run coefficient on unemployment rate

Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and long-run coefficients on inflation and unemployment rate are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1− γ1,rr,t− γ2,rr,t)

and (crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated

variable.
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Figure F.8: Contemporaneous coefficients from the estimated monetary policy rule and monetary policy shock volatility in the US (PCE and unemployment gap)

(a) Contemporaneous coefficient on inflation (PCE) (b) Contemporaneous coefficient on unemployment gap (c) Monetary policy shock volatility

Note: Contemporaneous coefficients on inflation and unemployment gap are respectively given by crπ,t and crg,t, and the volatility of monetary policy shocks is captured by δr,t in equation (3). Median

(solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure F.9: Interest rate smoothing and long-run coefficients from the estimated monetary policy rule in the US (PCE and unemployment gap)

(a) Interest rate smoothing (b) Long-run coefficient on inflation (PCE) (c) Long-run coefficient on unemployment gap

Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and long-run coefficients on inflation and unemployment gap are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1− γ1,rr,t− γ2,rr,t)

and (crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated

variable.
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Estimating real potential GDP in the euro area with filters

Although it has been universally used in macroeconomics, the Hodrick-Prescott filter may be subject to

criticism. According to Hamilton (2018), the HP filter is not a reliable tool to decompose series into a trend

and a cycle component, because it introduces spurious dynamic relations and have no basis in the true data-

generating process. Therefore, I propose alternative filtering methods commonly used in macroeconomics to

estimate euro area real potential GDP. For this purpose, real potential GDP in the euro area is estimated with

filtering methods based on Christiano and Fitzgerald (2003), Baxter and King (1999), and following Hamilton

(2018) more recently. As a reminder, I briefly give the conceptual framework of Hodrick and Prescott (1997),

and raise potential issues implied by the use of the HP filter. Then, other filters are discussed and used to test

the robustness of the results.

In accordance with Hodrick and Prescott’s (1997) notations, a given time series yt may be decomposed into

a growth (or trend) component gt and a cyclical component ct such that:

yt = gt + ct

for t = 1, . . . , T . As for any filtering methods, the aim of the HP filter is to give a measure of smoothness of

the {gt} path. In Hodrick and Prescott (1997), the growth component is determined by the resolution of the

following optimization program:

Min
{gt}T

t=−1

{
T∑

t=1

(yt − gt
︸ ︷︷ ︸

=ct

)2 + λ

T∑

t=1

[(gt − gt−1)− (gt−1 − gt−2)]
2

}

(F.1)

where λ > 0 is a ‘smoothing parameter’ which penalizes variations in the growth component. The larger the

value of λ, the smoother is the trend. As a rule of thumb, it is commonly set to 1600 for quarterly data.

However, as highlighted by Hamilton (2018), the HP filter suffers from an end-point bias, and filtered values at

the end of the sample are also characterized by spurious dynamics. Also, the author advocates that the value of

λ should be data-consistent instead of being calibrated to λ = 1600 for quarterly data. Hence, Hamilton (2018)

suggests an alternative statistical procedure, and proposes running an OLS regression of yt+h on a constant and

on the four more recent values as of date t to offer a robust alternative to HP filter:

yt+h = β0 + β1yt + β2yt−1 + β3yt−2 + β4yt−3
︸ ︷︷ ︸

trend component

+ υt+h
︸︷︷︸

cycle
component

(F.2)

Hamilton (2018) advocates that for large samples, OLS estimates of equation (F.2) converge to β1 = 1 and

βi = 0 for i = 0, 2, 3, 4, and can therefore be written:

yt+h = yt
︸︷︷︸

trend
component

+ υt+h
︸︷︷︸

cycle
component

(F.3)

that gives how much the series yt+h change over a given h horizon.

Euro area output gaps implied by filtered real GDP based on Hamilton’s (2018) procedure are presented in the

following Figure F.10.
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Figure F.10: Regression and 8-quarter-change filters applied to euro area real GDP following Hamilton (2018)

1970 1980 1990 2000 2010 2020

years

-8

-6

-4

-2

0

2

4

6

8

10

12

Correlation: 0.71

HP filter

Regression

1970 1980 1990 2000 2010 2020

years

-8

-6

-4

-2

0

2

4

6

8

10

12

Correlation: 0.64

HP filter

Random walk

Note: Dashed line shows euro area output gap constructed with real potential GDP estimated by an Hodrick-Prescott filter. Left: solid

line plots υt = yt − β̂0 − β̂1yt−8 − β̂2yt−9 − β̂3yt−10 − β̂4yt−11, following equation (F.2). Right: solid line plots υt = yt − yt−8, following

equation (F.3).

Other filtering methods have been widely used in empirical macroeconomics, such as Baxter and King (1999)

or Christiano and Fitzgerald (2003) (see Figure F.11).
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Figure F.11: Band-pass filters applied to euro area real GDP
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Note: Dashed line shows euro area output gap constructed with real potential GDP estimated by an Hodrick-Prescott filter. Left: solid line

plots the cyclical component of euro area real GDP is obtained using a Baxter and King (1999) filter. Right: solid line plots the cyclical

component of euro area real GDP is obtained using a Christiano and Fitzgerald (2003) filter.
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Figure F.12: Contemporaneous coefficients from the estimated monetary policy rule and monetary policy shock volatility in the euro area (HICP and output gap)

(a) Contemporaneous coefficient on inflation (HICP) (b) Contemporaneous coefficient on output gap (bandpass filter) (c) Monetary policy shock volatility

Note: Contemporaneous coefficients on inflation and output gap are respectively given by crπ,t and crg,t, and the volatility of monetary policy shocks is captured by δr,t in equation (3). Median (solid

lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure F.13: Interest rate smoothing and long-run coefficients from the estimated monetary policy rule in the euro area (HICP and output gap)

(a) Interest rate smoothing (b) Long-run coefficient on inflation (HICP) (c) Long-run coefficient on output gap (bandpass filter)

Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and long-run coefficients on inflation and output gap are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1− γ1,rr,t− γ2,rr,t) and

(crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated

variable.
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